

minin

Welcome to <u>E-XFL.COM</u>

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Details                    |                                                                             |
|----------------------------|-----------------------------------------------------------------------------|
| Product Status             | Active                                                                      |
| Core Processor             | PIC                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 4MHz                                                                        |
| Connectivity               | UART/USART                                                                  |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                       |
| Number of I/O              | 16                                                                          |
| Program Memory Size        | 3.5KB (2K x 14)                                                             |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | 128 x 8                                                                     |
| RAM Size                   | 224 x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 5.5V                                                                   |
| Data Converters            | -                                                                           |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | 0°C ~ 70°C (TA)                                                             |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 20-SSOP (0.209", 5.30mm Width)                                              |
| Supplier Device Package    | 20-SSOP                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lf628t-04-ss |
|                            |                                                                             |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 1.0 PIC16F62X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16F62X Product Identification System section (Page 167) at the end of this data sheet. When placing orders, please use this page of the data sheet to specify the correct part number.

# 1.1 FLASH Devices

FLASH devices can be erased and reprogrammed electrically. This allows the same device to be used for prototype development, pilot programs and production.

A further advantage of the electrically-erasable FLASH is that it can be erased and reprogrammed in-circuit, or by device programmers, such as Microchip's PICSTART<sup>®</sup> Plus, or PRO MATE<sup>®</sup> II programmers.

# 1.2 Quick-Turnaround Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who chose not to program a medium-to-high quantity of units and whose code patterns have stabilized. The devices are standard FLASH devices but with all program locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

# 1.3 Serialized Quick-Turnaround Production (SQTP<sup>sm</sup>) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password or ID number.

# 3.2.2.4 PIE1 Register

This register contains interrupt enable bits.

| 51ER 3-4: | PIET REGI                  | SIER (AL                                                                                                              | DRESS:        | ocn)                            |                |           |               |        |  |  |  |  |  |  |
|-----------|----------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------|----------------|-----------|---------------|--------|--|--|--|--|--|--|
|           | R/W-0                      | R/W-0                                                                                                                 | R/W-0         | R/W-0                           | U-0            | R/W-0     | R/W-0         | R/W-0  |  |  |  |  |  |  |
|           | EEIE                       | CMIE                                                                                                                  | RCIE          | TXIE                            |                | CCP1IE    | TMR2IE        | TMR1IE |  |  |  |  |  |  |
|           | bit 7                      |                                                                                                                       |               |                                 |                |           |               | bit 0  |  |  |  |  |  |  |
|           |                            |                                                                                                                       |               |                                 |                |           |               |        |  |  |  |  |  |  |
| bit 7     |                            | EEIE: EE Write Complete Interrupt Enable Bit                                                                          |               |                                 |                |           |               |        |  |  |  |  |  |  |
|           |                            | <ul> <li>1 = Enables the EE write complete interrupt</li> <li>0 = Disables the EE write complete interrupt</li> </ul> |               |                                 |                |           |               |        |  |  |  |  |  |  |
| bit 6     | CMIE: Com                  | CMIE: Comparator Interrupt Enable bit                                                                                 |               |                                 |                |           |               |        |  |  |  |  |  |  |
|           |                            | <ul><li>1 = Enables the comparator interrupt</li><li>0 = Disables the comparator interrupt</li></ul>                  |               |                                 |                |           |               |        |  |  |  |  |  |  |
| bit 5     | RCIE: USA                  | RT Receive                                                                                                            | e Interrupt E | Enable bit                      |                |           |               |        |  |  |  |  |  |  |
|           | 1 = Enables<br>0 = Disable |                                                                                                                       |               |                                 |                |           |               |        |  |  |  |  |  |  |
| bit 4     | TXIE: USAF                 | RT Transmi                                                                                                            | t Interrupt E | Enable bit                      |                |           |               |        |  |  |  |  |  |  |
|           | 1 = Enables<br>0 = Disable |                                                                                                                       |               |                                 |                |           |               |        |  |  |  |  |  |  |
| bit 3     | Unimpleme                  | ented: Rea                                                                                                            | d as '0'      |                                 |                |           |               |        |  |  |  |  |  |  |
| bit 2     | CCP1IE: CO                 | CP1 Interru                                                                                                           | pt Enable b   | oit                             |                |           |               |        |  |  |  |  |  |  |
|           | 1 = Enables<br>0 = Disable |                                                                                                                       |               |                                 |                |           |               |        |  |  |  |  |  |  |
| bit 1     | TMR2IE: T                  | MR2 to PR2                                                                                                            | 2 Match Inte  | errupt Enable                   | e bit          |           |               |        |  |  |  |  |  |  |
|           |                            |                                                                                                                       |               | itch interrupt<br>atch interrup |                |           |               |        |  |  |  |  |  |  |
| bit 0     | TMR1IE: T                  | MR1 Overflo                                                                                                           | ow Interrup   | t Enable bit                    |                |           |               |        |  |  |  |  |  |  |
|           | 1 = Enables                | s the TMR1                                                                                                            | overflow in   | nterrupt                        |                |           |               |        |  |  |  |  |  |  |
|           | 0 = Disable                | s the TMR1                                                                                                            | l overflow i  | nterrupt                        |                |           |               |        |  |  |  |  |  |  |
|           | Legend:                    |                                                                                                                       |               |                                 |                |           |               |        |  |  |  |  |  |  |
|           | R = Readat                 | ole bit                                                                                                               | VV = V        | Vritable bit                    | U = Unimple    | emented b | it, read as ' | D'     |  |  |  |  |  |  |
|           | -n = Value a               | at POR                                                                                                                | '1' = E       | Bit is set                      | '0' = Bit is c | leared    | x = Bit is ur | nknown |  |  |  |  |  |  |

#### REGISTER 3-4: PIE1 REGISTER (ADDRESS: 8Ch)

# PIC16F62X



NOTES:

# 8.0 TIMER2 MODULE

Timer2 is an 8-bit timer with a prescaler and a postscaler. It can be used as the PWM time-base for PWM mode of the CCP module. The TMR2 register is readable and writable, and is cleared on any device RESET.

The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

The Timer2 module has an 8-bit Period Register PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon RESET.

The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

Timer2 can be shut off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

Register 8-1 shows the Timer2 Control register.

## 8.1 Timer2 Prescaler and Postscaler

The prescaler and postscaler counters are cleared when any of the following occurs:

- · A write to the TMR2 register
- · A write to the T2CON register
- Any device RESET (Power-on Reset, MCLR Reset, Watchdog Timer Reset, or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

## 8.2 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module which optionally uses it to generate shift clock.

#### FIGURE 8-1: TIMER2 BLOCK DIAGRAM



#### EXAMPLE 10-1: VOLTAGE REFERENCE CONFIGURATION

| MOVLW | 0x02        | ; 4 Inputs Muxed |
|-------|-------------|------------------|
| MOVWF | CMCON       | ; to 2 comps.    |
| BSF   | STATUS, RPO | ; go to Bank 1   |
| MOVLW | 0x07        | ; RA3-RA0 are    |
| MOVWF | TRISA       | ; outputs        |
| MOVLW | 0xA6        | ; enable VREF    |
| MOVWF | VRCON       | ; low range      |
|       |             | ; set VR<3:0>=6  |
| BCF   | STATUS, RPO | ; go to Bank 0   |
| CALL  | DELAY10     | ; 10µs delay     |

## 10.2 Voltage Reference Accuracy/Error

The full range of VSS to VDD cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 10-1) keep VREF from approaching VSS or VDD. The Voltage Reference is VDD derived and therefore, the VREF output changes with fluctuations in VDD. The tested absolute accuracy of the Voltage Reference can be found in Table 17-2.

## 10.3 Operation During SLEEP

When the device wakes-up from SLEEP through an interrupt or a Watchdog Timer timeout, the contents of the VRCON register are not affected. To minimize current consumption in SLEEP mode, the Voltage Reference should be disabled.

# 10.4 Effects of a RESET

A device RESET disables the Voltage Reference by clearing bit VREN (VRCON<7>). This RESET also disconnects the reference from the RA2 pin by clearing bit VROE (VRCON<6>) and selects the high voltage range by clearing bit VRR (VRCON<5>). The VREF value select bits, VRCON<3:0>, are also cleared.

#### **10.5** Connection Considerations

The Voltage Reference module operates independently of the Comparator module. The output of the reference generator may be connected to the RA2 pin if the TRISA<2> bit is set and the VROE bit, VRCON<6>, is set. Enabling the Voltage Reference output onto the RA2 pin with an input signal present will increase current consumption. Connecting RA2 as a digital output with VREF enabled will also increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited drive capability, a buffer must be used in conjunction with the Voltage Reference output for external connections to VREF. Figure 10-2 shows an example buffering technique.



#### FIGURE 10-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

#### TABLE 10-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE

| Address | Name  | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | Value On<br>POR | Value On<br>All Other<br>RESETS |
|---------|-------|--------|--------|--------|--------|--------|--------|--------|--------|-----------------|---------------------------------|
| 9Fh     | VRCON | VREN   | VROE   | VRR    |        | VR3    | VR2    | VR1    | VR0    | 000- 0000       | 000- 0000                       |
| 1Fh     | CMCON | C2OUT  | C1OUT  | C2INV  | C1INV  | CIS    | CM2    | CM1    | CM0    | 0000 0000       | 0000 0000                       |
| 85h     | TRISA | TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 | 1111 1111       | 1111 1111                       |

**Note 1:** — = Unimplemented, read as '0'.

NOTES:

| BAUD     | Fosc = 20 M | Hz     |                    | 16 MHz |        | SPBRG              | 10 MHz |        | SPBRG              |
|----------|-------------|--------|--------------------|--------|--------|--------------------|--------|--------|--------------------|
| RATE (K) | KBAUD       | ERROR  | value<br>(decimal) | KBAUD  | ERROR  | value<br>(decimal) | KBAUD  | ERROR  | value<br>(decimal) |
| 0.3      | NA          | _      | _                  | NA     | _      |                    | NA     | _      |                    |
| 1.2      | 1.221       | +1.73% | 255                | 1.202  | +0.16% | 207                | 1.202  | +0.16% | 129                |
| 2.4      | 2.404       | +0.16% | 129                | 2.404  | +0.16% | 103                | 2.404  | +0.16% | 64                 |
| 9.6      | 9.469       | -1.36% | 32                 | 9.615  | +0.16% | 25                 | 9.766  | +1.73% | 15                 |
| 19.2     | 19.53       | +1.73% | 15                 | 19.23  | +0.16% | 12                 | 19.53  | +1.73V | 7                  |
| 76.8     | 78.13       | +1.73% | 3                  | 83.33  | +8.51% | 2                  | 78.13  | +1.73% | 1                  |
| 96       | 104.2       | +8.51% | 2                  | NA     | _      | _                  | NA     | _      | _                  |
| 300      | 312.5       | +4.17% | 0                  | NA     | _      | _                  | NA     | _      | _                  |
| 500      | NA          | _      | _                  | NA     | _      | _                  | NA     | _      | _                  |
| HIGH     | 312.5       | _      | 0                  | 250    | _      | 0                  | 156.3  | _      | 0                  |
| LOW      | 1.221       | —      | 255                | 0.977  |        | 255                | 0.6104 |        | 255                |

| TABLE 12-4: | BAUD RATES FOR ASYNCHRONOUS MODE ( | BRGH=0) |
|-------------|------------------------------------|---------|
|-------------|------------------------------------|---------|

| BAUD     | Fosc = 7.15 | 909 MHz | SPBRG              | 5.0688 MHz |        | SPBRG              | 4 MHz  |        | SPBRG              |
|----------|-------------|---------|--------------------|------------|--------|--------------------|--------|--------|--------------------|
| RATE (K) | KBAUD       | ERROR   | value<br>(decimal) | KBAUD      | ERROR  | value<br>(decimal) | KBAUD  | ERROR  | value<br>(decimal) |
| 0.3      | NA          | _       | _                  | 0.31       | +3.13% | 255                | 0.3005 | -0.17% | 207                |
| 1.2      | 1.203       | +0.23%  | 92                 | 1.2        | 0      | 65                 | 1.202  | +1.67% | 51                 |
| 2.4      | 2.380       | -0.83%  | 46                 | 2.4        | 0      | 32                 | 2.404  | +1.67% | 25                 |
| 9.6      | 9.322       | -2.90%  | 11                 | 9.9        | +3.13% | 7                  | NA     | _      | _                  |
| 19.2     | 18.64       | -2.90%  | 5                  | 19.8       | +3.13% | 3                  | NA     | _      | _                  |
| 76.8     | NA          | _       | _                  | 79.2       | +3.13% | 0                  | NA     | _      | _                  |
| 96       | NA          | _       | _                  | NA         | _      | _                  | NA     | _      | _                  |
| 300      | NA          | _       | _                  | NA         | _      | _                  | NA     | _      | _                  |
| 500      | NA          |         | _                  | NA         | _      | _                  | NA     | _      | _                  |
| HIGH     | 111.9       | _       | 0                  | 79.2       | _      | 0                  | 62.500 | _      | 0                  |
| LOW      | 0.437       | —       | 255                | 0.3094     |        | 255                | 3.906  |        | 255                |

| BAUD        | Fosc = 3.579 | 9545 MHz | SPBRG              | 1 MHz  |        | SPBRG              | 32.768 MHz |         | SPBRG              |
|-------------|--------------|----------|--------------------|--------|--------|--------------------|------------|---------|--------------------|
| RATE<br>(K) | KBAUD        | ERROR    | value<br>(decimal) | KBAUD  | ERROR  | value<br>(decimal) | KBAUD      | ERROR   | value<br>(decimal) |
| 0.3         | 0.301        | +0.23%   | 185                | 0.300  | +0.16% | 51                 | 0.256      | -14.67% | 1                  |
| 1.2         | 1.190        | -0.83%   | 46                 | 1.202  | +0.16% | 12                 | NA         | _       | _                  |
| 2.4         | 2.432        | +1.32%   | 22                 | 2.232  | -6.99% | 6                  | NA         | _       | _                  |
| 9.6         | 9.322        | -2.90%   | 5                  | NA     | _      | _                  | NA         | _       | _                  |
| 19.2        | 18.64        | -2.90%   | 2                  | NA     | _      | _                  | NA         | _       | _                  |
| 76.8        | NA           | _        | _                  | NA     | _      | _                  | NA         | _       | _                  |
| 96          | NA           | _        | _                  | NA     | _      | _                  | NA         | _       | _                  |
| 300         | NA           | _        | _                  | NA     | _      | _                  | NA         | _       | _                  |
| 500         | NA           | _        | _                  | NA     | _      | _                  | NA         | _       | _                  |
| HIGH        | 55.93        | _        | 0                  | 15.63  | _      | 0                  | 0.512      | _       | 0                  |
| LOW         | 0.2185       | _        | 255                | 0.0610 | _      | 255                | 0.0020     | _       | 255                |

#### 12.2.2 ADEN USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 12-8. The data is received on the RB1/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc.

Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the Receive (serial) Shift register (RSR). After sampling the STOP bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a double buffered register ( i.e., it is a two-deep FIFO).

It is possible for two bytes of data to be received and transferred to the RCREG FIFO, and a third byte begin shifting to the RSR register. On the detection of the STOP bit of the third byte, if the RCREG register is still full, then overrun error bit OERR (RCSTA<1>) will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited, so it is essential to clear error bit OERR if it is set. Framing error bit FERR (RCSTA<2>) is set if a STOP bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG will load bits RX9D and FERR with new values, therefore it is essential for the user to read the RCSTA register before reading the RCREG register in order not to lose the old FERR and RX9D information.





Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH. (Section 12.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC, and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting bit CREN.
- 6. Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.

| Address | Name  | Bit 7     | Bit 6    | Bit 5     | Bit 4 | Bit 3 | Bit 2  | Bit 1  | Bit 0  | Value on<br>POR | Value on<br>all other<br>RESETS |
|---------|-------|-----------|----------|-----------|-------|-------|--------|--------|--------|-----------------|---------------------------------|
| 0Ch     | PIR1  | EEIF      | CMIF     | RCIF      | TXIF  |       | CCP1IF | TMR2IF | TMR1IF | 0000 -000       | 0000 -000                       |
| 18h     | RCSTA | SPEN      | RX9      | SREN      | CREN  | ADEN  | FERR   | OERR   | RX9D   | 0000 -00x       | 0000 -00x                       |
| 1Ah     | RCREG | USART Re  | ceive Re | egister   |       |       |        |        |        | 0000 0000       | 0000 0000                       |
| 8Ch     | PIE1  | EEIE      | CMIE     | RCIE      | TXIE  | _     | CCP1IE | TMR2IE | TMR1IE | 0000 -000       | 0000 -000                       |
| 98h     | TXSTA | CSRC      | TX9      | TXEN      | SYNC  |       | BRGH   | TRMT   | TX9D   | 0000 -010       | 0000 -010                       |
| 99h     | SPBRG | Baud Rate | Generat  | or Regist | er    |       |        |        |        | 0000 0000       | 0000 0000                       |

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.

#### 12.4.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>) or enable bit CREN (RCSTA<4>). Data is sampled on the RB1/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is RESET by the hardware. In this case, it is RESET when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a two-deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full then overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The 9th

receive bit is buffered the same way as the receive data. Reading the RCREG register, will load bit RX9D with a new value, therefore it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old RX9D information.

Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. (Section 12.1)
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.

| Address | Name  | Bit 7     | Bit 6    | Bit 5    | Bit 4 | Bit 3 | Bit 2  | Bit 1  | Bit 0  | Value on:<br>POR | Value on all<br>other<br>RESETS |
|---------|-------|-----------|----------|----------|-------|-------|--------|--------|--------|------------------|---------------------------------|
| 0Ch     | PIR1  | EEIF      | CMIF     | RCIF     | TXIF  | _     | CCP1IF | TMR2IF | TMR1IF | 0000 -000        | 0000 -000                       |
| 18h     | RCSTA | SPEN      | RX9      | SREN     | CREN  | ADEN  | FERR   | OERR   | RX9D   | 0000 -00x        | 0000 -00x                       |
| 1Ah     | RCREG | USART R   | eceive F | Register |       |       |        |        |        | 0000 0000        | 0000 0000                       |
| 8Ch     | PIE1  | EEPIE     | CMIE     | RCIE     | TXIE  | _     | CCP1IE | TMR2IE | TMR1IE | -000 0000        | -000 -000                       |
| 98h     | TXSTA | CSRC      | TX9      | TXEN     | SYNC  | _     | BRGH   | TRMT   | TX9D   | 0000 -010        | 0000 -010                       |
| 99h     | SPBRG | Baud Rate | e Genera | ator Reg | ister |       |        |        |        | 0000 0000        | 0000 0000                       |

#### TABLE 12-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Master Reception.

# 14.0 SPECIAL FEATURES OF THE CPU

Special circuits to deal with the needs of real-time applications are what sets a microcontroller apart from other processors. The PIC16F62X family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving Operating modes and offer code protection.

These are:

- 1. OSC selection
- 2. RESET
- 3. Power-on Reset (POR)
- 4. Power-up Timer (PWRT)
- 5. Oscillator Start-Up Timer (OST)
- 6. Brown-out Reset (BOD)
- 7. Interrupts
- 8. Watchdog Timer (WDT)
- 9. SLEEP
- 10. Code protection
- 11. ID Locations
- 12. In-circuit Serial Programming

The PIC16F62X has a Watchdog Timer which is controlled by configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. There is also circuitry to RESET the device if a Brown-out occurs, which provides at least a 72 ms RESET. With these three functions on-chip, most applications need no external RESET circuitry.

The SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The ER oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

# 14.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special configuration memory space (2000h – 3FFFh), which can be accessed only during programming. See Programming Specification.

## TABLE 15-2: PIC16F62X INSTRUCTION SET

| Mnemo      | nic,    | Description                  | Cycles           |     | 14-Bit | Opcode | •     | Status   | Notes |
|------------|---------|------------------------------|------------------|-----|--------|--------|-------|----------|-------|
| Operar     | nds     | Description                  | Cycles           | MSb |        |        | LSb   | Affected | Notes |
| BYTE-ORIE  | NTED F  | ILE REGISTER OPERATIONS      |                  |     |        |        |       |          |       |
| ADDWF      | f, d    | Add W and f                  | 1                | 00  | 0111   | dfff   | ffff  | C,DC,Z   | 1,2   |
| ANDWF      | f, d    | AND W with f                 | 1                | 00  | 0101   | dfff   | ffff  | Z        | 1,2   |
| CLRF       | f       | Clear f                      | 1                | 00  | 0001   | lfff   | ffff  | Z        | 2     |
| CLRW       | _       | Clear W                      | 1                | 00  | 0001   | 0000   | 0011  | Z        |       |
| COMF       | f, d    | Complement f                 | 1                | 00  | 1001   | dfff   | ffff  | Z        | 1,2   |
| DECF       | f, d    | Decrement f                  | 1                | 00  | 0011   | dfff   | ffff  | Z        | 1,2   |
| DECFSZ     | f, d    | Decrement f, Skip if 0       | 1 <sup>(2)</sup> | 00  | 1011   | dfff   | ffff  |          | 1,2,3 |
| INCF       | f, d    | Increment f                  | 1                | 00  | 1010   | dfff   | ffff  | Z        | 1,2   |
| INCFSZ     | f, d    | Increment f, Skip if 0       | 1 <sup>(2)</sup> | 00  | 1111   | dfff   | ffff  |          | 1,2,3 |
| IORWF      | f, d    | Inclusive OR W with f        | 1                | 00  | 0100   | dfff   | ffff  | Z        | 1,2   |
| MOVF       | f, d    | Move f                       | 1                | 00  | 1000   | dfff   | ffff  | Z        | 1,2   |
| MOVWF      | f       | Move W to f                  | 1                | 00  | 0000   | lfff   | ffff  |          |       |
| NOP        | _       | No Operation                 | 1                | 00  | 0000   | 0xx0   | 0000  |          |       |
| RLF        | f, d    | Rotate Left f through Carry  | 1                | 00  | 1101   | dfff   | ffff  | С        | 1,2   |
| RRF        | f, d    | Rotate Right f through Carry | 1                | 00  | 1100   | dfff   | ffff  | С        | 1,2   |
| SUBWF      | f, d    | Subtract W from f            | 1                | 00  | 0010   | dfff   | ffff  | C,DC,Z   | 1,2   |
| SWAPF      | f, d    | Swap nibbles in f            | 1                | 0.0 | 1110   | dfff   | ffff  | -, -,    | 1,2   |
| XORWF      | f, d    | Exclusive OR W with f        | 1                | 00  | 0110   | dfff   | ffff  | Z        | 1,2   |
| BIT-ORIENT | ED FILE | EREGISTER OPERATIONS         |                  |     |        |        |       |          |       |
| BCF        | f, b    | Bit Clear f                  | 1                | 01  | 00bb   | bfff   | ffff  |          | 1,2   |
| BSF        | f, b    | Bit Set f                    | 1                | 01  | 01bb   | bfff   | ffff  |          | 1,2   |
| BTFSC      | f, b    | Bit Test f, Skip if Clear    | 1(2)             | 01  | 10bb   | bfff   | ffff  |          | 3     |
| BTFSS      | f, b    | Bit Test f, Skip if Set      | 1 <sup>(2)</sup> | 01  | 11bb   |        | ffff  |          | 3     |
| LITERAL AN | ND CON  | TROL OPERATIONS              |                  |     |        |        |       |          |       |
| ADDLW      | k       | Add literal and W            | 1                | 11  | 111x   | kkkk   | kkkk  | C,DC,Z   |       |
| ANDLW      | k       | AND literal with W           | 1                | 11  | 1001   | kkkk   | kkkk  | Z        |       |
| CALL       | k       | Call subroutine              | 2                | 10  | 0kkk   | kkkk   | kkkk  |          |       |
| CLRWDT     | _       | Clear Watchdog Timer         | 1                | 00  | 0000   | 0110   | 0100  | TO,PD    |       |
| GOTO       | k       | Go to address                | 2                | 10  | 1kkk   | kkkk   | kkkk  | ,        |       |
| IORLW      | k       | Inclusive OR literal with W  | 1                | 11  | 1000   | kkkk   | kkkk  | Z        |       |
| MOVLW      | k       | Move literal to W            | 1                | 11  | 00xx   | kkkk   | kkkk  |          |       |
| RETFIE     | _       | Return from interrupt        | 2                | 0.0 | 0000   | 0000   | 1001  |          |       |
| RETLW      | k       | Return with literal in W     | 2                | 11  | 01xx   | kkkk   | kkkk  |          |       |
| RETURN     | _       | Return from Subroutine       | 2                | 00  | 0000   | 0000   | 1000  |          |       |
| SLEEP      | _       | Go into Standby mode         | 1                | 00  | 0000   | 0110   | 0011  | TO,PD    |       |
| SUBLW      | k       | Subtract W from literal      | 1                | 11  | 110x   | kkkk   | kkkk  | C,DC,Z   |       |
| XORLW      | k       | Exclusive OR literal with W  | 1                | 11  | 1010   | kkkk   | kkkk  | Z        |       |
|            | IX.     |                              |                  | **  | T0T0   | VVVV   | VIVIV | -        |       |

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

| BTFSS            | Bit Test f, Skip if Set                                                                                                                                                                                                                    | CALL                      | Call Subroutine                                                                                                                                                                                                                |  |  |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Syntax:          | [ label ] BTFSS f,b                                                                                                                                                                                                                        | Syntax:                   | [ <i>label</i> ] CALL k                                                                                                                                                                                                        |  |  |  |  |
| Operands:        | $0 \leq f \leq 127$                                                                                                                                                                                                                        | Operands:                 | $0 \leq k \leq 2047$                                                                                                                                                                                                           |  |  |  |  |
|                  | 0 ≤ b < 7                                                                                                                                                                                                                                  | Operation:                | (PC)+ 1 $\rightarrow$ TOS,                                                                                                                                                                                                     |  |  |  |  |
| Operation:       | skip if (f <b>) = 1</b>                                                                                                                                                                                                                    |                           | $k \rightarrow PC<10:0>$ ,<br>(PCLATH<4:3>) $\rightarrow PC<12:11>$                                                                                                                                                            |  |  |  |  |
| Status Affected: | None                                                                                                                                                                                                                                       | Status Affected:          | None                                                                                                                                                                                                                           |  |  |  |  |
| Encoding:        | 01 11bb bfff                                                                                                                                                                                                                               | TITI Croading             | 10 0kkk kkkk kkkk                                                                                                                                                                                                              |  |  |  |  |
| Description:     | If bit 'b' in register 'f' is '1'<br>next instruction is skipped<br>If bit 'b' is '1', then the nex<br>instruction fetched during<br>current instruction execut<br>discarded and a NOP is ex<br>instead, making this a two<br>instruction. | the<br>ion, is<br>xecuted | Call Subroutine. First, return<br>address (PC+1) is pushed onto<br>the stack. The eleven bit<br>immediate address is loaded<br>into PC bits <10:0>. The upper<br>bits of the PC are loaded from<br>PCLATH. CALL is a two-cycle |  |  |  |  |
| Words:           | 1                                                                                                                                                                                                                                          |                           | instruction.                                                                                                                                                                                                                   |  |  |  |  |
| Cycles:          | 1 <sup>(2)</sup>                                                                                                                                                                                                                           | Words:                    | 1                                                                                                                                                                                                                              |  |  |  |  |
| Example          | HERE BTFSS REG1                                                                                                                                                                                                                            | Cycles:                   | 2                                                                                                                                                                                                                              |  |  |  |  |
|                  | FALSE GOTO PROCE<br>TRUE •                                                                                                                                                                                                                 | SS_CODE Example           | HERE CALL THERE                                                                                                                                                                                                                |  |  |  |  |
|                  | •                                                                                                                                                                                                                                          |                           | Before Instruction<br>PC = Address HERE                                                                                                                                                                                        |  |  |  |  |
|                  | •<br>Before Instruction<br>PC = address<br>After Instruction<br>if FLAG<1> = 0,                                                                                                                                                            |                           | After Instruction<br>PC = Address THERE<br>TOS = Address HERE+1                                                                                                                                                                |  |  |  |  |
|                  | PC = address<br>if FLAG<1> = 1,                                                                                                                                                                                                            | FALSE CLRF                | Clear f                                                                                                                                                                                                                        |  |  |  |  |
|                  | PC = address                                                                                                                                                                                                                               | TRUE Syntax:              | [label] CLRF f                                                                                                                                                                                                                 |  |  |  |  |
|                  |                                                                                                                                                                                                                                            | Operands:                 | $0 \le f \le 127$                                                                                                                                                                                                              |  |  |  |  |
|                  |                                                                                                                                                                                                                                            | Operation:                | $\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$                                                                                                                                                          |  |  |  |  |
|                  |                                                                                                                                                                                                                                            | Status Affected:          | 7                                                                                                                                                                                                                              |  |  |  |  |

| Status Affected: | Z                                                                              |      |      |      |  |  |
|------------------|--------------------------------------------------------------------------------|------|------|------|--|--|
| Encoding:        | 00                                                                             | 0001 | lfff | ffff |  |  |
| Description:     | The contents of register 'f' are cleared and the Z bit is set.                 |      |      |      |  |  |
| Words:           | 1                                                                              |      |      |      |  |  |
| Cycles:          | 1                                                                              |      |      |      |  |  |
| Example          | CLRF                                                                           | REG1 |      |      |  |  |
|                  | Before Instruction<br>REG1 = 0x5A<br>After Instruction<br>REG1 = 0x00<br>Z = 1 |      |      |      |  |  |

# 17.1 DC Characteristics: PIC16F62X-04 (Commercial, Industrial, Extended) PIC16F62X-20 (Commercial, Industrial, Extended) PIC16LF62X-04 (Commercial, Industrial)

| PIC16LF62X-04<br>(Commercial, Industrial)                          |                                                       | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                             |                                                      |                              |                           |                      |                                                                                    |
|--------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------|---------------------------|----------------------|------------------------------------------------------------------------------------|
| PIC16F62X-04<br>PIC16F62X-20<br>(Commercial, Industrial, Extended) |                                                       |                                                                                                                                                                  | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |                              |                           |                      |                                                                                    |
| Param<br>No.                                                       | Sym                                                   | Characteristic/Device                                                                                                                                            | Min                                                  | Тур†                         | Мах                       | Units                | Conditions                                                                         |
| IPD Power Down Current* <sup>(2), (3)</sup>                        |                                                       |                                                                                                                                                                  |                                                      |                              |                           |                      |                                                                                    |
| D020                                                               |                                                       | PIC16LF62X                                                                                                                                                       | _                                                    | 0.20<br>0.20                 | 2.0<br>2.2                | μΑ<br>μΑ             | VDD = 2.0<br>VDD = 5.5                                                             |
| D020                                                               |                                                       | PIC16F62X                                                                                                                                                        |                                                      | 0.20<br>0.20<br>0.20<br>2.70 | 2.2<br>5.0<br>9.0<br>15.0 | μΑ<br>μΑ<br>μΑ<br>μΑ | VDD = 3.0<br>VDD = 4.5*<br>VDD = 5.5<br>VDD = 5.5 Extended                         |
| D023                                                               | ΔIWDT<br>ΔIBOD<br>ΔICOMP<br>ΔIVREF                    | WDT Current <sup>(4)</sup><br>Brown-out Detect Current <sup>(4)</sup><br>Comparator Current for each<br>Comparator <sup>(4)</sup><br>VREF Current <sup>(4)</sup> | <br>                                                 | 6.0<br>75<br>30              | 15<br>125<br>50<br>135    | μΑ<br>μΑ<br>μΑ       | $\frac{V_{DD}}{BOD} = 3.0V$<br>BOD enabled, VDD = 5.0V<br>VDD = 3.0V<br>VDD = 3.0V |
| Daga                                                               | ∆Iwdt                                                 | WDT Current <sup>(4)</sup>                                                                                                                                       | _                                                    | 6.0                          | 20<br>25                  | μΑ<br>μΑ             | VDD = 4.0V, Commercial,<br>Industrial<br>VDD = 4.0V, Extended                      |
| D023                                                               |                                                       | Brown-out Detect Current <sup>(4)</sup><br>Comparator Current for each<br>Comparator <sup>(4)</sup>                                                              | _                                                    | 75<br>30                     | 125<br>50                 | μΑ<br>μΑ             | BOD enabled, VDD = 5.0V<br>VDD = 4.0V                                              |
|                                                                    | $\Delta IVREF VREF Current(4) - 135 \mu A VDD = 4.0V$ |                                                                                                                                                                  |                                                      |                              |                           | VDD = 4.0V           |                                                                                    |

Legend: Rows with standard voltage device data only are shaded for improved readability.

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

- MCLR = VDD; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
- 4: The  $\Delta$  current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 5: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.





| Param<br>No. | Sym      | Characteristic                                                           |         | Min         | Тур† | Max  | Units |
|--------------|----------|--------------------------------------------------------------------------|---------|-------------|------|------|-------|
| 10*          | TosH2ckL | OSC1↑ to CLKOUT↓                                                         | 16F62X  | —           | 75   | 200  | ns    |
| 10A*         |          |                                                                          | 16LF62X | —           |      | 400  | ns    |
| 11*          | TosH2ckH | OSC1↑ to CLKOUT↑                                                         | 16F62X  | —           | 75   | 200  | ns    |
| 11A*         |          |                                                                          | 16LF62X | —           | _    | 400  | ns    |
| 12*          | TckR     | CLKOUT rise time                                                         | 16F62X  | —           | 35   | 100  | ns    |
| 12A*         |          |                                                                          | 16LF62X | —           | _    | 200  | ns    |
| 13*          | TckF     | CLKOUT fall time                                                         | 16F62X  | —           | 35   | 100  | ns    |
| 13A*         |          |                                                                          | 16LF62X | —           | _    | 200  | ns    |
| 14*          | TckL2ioV | CLKOUT $\downarrow$ to Port out valid                                    |         | —           | _    | 20   | ns    |
| 15*          | TioV2ckH | Port in valid before                                                     | 16F62X  | Tosc+200 ns | _    | —    | ns    |
|              |          | CLKOUT ↑                                                                 | 16LF62X | Tosc=400 ns | _    | —    | ns    |
| 16*          | TckH2iol | Port in hold after CLKOUT ↑                                              |         | 0           |      |      | ns    |
| 17*          | TosH2ioV | OSC1↑ (Q1 cycle) to                                                      | 16F62X  | —           | 50   | 150* | ns    |
|              |          | Port out valid                                                           | 16LF62X | —           | _    | 300  | ns    |
| 18*          | TosH2iol | OSC1 <sup>↑</sup> (Q2 cycle) to Port input invalid<br>(I/O in hold time) |         | 100<br>200  | _    | —    | ns    |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.





#### FIGURE 18-4: TYPICAL IDD vs Fosc OVER VDD (XT MODE)





**Note:** The graphs and tables provided in this section are for design guidance and are not tested.

# FIGURE 18-8: TYPICAL INTERNAL RC FOSC VS VDD TEMPERATURE (-40 TO 125°C) INTERNAL 4 MHz OSCILLATOR



FIGURE 18-9: TYPICAL INTERNAL RC Fosc vs VDD OVER TEMPERATURE (-40 TO 125°C) INTERNAL 37 kHz OSCILLATOR



Note: The graphs and tables provided in this section are for design guidance and are not tested.



#### FIGURE 18-14: Alcomp vs VDD SLEEP MODE, COMPARATORS ENABLED





#### Note: The graphs and tables provided in this section are for design guidance and are not tested.

#### FIGURE 18-22: VIN VS VDD TTL



#### FIGURE 18-23: VIN VS VDD ST INPUT

