

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf628t-04i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

Name	Function	Input Type	Output Type	Description
RA0/AN0	RA0	ST	CMOS	Bi-directional I/O port
	AN0	AN		Analog comparator input
RA1/AN1	RA1	ST	CMOS	Bi-directional I/O port
	AN1	AN	—	Analog comparator input
RA2/AN2/VREF	RA2	ST	CMOS	Bi-directional I/O port
	AN2	AN	—	Analog comparator input
	VREF	_	AN	VREF output
RA3/AN3/CMP1	RA3	ST	CMOS	Bi-directional I/O port
	AN3	AN	—	Analog comparator input
	CMP1	_	CMOS	Comparator 1 output
RA4/T0CKI/CMP2	RA4	ST	OD	Bi-directional I/O port
	TOCKI	ST	—	Timer0 clock input
	CMP2	_	OD	Comparator 2 output
RA5/MCLR/Vpp	RA5	ST	—	Input port
	MCLR	ST	_	Master clear
	VPP	_	_	Programming voltage input. When configured as MCLR, this pin is an active low RESET to the device. Voltage on MCLR/VPP must not exceed VDD during normal device operation.
RA6/OSC2/CLKOUT	RA6	ST	CMOS	Bi-directional I/O port
	OSC2	XTAL	—	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
	CLKOUT	—	CMOS	In ER/INTRC mode, OSC2 pin can output CLKOUT, which has 1/4 the frequency of OSC1
RA7/OSC1/CLKIN	RA7	ST	CMOS	Bi-directional I/O port
	OSC1	XTAL	—	Oscillator crystal input
	CLKIN	ST		External clock source input. ER biasing pin.
RB0/INT	RB0	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	INT	ST	—	External interrupt.
RB1/RX/DT	RB1	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	RX	ST		USART receive pin
	DT	ST	CMOS	Synchronous data I/O.
RB2/TX/CK	RB2	TTL	CMOS	Bi-directional I/O port.
	TX	_	CMOS	USART transmit pin
	СК	ST	CMOS	Synchronous clock I/O. Can be software programmed for internal weak pull-up.
RB3/CCP1	RB3	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	CCP1	ST	CMOS	Capture/Compare/PWM I/O
Legend: O = Output — = Not used TTL = TTL Inpu		I = In	MOS Output put pen Drain Outp	P = Power ST = Schmitt Trigger Input AN = Analog

TABLE 2-1: PIC16F62X PINOUT DESCRIPTION

3.2.2 SPECIAL FUNCTION REGISTERS

The SFRs are registers used by the CPU and Peripheral functions for controlling the desired operation of the device (Table 3-1). These registers are static RAM.

The special registers can be classified into two sets (core and peripheral). The SFRs associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset ⁽¹⁾	Details on Page
Bank 0											
00h	INDF	Addressir	ng this locatio	n uses conte	nts of FSR to	address data	a memory (n	ot a physica	l register)	xxxx xxxx	25
01h	TMR0	Timer0 M	odule's Regis	• /	XXXX XXXX	43					
02h	PCL	Program	Counter's (PC) Least Sign	ificant Byte					0000 0000	13
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	19
04h	FSR	Indirect d	ata memory a	ddress point	er				-	xxxx xxxx	25
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx 0000	29
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	34
07h	_	Unimplen	mplemented								
08h	_	Unimplen	nented			_					
09h	_	Unimplen	plemented								
0Ah	PCLATH	_	_	_	Write buffer	for upper 5 b	oits of progra	im counter		0 0000	25
0Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	21
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	23
0Dh	_	Unimplen	nented	—	_						
0Eh	TMR1L	Holding r	Holding register for the Least Significant Byte of the 16-bit TMR1								46
0Fh	TMR1H	Holding r	egister for the	Most Signifi	cant Byte of t	he 16-bit TM	R1			XXXX XXXX	46
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	46
11h	TMR2	TMR2 mo	odule's registe	r						0000 0000	50
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	50
13h	_	Unimplen	nented							_	_
14h	_	Unimplen	nented							_	_
15h	CCPR1L	Capture/0	Compare/PWN	/I register (LS	SB)					xxxx xxxx	61
16h	CCPR1H	Capture/0	Compare/PWN	/I register (M	SB)					xxxx xxxx	61
17h	CCP1CON	_	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	61
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	67
19h	TXREG	USART T	ransmit data	register						0000 0000	74
1Ah	RCREG	USART F	Receive data r	egister						0000 0000	77
1Bh	_	Unimplen	nented							—	_
1Ch	_	Unimplen	nented							—	_
1Dh	—	Unimplen	nented							—	—
1Eh	—	Unimplen	nented		1	1			1	—	—
1Fh	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	53

TABLE 3-1: SPECIAL REGISTERS SUMMARY BANK 0

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: For the Initialization Condition for Registers Tables, refer to Table 14-7 and Table 14-8 on page 98.

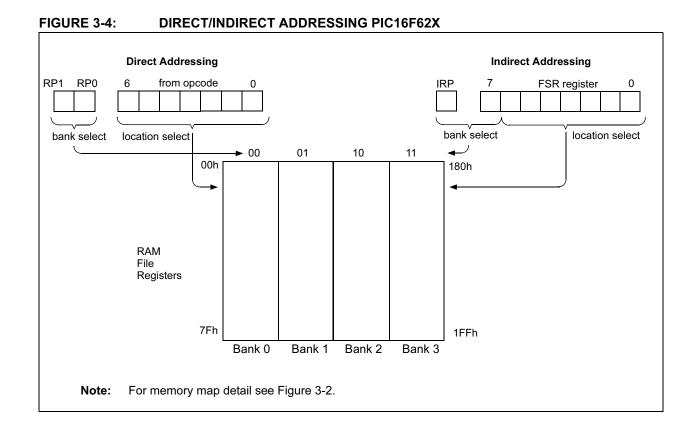
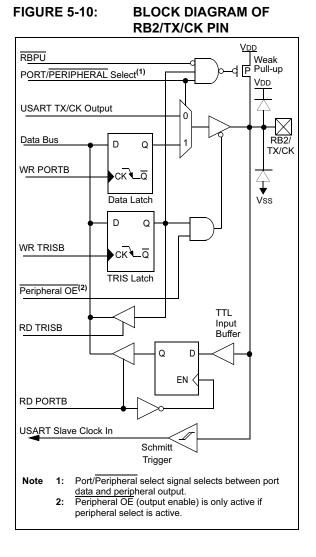

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset ⁽¹⁾	Details on Page
Bank 2											
100h	INDF	Addressin ister)	g this locatior	n uses cont	ents of FSF	to address	s data mem	ory (not a pl	hysical reg-	XXXX XXXX	25
101h	TMR0	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	43
102h	PCL	Program 0	Counter's (PC) Least Sig	nificant Byt	e				0000 0000	25
103h	STATUS	IRP	IRP RP1 RP0 TO PD Z DC C								19
104h	FSR	Indirect da	ata memory a	ddress poir		0001 1xxx xxxx xxxx	25				
105h	_	Unimplem	iented			_	_				
106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	34
107h	_	Unimplem	ented		•		•			_	_
108h	_	Unimplem	ented								_
109h	_	Unimplem	ented							_	_
10Ah	PCLATH		_	_	Write	buffer for u	pper 5 bits o	of program of	counter	0 0000	25
10Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	21
10Ch	_	Unimplem	Unimplemented								_
10Dh	_	Unimplem	ented							_	_
10Eh	_	Unimplem	ented							_	_
10Fh	_	Unimplem	ented							_	_
110h	_	Unimplem	ented							_	_
111h	_	Unimplem	ented							_	_
112h	_	Unimplem	ented							_	_
113h	_	Unimplem	ented							_	_
114h	_	Unimplem	ented							_	_
115h	_	Unimplem	ented							_	_
116h	_	Unimplem	ented								_
117h	—	Unimplem	ented								_
118h	—	Unimplem	ented								_
119h	—	Unimplem	ented								_
11Ah	_	Unimplem	ented								—
11Bh	_	Unimplem	ented								—
11Ch	_	Unimplem	ented							_	—
11Dh	_	Unimplem	ented							_	—
11Eh	_	Unimplem	ented							_	—
11Fh	—	Unimplem	ented							_	_

TABLE 3-3: SPECIAL FUNCTION REGISTERS SUMMARY BANK 2

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented.

Note 1: For the Initialization Condition for Registers Tables, refer to Table 14-7 and Table 14-8 on page 98.


PIC16F62X

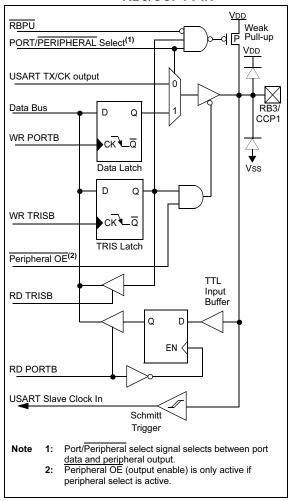

Name	Functio n	Input Type	Output Type	Description
RA0/AN0	RA0	ST	CMOS	Bi-directional I/O port
	AN0	AN	_	Analog comparator input
RA1/AN1	RA1	ST	CMOS	Bi-directional I/O port
	AN1	AN	_	Analog comparator input
RA2/AN2/VREF	RA2	ST	CMOS	Bi-directional I/O port
	AN2	AN	_	Analog comparator input
	VREF	_	AN	VREF output
RA3/AN3/CMP1	RA3	ST	CMOS	Bi-directional I/O port
	AN3	AN	_	Analog comparator input
	CMP1	_	CMOS	Comparator 1 output
RA4/T0CKI/CMP2	RA4	ST	OD	Bi-directional I/O port
	TOCKI	ST	—	External clock input for TMR0 or comparator output. Outpu is open drain type
	CMP2	_	OD	Comparator 2 output
RA5/MCLR/Vpp	RA5	ST	_	Input port
	MCLR	ST		Master clear
	Vpp	ΗV	_	Programming voltage input. When configured as MCLR, this pin is an active low RESET to the device. Voltage on MCLR/VPP must not exceed VDD during normal device operation
RA6/OSC2/CLKOUT	RA6	ST	CMOS	Bi-directional I/O port.
	OSC2	XTAL	—	Oscillator crystal output. Connects to crystal resonator in Crystal Oscillator mode.
	CLKOUT	_	CMOS	In ER/INTRC mode, OSC2 pin can output CLKOUT, which has 1/4 the frequency of OSC1
RA7/OSC1/CLKIN	RA7	ST	CMOS	Bi-directional I/O port
	OSC1	XTAL	_	Oscillator crystal input
	CLKIN	ST	_	External clock source input. ER biasing pin.

TABLE 5-1: PORTA FUNCTIONS

Legend: ST = Schmitt Trigger input HV = High Voltage OD = Open Drain AN = Analog

FIGURE 5-11: BLOCK DIAGRAM OF RB3/CCP1 PIN

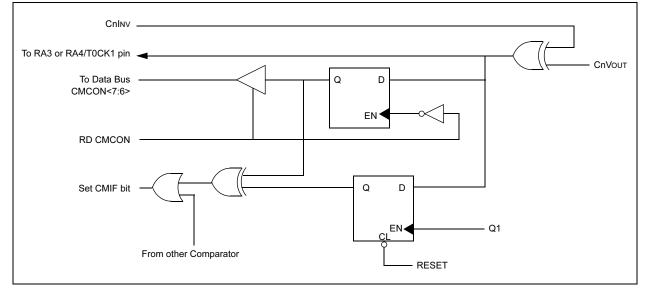
Name	Function	Input Type	Output Type	Description
RB0/INT	RB0	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	INT	ST	_	External interrupt.
RB1/RX/DT	RB1	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	RX	ST	_	USART Receive Pin
	DT	ST	CMOS	Synchronous data I/O
RB2/TX/CK	RB2	TTL	CMOS	Bi-directional I/O port
	ТХ	_	CMOS	USART Transmit Pin
	СК	ST	CMOS	Synchronous Clock I/O. Can be software programmed for internal weak pull-up.
RB3/CCP1	RB3	TTL	CMOS	Bi-directional I/O port. Can be software programmed fo internal weak pull-up.
	CCP1	ST	CMOS	Capture/Compare/PWM/I/O
RB4/PGM	RB4	TTL	CMOS	Bi-directional I/O port. Can be software programmed fo internal weak pull-up.
	PGM	ST	_	Low voltage programming input pin. Interrupt-on-pin change. When low voltage programming is enabled, the interrupt-on-pin change and weak pull-up resistor are disabled.
RB5	RB5	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
RB6/T1OSO/T1CKI/ PGC	RB6	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	T10SO	_	XTAL	Timer1 Oscillator Output
	T1CKI	ST	—	Timer1 Clock Input
	PGC	ST	_	ICSP Programming Clock
RB7/T1OSI/PGD	RB7	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	T1OSI	XTAL	_	Timer1 Oscillator Input
	PGD	ST	CMOS	ICSP Data I/O
Legend: O = Out — = Not TTL = TTL	used	CM(I OD	OS = CMOS = Input = Open	S Output P = Power ST = Schmitt Trigger Input Drain Output AN = Analog

PORTE FUNCTIONS

SUMMARY OF REGISTERS ASSOCIATED WITH PORTB⁽¹⁾ TABLE 5-4:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
86h, 186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h, 181h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: u = unchanged, x = unknown **Note 1:** Shaded bits are not used by PORTB.


9.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read only. The comparator outputs may also be directly output to the RA3 and RA4 I/O pins. When the CM<2:0> = 110, multiplexors in the output path of the RA3 and RA4/T0CK1 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 9-3 shows the comparator output block diagram.

The TRISA bits will still function as an output enable/ disable for the RA3 and RA4/T0CK1 pins while in this mode.

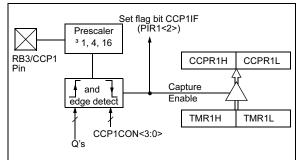
- Note 1: When reading the PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
 - 2: Analog levels on any pin that is defined as a digital input may cause the input buffer to consume more current than is specified.

FIGURE 9-3: COMPARATOR OUTPUT BLOCK DIAGRAM

11.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RB3/CCP1. An event is defined as:

- · Every falling edge
- Every rising edge
- · Every 4th rising edge
- Every 16th rising edge


An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the Interrupt Request Flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

11.1.1 CCP PIN CONFIGURATION

In Capture mode, the RB3/CCP1 pin should be configured as an input by setting the TRISB<3> bit.

Note:	If the RB3/CCP1 is configured as an out-
	put, a write to the port can cause a capture
	condition.

TABLE 11-2:CAPTURE MODE OPERATION
BLOCK DIAGRAM

11.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

11.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF following any such change in Operating mode.

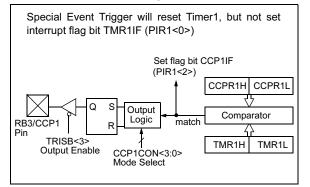
11.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any RESET will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 11-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 11-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		; the new prescaler
		; mode value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		; value


11.2 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RB3/CCP1 pin is:

- Driven High
- Driven Low
- · Remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

FIGURE 11-1: COMPARE MODE OPERATION BLOCK DIAGRAM

11.2.1 CCP PIN CONFIGURATION

The user must configure the RB3/CCP1 pin as an output by clearing the TRISB<3> bit.

Note: Clearing the CCP1CON register will force the RB3/CCP1 compare output latch to the default low level. This is not the data latch.

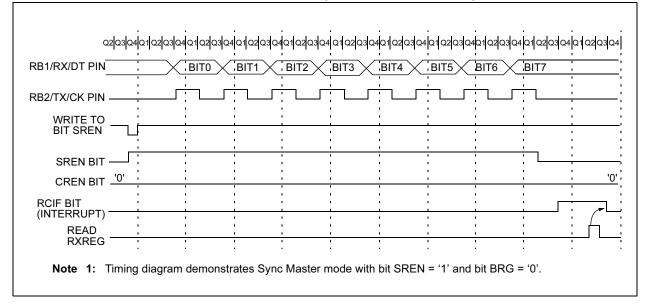
12.0 UNIVERSAL SYNCHRONOUS/ ASYNCHRONOUS RECEIVER/ TRANSMITTER (USART) MODULE

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI). The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices such as A/D or D/ A integrated circuits, Serial EEPROMs etc. The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

Bit SPEN (RCSTA<7>), and bits TRISB<2:1>, have to be set in order to configure pins RB2/TX/CK and RB1/ RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

REGISTER 12-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS: 98h)


	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R /W-0	R-1	, R/W-0					
	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D					
	bit 7							bit 0					
bit 7	CSRC: Cloc	k Source Sel	ect bit										
	Asynchronou Don't car												
		er mode (Clo	ck generated k from extern	internally from	m BRG)								
bit 6	1 = Selects 9	 X9: 9-bit Transmit Enable bit = Selects 9-bit transmission = Selects 8-bit transmission XEN: Transmit Enable bit⁽¹⁾ 											
bit 5	1 = Transmit	TXEN : Transmit Enable bit ⁽¹⁾ 1 = Transmit enabled 0 = Transmit disabled											
bit 4	SYNC: USA 1 = Synchro 0 = Asynchro		ect bit										
bit 3	Unimpleme	nted: Read a	is '0'										
bit 2	BRGH: High	Baud Rate S	Select bit										
	Asynchronou 1 = High s 0 = Low s	speed											
	<u>Synchronou</u>	Synchronous mode Unused in this mode											
bit 1	TRMT : Trans 1 = TSR em 0 = TSR full		gister STATU	S bit									
bit 0	TX9D : 9th bi	t of transmit	data. Can be	PARITY bit.									
	Note 1: S	REN/CREN	overrides TX	EN in SYNC	node.								
	Legend:												
	R = Reada	ble bit	VV = V	Vritable bit	U = Unimp	lemented b	oit, read as ')'					
	-n = Value	at POR	'1' = E	Bit is set	'0' = Bit is	cleared	x = Bit is ur	nknown					

BAUD	Fosc = 20 MHz		SPBRG	16 MHz		SPBRG	10 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9.615	+0.16%	129	9.615	+0.16%	103	9.615	+0.16%	64
19200	19.230	+0.16%	64	19.230	+0.16%	51	18.939	-1.36%	32
38400	37.878	-1.36%	32	38.461	+0.16%	25	39.062	+1.7%	15
57600	56.818	-1.36%	21	58.823	+2.12%	16	56.818	-1.36%	10
115200	113.636	-1.36%	10	111.111	-3.55%	8	125	+8.51%	4
250000	250	0	4	250	0	3	NA	_	_
625000	625	0	1	NA	_	_	625	0	0
1250000	1250	0	0	NA	_	_	NA	_	_

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD	Fosc = 7.16	Fosc = 7.16 MHz		5.068 MHz		SPBRG	4 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9.520	-0.83%	46	9598.485	0.016%	32	9615.385	0.160%	25
19200	19.454	+1.32%	22	18632.35	-2.956%	16	19230.77	0.160%	12
38400	37.286	-2.90%	11	39593.75	3.109%	7	35714.29	-6.994%	6
57600	55.930	-2.90%	7	52791.67	-8.348%	5	62500	8.507%	3
115200	111.860	-2.90%	3	105583.3	-8.348%	2	125000	8.507%	1
250000	NA	_	_	316750	26.700%	0	250000	0.000%	0
625000	NA	_	_	NA	_	_	NA	_	_
1250000	NA		—	NA	—	_	NA	—	

BAUD	Fosc = 3.579	9 MHz	SPBRG	1 MHz		SPBRG	32.768 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9725.543	1.308%	22	8.928	-6.994%	6	NA	NA	NA
19200	18640.63	-2.913%	11	20833.3	8.507%	2	NA	NA	NA
38400	37281.25	-2.913%	5	31250	-18.620%	1	NA	NA	NA
57600	55921.88	-2.913%	3	62500	+8.507	0	NA	NA	NA
115200	111243.8	-2.913%	1	NA	_	_	NA	NA	NA
250000	223687.5	-10.525%	0	NA	_	_	NA	NA	NA
625000	NA	_	_	NA	_	_	NA	NA	NA
1250000	NA	—	—	NA	—	—	NA	NA	NA

FIGURE 12-14: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

12.5 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RB2/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

12.5.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Transmission:

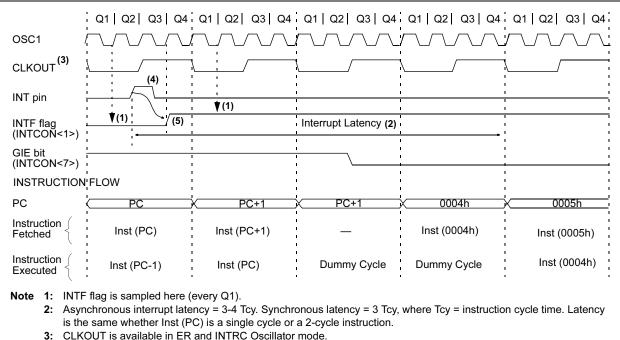
- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

14.6.1 **RB0/INT INTERRUPT**

External interrupt on RB0/INT pin is edge triggered: either rising if INTEDG bit (OPTION<6>) is set, or falling, if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before re-enabling this interrupt. The RB0/INT interrupt can wake-up the processor from SLEEP, if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See Section 14.9 for details on SLEEP, and Figure 14-17 for timing of wake-up from SLEEP through RB0/INT interrupt.

14.6.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can enabled/disabled by setting/clearing T0IE he (INTCON<5>) bit. For operation of the Timer0 module, see Section 6.0.


14.6.3 PORTB INTERRUPT

An input change on PORTB <7:4> sets the RBIF (INTCON<0>) bit. The interrupt can be enabled/ disabled by setting/clearing the RBIE (INTCON<4>) bit. For operation of PORTB (Section 5.2).

Note:	If a change on the I/O pin should occur
	when the read operation is being executed
	(start of the Q2 cycle), then the RBIF inter-
	rupt flag may not get set.

14.6.4 COMPARATOR INTERRUPT

See Section 9.6 for complete description of comparator interrupts.

FIGURE 14-15: INT PIN INTERRUPT TIMING

4: For minimum width of INT pulse, refer to AC specs.

- 5: INTF is enabled to be set anytime during the Q4-Q1 cycles.

PIC16F62X

MOVWF	Move W to f				
Syntax:	[label] MOVWF f				
Operands:	$0 \leq f \leq 127$				
Operation:	$(W) \rightarrow (f)$				
Status Affected:	None				
Encoding:	00 0000 1fff ffff				
Description:	Move data from W register to register 'f'.				
Words:	1				
Cycles:	1				
Example	MOVWF REG1				
	Before Instruction REG1 = $0xFF$ W = $0x4F$ After Instruction REG1 = $0x4F$ W = $0x4F$				

OPTION	Load Option Register				
Syntax:	[label]	OPTIO	N		
Operands:	None				
Operation:	$(W) \rightarrow C$	PTION			
Status Affected:	None				
Encoding:	00	0000	0110	0010	
Description:	The contents of the W register are loaded in the OPTION register. This instruction is supported for code compatibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it. Using only register instruction such as MOVWF.				
Words:	1				
Cycles:	1				
Example					
	To maintain upward compatibil- ity with future PICmicro [®] prod- ucts, do not use this instruction.				

NOP	No Operation						
Syntax:	[label]	NOP					
Operands:	None	None					
Operation:	No operation						
Status Affected:	None						
Encoding:	00	0000	0xx0	0000			
Description:	No operation.						
Words:	1						
Cycles:	1						
Example	NOP						

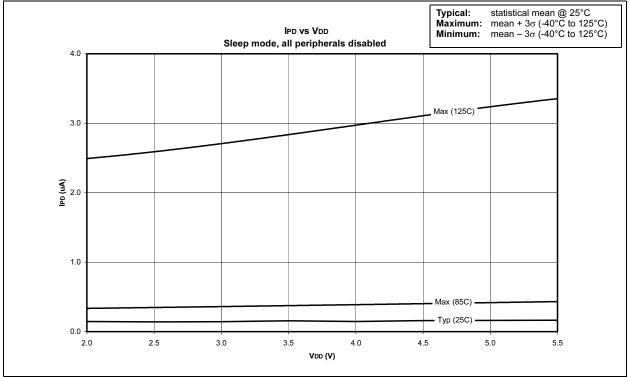
RETFIE	Return from Interrupt					
Syntax:	[label] RETFIE					
Operands:	None					
Operation:	TOS \rightarrow PC, 1 \rightarrow GIE					
Status Affected:	None					
Encoding:	00 0000 0000 1001					
Description:	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two- cycle instruction.					
Words:	1					
Cycles:	2					
Example	RETFIE					
	After Interrupt PC = TOS GIE = 1					

SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) - (W) \rightarrow (dest)
Status Affected:	C, DC, Z
Encoding:	00 0010 dfff ffff
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example 1:	SUBWF REG1, 1
	Before Instruction REG1 = 3 $W = 2$ $C = ?$ After Instruction REG1 = 1 $W = 2$ $C = 1; result is positive$ $Z = DC = 1$
Example 2:	Before Instruction
	REG1 = 2 W = 2 C = ?
	After Instruction
	REG1 = 0 W = 2 C = 1; result is zero Z = DC = 1
Example 3:	Before Instruction
	REG1 = 1 W = 2 C = ?
	After Instruction
	REG1 = 0xFF $W = 2$ $C = 0; result is negative$ $Z = DC = 0$

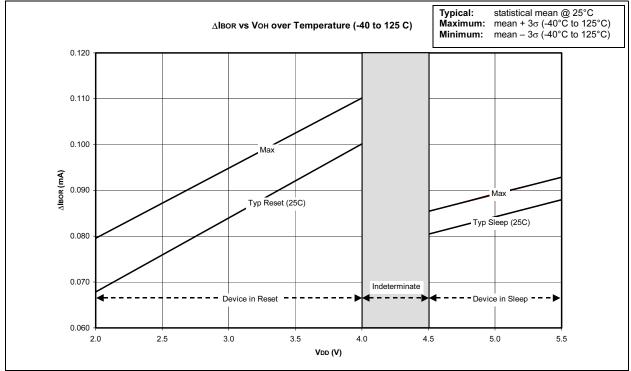
SWAPF	Swap Nibbles in f				
Syntax:	[label] SWAPF f,d				
Operands:	$0 \le f \le 127$ d $\in [0,1]$				
Operation:	(f<3:0>) → (dest<7:4>), (f<7:4>) → (dest<3:0>)				
Status Affected:	None				
Encoding:	00 1110 dfff ffff				
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.				
Words:	1				
Cycles:	1				
Example	SWAPF REG1, 0				
	Before Instruction				
	REG1 = 0xA5				
	After Instruction				
	REG1 = 0xA5 W = 0x5A				
TRIS	Load TRIS Register				
Syntax:	[<i>label</i>] TRIS f				
Operands:	$5 \le f \le 7$				
Operation:	$(W) \rightarrow TRIS \text{ register f};$				
Status Affected:	None				
Encoding:	00 0000 0110 0fff				
Description:	The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them.				
Words:	1				
Cycles:	1				
Example					
To maintain upward compatibility with future PICmicro [®] products, do not use this instruction.					

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions	
	Fosc	External CLKIN Frequency ⁽¹⁾	DC		4	MHz	XT and ER Osc mode,	
							VDD = 5.0V	
			DC	—	20	MHz	HS Osc mode	
			DC	—	200	kHz	LP Osc mode	
		Oscillator Frequency ⁽¹⁾			4	MHz	ER Osc mode, VDD = 5.0V	
		Costilutor r requeriey	0.1		4	MHz		
			1		20	MHz		
			'	_	200	kHz	LP Osc mode	
			3.65	4	4.28	MHz	INTRC mode (fast), VDD = 5.0V	
				37		kHz	INTRC mode (slow)	
4	INTRC	Internal Calibrated RC	3.65	4.00	4.28	MHz	VDD = 5.0V	
5	ER	External Biased ER Frequency	10 kHz		8 MHz		VDD = 5.0V	
1	Tosc	External CLKIN Period ⁽¹⁾	250	_		ns	XT and ER Osc mode	
			50	—	—	ns	HS Osc mode	
			5	—	—	μs	LP Osc mode	
		Oscillator Period ⁽¹⁾	250	_		ns	ER Osc mode	
			250	—	10,000	ns	XT Osc mode	
			50	—	1,000	ns	HS Osc mode	
			5			μS	LP Osc mode	
				250		ns	INTRC mode (fast)	
				27		μs	INTRC mode (slow)	
2	Тсу	Instruction Cycle Time	1.0	Тсү	DC	ns	Tcy = 4/Fosc	
3	TosL,	External CLKIN (OSC1) High	100 *	—	—	ns	XT oscillator, Tosc L/H duty	
	TosH	External CLKIN Low					cycle*	

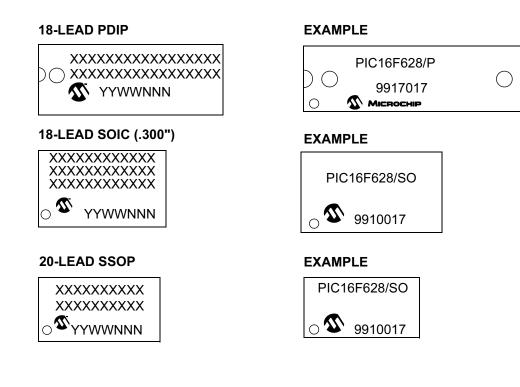
TABLE 17-4: EXTERNAL CLOCK TIMING REQUIREMENTS


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: Instruction cycle period (Tcy) equals four times the input oscillator time-based period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Max" cycle time limit is "DC" (no clock) for all devices.

Note: The graphs and tables provided in this section are for design guidance and are not tested.



19.0 PACKAGING INFORMATION

19.1 Package Marking Information

Legend:	MMM	Microchip part number information
	XXX	Customer specific information(1)
	YY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
Note:		vent the full Microchip part number cannot be marked on one line, it will be carried he next line thus limiting the number of available characters for customer specific ion.

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape[®] or Microsoft[®] Internet Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available at the following URL:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- Listing of seminars and events

SYSTEMS INFORMATION AND UPGRADE HOT LINE

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive the most current upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-480-792-7302 for the rest of the world.