



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Details                    |                                                                          |
|----------------------------|--------------------------------------------------------------------------|
| Product Status             | Active                                                                   |
| Core Processor             | ARM® Cortex®-M3                                                          |
| Core Size                  | 32-Bit Single-Core                                                       |
| Speed                      | 48MHz                                                                    |
| Connectivity               | I <sup>2</sup> C, IrDA, SPI, UART/USART                                  |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                               |
| Number of I/O              | 47                                                                       |
| Program Memory Size        | 16KB (16K x 8)                                                           |
| Program Memory Type        | FLASH                                                                    |
| EEPROM Size                | -                                                                        |
| RAM Size                   | 4K x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 1.62V ~ 3.6V                                                             |
| Data Converters            | A/D 10x10b; D/A 1x10b                                                    |
| Oscillator Type            | Internal                                                                 |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                        |
| Mounting Type              | Surface Mount                                                            |
| Package / Case             | 64-LQFP                                                                  |
| Supplier Device Package    | 64-LQFP (10x10)                                                          |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/atsam3n00ba-au |
|                            |                                                                          |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



## 1. SAM3N Description

Atmel's SAM3N series is a member of a family of Flash microcontrollers based on the high performance 32-bit ARM Cortex-M3 RISC processor. It operates at a maximum speed of 48 MHz and features up to 256 Kbytes of Flash and up to 24 Kbytes of SRAM. The peripheral set includes 2x USARTs, 2x UARTs, 2x TWIs, 3x SPI, as well as 1 PWM timer, 6x general purpose 16-bit timers, an RTC, a 10-bit ADC and a 10-bit DAC.

The SAM3N series is ready for capacitive touch thanks to the QTouch library, offering an easy way to implement buttons, wheels and sliders.

The SAM3N device is an entry-level general purpose microcontroller. That makes the SAM3N the ideal starting point to move from 8- /16-bit to 32-bit microcontrollers.

It operates from 1.62V to 3.6V and is available in 48-pin, 64-pin and 100-pin QFP, 48-pin and 64-pin QFN, and 100-pin BGA packages.

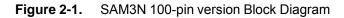
The SAM3N series is the ideal migration path from the SAM3S for applications that require a reduced BOM cost. The SAM3N series is pin-to-pin compatible with the SAM3S series. Its aggressive price point and high level of integration pushes its scope of use far into cost-sensitive, high-volume applications.

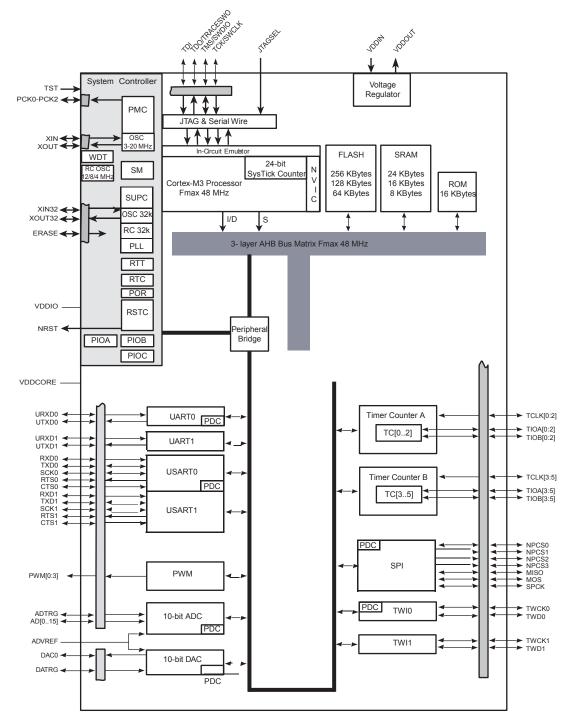
# 1.1 Configuration Summary

The SAM3N4/2/1/0/00 differ in memory size, package and features list. Table 1-1 summarizes the configurations of the 9 devices.

Table 1-1.Configuration Summary

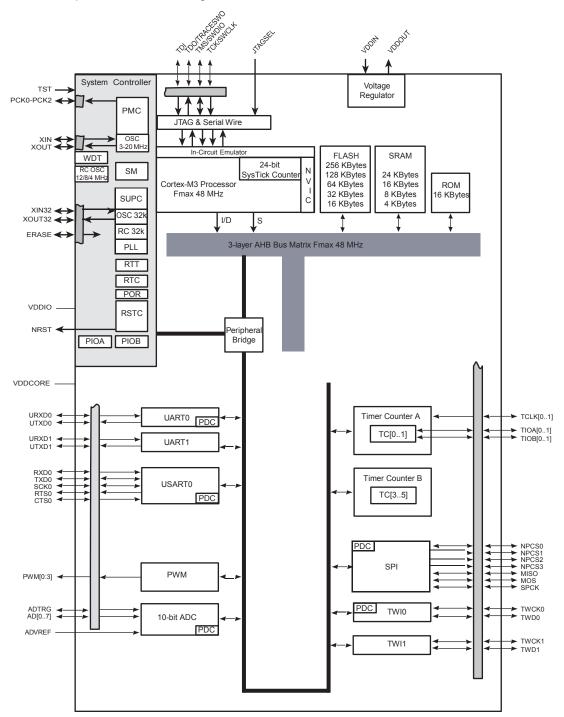
| Device   | Flash      | SRAM      | Package           | Number<br>of PIOs | ADC         | Timer             | PDC<br>Channels | USART | DAC |
|----------|------------|-----------|-------------------|-------------------|-------------|-------------------|-----------------|-------|-----|
| SAM3N4A  | 256 Kbytes | 24 Kbytes | LQFP48<br>QFN48   | 34                | 8 channels  | 6 <sup>(1)</sup>  | 8               | 1     | _   |
| SAM3N4B  | 256 Kbytes | 24 Kbytes | LQFP64<br>QFN64   | 47                | 10 channels | 6 <sup>(2)</sup>  | 10              | 2     | 1   |
| SAM3N4C  | 256 Kbytes | 24 Kbytes | LQFP100<br>BGA100 | 79                | 16 channels | 6                 | 10              | 2     | 1   |
| SAM3N2A  | 128 Kbytes | 16 Kbytes | LQFP48<br>QFN48   | 34                | 8 channels  | 6 <sup>(1)</sup>  | 8               | 1     | _   |
| SAM3N2B  | 128 Kbytes | 16 Kbytes | LQFP64<br>QFN64   | 47                | 10 channels | 6( <sup>(2)</sup> | 10              | 2     | 1   |
| SAM3N2C  | 128 Kbytes | 16 Kbytes | LQFP100<br>BGA100 | 79                | 16 channels | 6                 | 10              | 2     | 1   |
| SAM3N1A  | 64 Kbytes  | 8 Kbytes  | LQFP48<br>QFN48   | 34                | 8 channels  | 6 <sup>(1)</sup>  | 8               | 1     | _   |
| SAM3N1B  | 64 Kbytes  | 8 Kbytes  | LQFP64<br>QFN64   | 47                | 10 channels | 6 <sup>(2)</sup>  | 10              | 2     | 1   |
| SAM3N1C  | 64 Kbytes  | 8 Kbytes  | LQFP100<br>BGA100 | 79                | 16 channels | 6                 | 10              | 2     | 1   |
| SAM3N0A  | 32 Kbytes  | 8 Kbytes  | LQFP48<br>QFN48   | 34                | 8 channels  | 6 <sup>(1)</sup>  | 8               | 1     | _   |
| SAM3N0B  | 32 Kbytes  | 8 Kbytes  | LQFP64<br>QFN64   | 47                | 10 channels | 6 <sup>(2)</sup>  | 10              | 2     | 1   |
| SAM3N0C  | 32 Kbytes  | 8 Kbytes  | LQFP100<br>BGA100 | 79                | 16 channels | 6                 | 10              | 2     | 1   |
| SAM3N00A | 16 Kbytes  | 4 KBytes  | LQFP48<br>QFN48   | 34                | 8 channels  | 6 <sup>(1)</sup>  | 8               | 1     | _   |
| SAM3N00B | 16 Kbytes  | 4 KBytes  | LQFP64<br>QFN64   | 47                | 10 channels | 6 <sup>(2)</sup>  | 10              | 2     | 1   |


Notes: 1. Only two TC channels are accessible through the PIO.


2. Only three TC channels are accessible through the PIO.






## 2. SAM3N Block Diagram







### Figure 2-3. SAM3N 48-pin version Block Diagramz



## 3. Signal Description

Table 3-1 gives details on the signal name classified by peripheral.

## Table 3-1.Signal Description List

| Signal Name  | Function                                                                       | Туре                          | Active<br>Level | Voltage<br>Reference                                | Comments                                                                                                    |  |
|--------------|--------------------------------------------------------------------------------|-------------------------------|-----------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
|              | Power S                                                                        | upplies                       |                 |                                                     |                                                                                                             |  |
| VDDIO        | Peripherals I/O Lines Power Supply Power                                       |                               |                 |                                                     | 1.62V to 3.6V                                                                                               |  |
| VDDIN        | Voltage Regulator, ADC and DAC Power Supply                                    | Power                         |                 |                                                     | 1.8V to 3.6V <sup>(3)</sup>                                                                                 |  |
| VDDOUT       | Voltage Regulator Output                                                       | Power                         |                 |                                                     | 1.8V Output                                                                                                 |  |
| VDDPLL       | Oscillator and PLL Power Supply                                                | Power                         |                 |                                                     | 1.65 V to 1.95V                                                                                             |  |
| VDDCORE      | Power the core, the embedded memories                                          |                               |                 | 1.65V to 1.95V<br>Connected externally<br>to VDDOUT |                                                                                                             |  |
| GND          | Ground                                                                         | Ground                        |                 |                                                     |                                                                                                             |  |
|              | Clocks, Oscilla                                                                | tors and PLLs                 |                 |                                                     |                                                                                                             |  |
| XIN          | Main Oscillator Input                                                          | Input                         |                 |                                                     | Reset State:<br>- PIO Input                                                                                 |  |
| XOUT         | Main Oscillator Output                                                         | Main Oscillator Output Output |                 |                                                     |                                                                                                             |  |
| XIN32        | Slow Clock Oscillator Input                                                    | Input                         |                 |                                                     | - Internal Pull-up<br>disabled                                                                              |  |
| XOUT32       | Slow Clock Oscillator Output                                                   | Output                        |                 | _                                                   | - Schmitt Trigger<br>enabled <sup>(1)</sup>                                                                 |  |
| PCK0 - PCK2  | Programmable Clock Output                                                      | Output                        | ut V            |                                                     | Reset State:<br>- PIO Input<br>- Internal Pull-up<br>enabled<br>- Schmitt Trigger<br>enabled <sup>(1)</sup> |  |
|              | ICE and                                                                        | I JTAG                        |                 |                                                     | I                                                                                                           |  |
| TCK/SWCLK    | Test Clock/Serial Wire Clock                                                   | Input                         |                 |                                                     | Reset State:                                                                                                |  |
| TDI          | Test Data In                                                                   | Input                         |                 |                                                     | - SWJ-DP Mode                                                                                               |  |
| TDO/TRACESWO | Test Data Out/Trace Asynchronous Data<br>Out                                   | Output                        |                 | VDDIO                                               | - Internal pull-up<br>disabled                                                                              |  |
| TMS/SWDIO    | NDIO         Test Mode Select /Serial Wire<br>Input/Output         Input / I/O |                               |                 | - Schmitt Trigger<br>enabled <sup>(1)</sup>         |                                                                                                             |  |
| JTAGSEL      | JTAG Selection                                                                 | Input                         | High            |                                                     | Permanent Internal pull-down                                                                                |  |





## Table 3-1. Signal Description List (Continued)

| Signal Name | Function                                          | Туре           | Active<br>Level | Voltage<br>Reference | Comments                                                                                                        |
|-------------|---------------------------------------------------|----------------|-----------------|----------------------|-----------------------------------------------------------------------------------------------------------------|
|             | Flash M                                           | emory          | 1               |                      |                                                                                                                 |
| ERASE       | Flash and NVM Configuration Bits Erase<br>Command | Input          | High            | VDDIO                | Reset State:<br>- Erase Input<br>- Internal pull-down<br>enabled<br>- Schmitt Trigger<br>enabled <sup>(1)</sup> |
|             | Reset                                             | /Test          |                 |                      |                                                                                                                 |
| NRST        | Microcontroller Reset                             | I/O            | Low             | VDDIO                | Permanent Internal pull-up                                                                                      |
| TST         | Test Mode Select                                  | Input          |                 | VDDIO                | Permanent Internal pull-down                                                                                    |
|             | Universal Asynchronous Red                        | ceiver Transc  | eiver - UART    | Гх                   |                                                                                                                 |
| URXDx       | UART Receive Data                                 | Input          |                 |                      |                                                                                                                 |
| UTXDx       | UART Transmit Data                                | Output         |                 |                      |                                                                                                                 |
|             | PIO Controller - PI                               | oa - Piob - P  | OOL             |                      |                                                                                                                 |
| PA0 - PA31  | Parallel IO Controller A                          | I/O            |                 |                      | Reset State:                                                                                                    |
| PB0 - PB14  | Parallel IO Controller B                          | I/O            |                 |                      | - PIO or System<br>IOs <sup>(2)</sup>                                                                           |
| PC0 - PC31  | Parallel IO Controller C                          | I/O            |                 | VDDIO                | <ul> <li>Internal pull-up</li> <li>enabled</li> <li>Schmitt Trigger</li> <li>enabled<sup>(1)</sup></li> </ul>   |
|             | Universal Synchronous Asynchron                   | ous Receiver   | Transmitter     | USARTx               |                                                                                                                 |
| SCKx        | USARTx Serial Clock                               | I/O            |                 |                      |                                                                                                                 |
| TXDx        | USARTx Transmit Data                              | I/O            |                 |                      |                                                                                                                 |
| RXDx        | USARTx Receive Data                               | Input          |                 |                      |                                                                                                                 |
| RTSx        | USARTx Request To Send                            | Output         |                 |                      |                                                                                                                 |
| CTSx        | USARTx Clear To Send                              | Input          |                 |                      |                                                                                                                 |
|             | Timer/Cou                                         | inter - TC     |                 |                      |                                                                                                                 |
| TCLKx       | TC Channel x External Clock Input                 | Input          |                 |                      |                                                                                                                 |
| TIOAx       | TC Channel x I/O Line A                           | I/O            |                 |                      |                                                                                                                 |
| TIOBx       | TC Channel x I/O Line B                           | I/O            |                 |                      |                                                                                                                 |
|             | Pulse Width Modulatio                             | on Controller- | PWMC            |                      |                                                                                                                 |
| PWMx        | PWM Waveform Output for channel x                 | Output         |                 |                      |                                                                                                                 |

# 4.3 SAM3N4/2/1/0/00A Package and Pinout

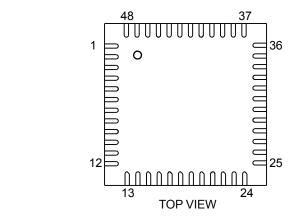
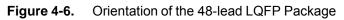
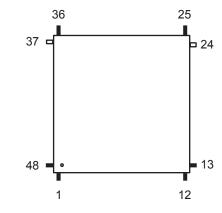





Figure 4-5. Orientation of the 48-pad QFN Package

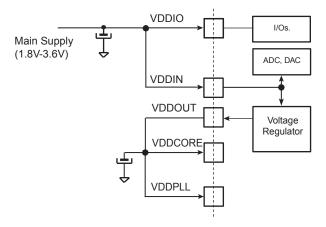




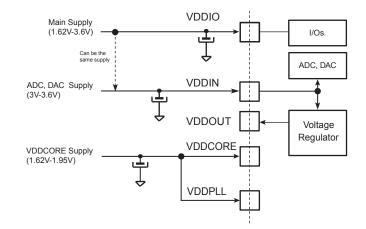




### 4.3.1 48-Lead LQFP and QFN Pinout


| 1  | ADVREF         | 13 | VDDIO                   | 25 | TDI/PB4     | 37 | TDO/TRACESWO/<br>PB5 |
|----|----------------|----|-------------------------|----|-------------|----|----------------------|
| 2  | GND            | 14 | PA16/PGMD4              | 26 | PA6/PGMNOE  | 38 | JTAGSEL              |
| 3  | PB0/AD4        | 15 | PA15/PGMD3              | 27 | PA5/PGMRDY  | 39 | TMS/SWDIO/PB6        |
| 4  | PB1/AD5        | 16 | PA14/PGMD2              | 28 | PA4/PGMNCMD | 40 | TCK/SWCLK/PB7        |
| 5  | PB2/AD6        | 17 | PA13/PGMD1              | 29 | NRST        | 41 | VDDCORE              |
| 6  | PB3/AD7        | 18 | VDDCORE                 | 30 | TST         | 42 | ERASE/PB12           |
| 7  | VDDIN          | 19 | PA12/PGMD0              | 31 | PA3         | 43 | PB10                 |
| 8  | VDDOUT         | 20 | PA11/PGMM3              | 32 | PA2/PGMEN2  | 44 | PB11                 |
| 9  | PA17/PGMD5/AD0 | 21 | PA10/PGMM2              | 33 | VDDIO       | 45 | XOUT/PB8             |
| 10 | PA18/PGMD6/AD1 | 22 | PA9/PGMM1               | 34 | GND         | 46 | XIN/P/PB9/GMCK       |
| 11 | PA19/PGMD7/AD2 | 23 | PA8/XOUT32/PG<br>MM0    | 35 | PA1/PGMEN1  | 47 | VDDIO                |
| 12 | PA20/AD3       | 24 | PA7/XIN32/PGMN<br>VALID | 36 | PA0/PGMEN0  | 48 | VDDPLL               |

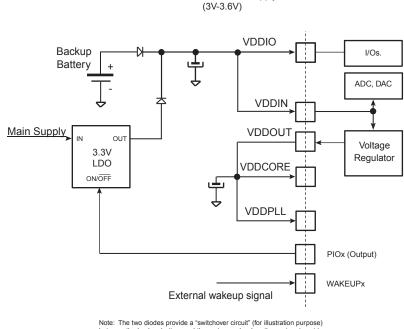
### Table 4-4. 48-pin SAM3N4/2/1/0/00A Pinout


Note: The bottom pad of the QFN package must be connected to ground.



### Figure 5-1. Single Supply




### Figure 5-2. Core Externally Supplied



### Note: Restrictions

With Main Supply < 3V, ADC and DAC are not usable. With Main Supply >= 3V, all peripherals are usable.

Figure 5-3 below provides an example of the powering scheme when using a backup battery. Since the PIO state is preserved when in backup mode, any free PIO line can be used to switch off the external regulator by driving the PIO line at low level (PIO is input, pull-up enabled after backup reset). External wake-up of the system can be from a push button or any signal. See Section 5.6 "Wake-up Sources" for further details.TFBGA



ADC, DAC Supply

### **Figure 5-3.** Core Externally Supplied (backup battery)

Note: The two diodes provide a "switchover circuit" (for illustration purpose) between the backup battery and the main supply when the system is put in backup mode.

### 5.4 Active Mode

Active mode is the normal running mode with the core clock running from the fast RC oscillator, the main crystal oscillator or the PLL. The power management controller can be used to adapt the frequency and to disable the peripheral clocks.

### 5.5 Low Power Modes

The various low-power modes of the SAM3N are described below:

### 5.5.1 Backup Mode

The purpose of backup mode is to achieve the lowest power consumption possible in a system that is performing periodic wakeups to carry out tasks but not requiring fast startup time (<0.1ms). Total current consumption is 3  $\mu$ A typical.

The Supply Controller, zero-power power-on reset, RTT, RTC, Backup registers and 32 kHz oscillator (RC or crystal oscillator selected by software in the Supply Controller) are running. The regulator and the core supply are off.

Backup mode is based on the Cortex-M3 deep sleep mode with the voltage regulator disabled.

The SAM3N can be awakened from this mode through WUP0-15 pins, the supply monitor (SM), the RTT or RTC wake-up event.

Backup mode is entered by using WFE instructions with the SLEEPDEEP bit in the System Control Register of the Cortex-M3 set to 1. (See the Power management description in The ARM Cortex M3 Processor section of the product datasheet).

Exit from Backup mode happens if one of the following enable wake-up events occurs:

• WKUPEN0-15 pins (level transition, configurable debouncing)





- Supply Monitor alarm
- RTC alarm
- RTT alarm

### 5.5.2 Wait Mode

The purpose of the wait mode is to achieve very low power consumption while maintaining the whole device in a powered state for a startup time of less than 10  $\mu$ s. Current Consumption in Wait mode is typically 15  $\mu$ A (total current consumption) if the internal voltage regulator is used or 8  $\mu$ A if an external regulator is used.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core, peripherals and memories power supplies are still powered. From this mode, a fast start up is available.

This mode is entered via Wait for Event (WFE) instructions with LPM = 1 (Low Power Mode bit in PMC\_FSMR). The Cortex-M3 is able to handle external or internal events in order to wake up the core (WFE). By configuring the WUP0-15 external lines as fast startup wake-up pins (refer to Section 5.7 "Fast Start-Up"). RTC or RTT Alarm wake-up events can be used to wake up the CPU (exit from WFE).

Entering Wait Mode:

- Select the 4/8/12 MHz fast RC oscillator as Main Clock
- Set the LPM bit in the PMC Fast Startup Mode Register (PMC\_FSMR)
- · Execute the Wait-For-Event (WFE) instruction of the processor
- Note: Internal Main clock resynchronization cycles are necessary between the writing of MOSCRCEN bit and the effective entry in Wait mode. Depending on the user application, Waiting for MOSCRCEN bit to be cleared is recommended to ensure that the core will not execute undesired instructions.

### 5.5.3 Sleep Mode

The purpose of sleep mode is to optimize power consumption of the device versus response time. In this mode, only the core clock is stopped. The peripheral clocks can be enabled. The current consumption in this mode is application dependent.

This mode is entered via Wait for Interrupt (WFI) or Wait for Event (WFE) instructions with LPM = 0 in PMC\_FSMR.

The processor can be woke up from an interrupt if WFI instruction of the Cortex M3 is used, or from an event if the WFE instruction is used to enter this mode.

### 5.5.4 Low Power Mode Summary Table

The modes detailed above are the main low power modes. Each part can be set to on or off separately and wake up sources can be individually configured. Table 5-1 below shows a summary of the configurations of the low power modes.

 Table 5-1.
 Low Power Mode Configuration Summary

| Mode           | SUPC,<br>32 kHz<br>Oscillator<br>RTC RTT<br>Backup<br>Registers,<br>POR<br>(Backup<br>Region) | Regulator | Core<br>Memory<br>Peripherals           | Mode Entry                                          | Potential Wake Up<br>Sources                                                                                                                                                     |                 | PIO State<br>while in Low<br>Power Mode | PIO State<br>at Wake Up                             | Consumption               | Wake Up<br>Time <sup>(1)</sup> |
|----------------|-----------------------------------------------------------------------------------------------|-----------|-----------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------|-----------------------------------------------------|---------------------------|--------------------------------|
| Backup<br>Mode | ON                                                                                            | OFF       | OFF<br>(Not powered)                    | WFE<br>+SLEEPDEEP<br>bit = 1                        | WUP0-15 pins<br>BOD alarm<br>RTC alarm<br>RTT alarm                                                                                                                              | Reset           | Previous<br>state saved                 | PIOA &<br>PIOB &<br>PIOC<br>Inputs with<br>pull ups | 3 μΑ typ <sup>(4)</sup>   | < 0.1 ms                       |
| Wait<br>Mode   | ON                                                                                            | ON        | Powered<br>(Not clocked)                | WFE<br>+SLEEPDEEP<br>bit = 0<br>+LPM bit = 1        | Any Event from: Fast<br>startup through<br>WUP0-15 pins<br>RTC alarm<br>RTT alarm                                                                                                | Clocked<br>back | Previous<br>state saved                 | Unchanged                                           | 5 μΑ/15 μΑ <sup>(5)</sup> | < 10 µs                        |
| Sleep<br>Mode  | ON                                                                                            | ON        | Powered <sup>(7)</sup><br>(Not clocked) | WFE or WFI<br>+SLEEPDEEP<br>bit = 0<br>+LPM bit = 0 | Entry mode = WFI<br>Interrupt Only; Entry<br>mode = WFE Any<br>Enabled Interrupt<br>and/or Any Event<br>from: Fast start-up<br>through WUP0-15<br>pins<br>RTC alarm<br>RTT alarm | Clocked<br>back | Previous<br>state saved                 | Unchanged                                           | (6)                       | (6)                            |

Notes: 1. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device works with the 4/8/12 MHz Fast RC oscillator. The user has to add the PLL start-up time if it is needed in the system. The wake-up time is defined as the time taken for wake up until the first instruction is fetched.

- 2. The external loads on PIOs are not taken into account in the calculation.
- 3. Supply Monitor current consumption is not included.
- 4. Total Current consumption.
- 5. 5 μA on VDDCORE, 15 μA for total current consumption (using internal voltage regulator), 8 μA for total current consumption (without using internal voltage regulator).
- 6. Depends on MCK frequency.
- 7. In this mode the core is supplied and not clocked but some peripherals can be clocked.



| SYSTEM_IO<br>bit number | Default function<br>after reset | Other function | Constraints for<br>normal start     | Configuration                                                      |
|-------------------------|---------------------------------|----------------|-------------------------------------|--------------------------------------------------------------------|
| 12                      | ERASE                           | PB12           | Low Level at startup <sup>(1)</sup> | In Matrix User Interface Registers                                 |
| 7                       | TCK/SWCLK                       | PB7            | -                                   | (Refer to the System I/O                                           |
| 6                       | TMS/SWDIO                       | PB6            | -                                   | Configuration Register in the Bus<br>Matrix section of the product |
| 5                       | TDO/TRACESWO                    | PB5            | -                                   | datasheet.)                                                        |
| 4                       | TDI                             | PB4            | -                                   |                                                                    |
| -                       | PA7                             | XIN32          | -                                   | See footnote <sup>(2)</sup> below                                  |
| -                       | PA8                             | XOUT32         | -                                   | See footnote - below                                               |
| -                       | PB9                             | XIN            | -                                   | Coo footnata (3) halaw                                             |
| -                       | PB8                             | XOUT           | -                                   | See footnote <sup>(3)</sup> below                                  |

 Table 6-1.
 System I/O Configuration Pin List.

Notes: 1. If PB12 is used as PIO input in user applications, a low level must be ensured at startup to prevent Flash erase before the user application sets PB12 into PIO mode.

2. In the product Datasheet Refer to: Slow Clock Generator of the Supply Controller section.

3. In the product Datasheet Refer to: 3 to 20 MHZ Crystal Oscillator information in the PMC section.

### 6.2.1 Serial Wire JTAG Debug Port (SWJ-DP) Pins

The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on a standard 20-pin JTAG connector defined by ARM. For more details about voltage reference and reset state, refer to Table 3-1 on page 7.

At startup, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging probe. Please refer to the Debug and Test Section of the product datasheet.

SWJ-DP pins can be used as standard I/Os to provide users more general input/output pins when the debug port is not needed in the end application. Mode selection between SWJ-DP mode (System IO mode) and general IO mode is performed through the AHB Matrix Special Function Registers (MATRIX\_SFR). Configuration of the pad for pull-up, triggers, debouncing and glitch filters is possible regardless of the mode.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It integrates a permanent pull-down resistor of about 15 k $\Omega$  to GND, so that it can be left unconnected for normal operations.

By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables the JTAG-DP and enables the SW-DP. When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace.

The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous trace can only be used with SW-DP, not JTAG-DP. For more information about SW-DP and JTAG-DP switching, please refer to the Debug and Test Section.



# SAM3N Summary

## 9. Memories

## 9.1 Embedded Memories

## 9.1.1 Internal SRAM

The SAM3N4 product embeds a total of 24-Kbytes high-speed SRAM.

The SAM3N2 product embeds a total of 16-Kbytes high-speed SRAM.

The SAM3N1 product embeds a total of 8-Kbytes high-speed SRAM.

The SRAM is accessible over System Cortex-M3 bus at address 0x2000 0000.

The SRAM is in the bit band region. The bit band alias region is from  $0x2200\ 0000$  and 0x23FF FFFF.

RAM size must be configurable by calibration fuses.

## 9.1.2 Internal ROM

The SAM3N product embeds an Internal ROM, which contains the SAM Boot Assistant (SAM-BA), In Application Programming routines (IAP) and Fast Flash Programming Interface (FFPI).

At any time, the ROM is mapped at address 0x0080 0000.

## 9.1.3 Embedded Flash

## 9.1.3.1 Flash Overview

The Flash of the SAM3N4 (256 Kbytes) is organized in one bank of 1024 pages of 256 bytes (Single plane).

The Flash of the SAM3N2 (128 Kbytes) is organized in one bank of 512 pages of 256 bytes (Single Plane).

The Flash of the SAM3N1 (64 Kbytes) is organized in one bank of 256 pages of 256 bytes (Single plane).

The Flash contains a 128-byte write buffer, accessible through a 32-bit interface.

9.1.3.2 Flash Power Supply

The Flash is supplied by VDDCORE.

## 9.1.3.3 Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller (EEFC) manages accesses performed by the masters of the system. It enables reading the Flash and writing the write buffer. It also contains a User Interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block with the 32bit internal bus. Its 128-bit wide memory interface increases performance.

The user can choose between high performance or lower current consumption by selecting either 128-bit or 64-bit access. It also manages the programming, erasing, locking and unlocking sequences of the Flash using a full set of commands.

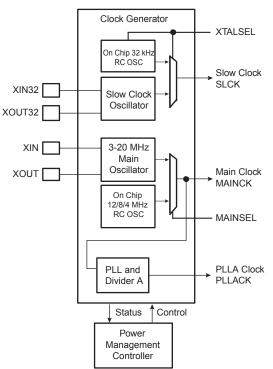
One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash organization, thus making the software generic.



The reset circuitry is based on a zero-power power-on reset cell and a brownout detector cell. The zero-power power-on reset allows the Supply Controller to start properly, while the software-programmable brownout detector allows detection of either a battery discharge or main voltage loss.

The Slow Clock generator is based on a 32 kHz crystal oscillator and an embedded 32 kHz RC oscillator. The Slow Clock defaults to the RC oscillator, but the software can enable the crystal oscillator and select it as the Slow Clock source.

The Supply Controller starts up the device by sequentially enabling the internal power switches and the Voltage Regulator, then it generates the proper reset signals to the core power supply.


It also enables to set the system in different low power modes and to wake it up from a wide range of events.

## 10.5 Clock Generator

The Clock Generator is made up of:

- One Low Power 32768Hz Slow Clock Oscillator with bypass mode
- One Low-Power RC Oscillator
- · One 3-20 MHz Crystal or Ceramic resonator Oscillator, which can be bypassed
- One Fast RC Oscillator factory programmed, 3 output frequencies can be selected: 4, 8 or 12 MHz. By default 4 MHz is selected.
- One 60 to 130 MHz programmable PLL, capable to provide the clock MCK to the processor and to the peripherals. The input frequency of PLL is from 3.5 to 20 MHz.

### Figure 10-2. Clock Generator Block Diagram







## **10.13 Chip Identification**

• Chip Identifier (CHIPID) registers permit recognition of the device and its revision.

| Table 10-1.         SAM3N Chip ID Register |             |             |
|--------------------------------------------|-------------|-------------|
| Chip Name                                  | CHIPID_CIDR | CHIPID_EXID |
| ATSAM3N4C (Rev A)                          | 0x29540960  | 0x0         |
| ATSAM3N2C (Rev A)                          | 0x29590760  | 0x0         |
| ATSAM3N1C (Rev A)                          | 0x29580560  | 0x0         |
| ATSAM3N4B (Rev A)                          | 0x29440960  | 0x0         |
| ATSAM3N2B (Rev A)                          | 0x29490760  | 0x0         |
| ATSAM3N1B (Rev A)                          | 0x29480560  | 0x0         |
| ATSAM3N4A (Rev A)                          | 0x29340960  | 0x0         |
| ATSAM3N2A (Rev A)                          | 0x29390760  | 0x0         |
| ATSAM3N1A (Rev A)                          | 0x29380560  | 0x0         |

• JTAG ID: 0x05B2E03F

## 10.14 UART

- Two-pin UART
  - Implemented features are 100% compatible with the standard Atmel USART
  - Independent receiver and transmitter with a common programmable Baud Rate Generator
  - Even, Odd, Mark or Space Parity Generation
  - Parity, Framing and Overrun Error Detection
  - Automatic Echo, Local Loopback and Remote Loopback Channel Modes
  - Support for two PDC channels with connection to receiver and transmitter

## **10.15 PIO Controllers**

- 3 PIO Controllers, PIOA, PIOB and PIOC (100-pin version only) controlling a maximum of 79 I/O Lines
- · Each PIO Controller controls up to 32 programmable I/O Lines
- Fully programmable through Set/Clear Registers

### Table 10-2. PIO available according to pin count

| Version | 48 pin | 64 pin | 100 pin |
|---------|--------|--------|---------|
| PIOA    | 21     | 32     | 32      |
| PIOB    | 13     | 15     | 15      |
| PIOC    | -      | -      | 32      |

- Multiplexing of four peripheral functions per I/O Line
- For each I/O Line (whether assigned to a peripheral or used as general purpose I/O)
  - Input change, rising edge, falling edge, low level and level interrupt
  - Debouncing and Glitch filter

# 4 SAM3N Summary



| Instance ID | Instance Name | NVIC Interrupt | PMC Clock Control | Instance Description        |
|-------------|---------------|----------------|-------------------|-----------------------------|
| 25          | TC2           | x              | Х                 | Timer/Counter 2             |
| 26          | TC3           | x              | x                 | Timer/Counter 3             |
| 27          | TC4           | X              | X                 | Timer/Counter 4             |
| 28          | TC5           | X              | X                 | Timer/Counter 5             |
| 29          | ADC           | X              | X                 | Analog-to-Digital Converter |
| 30          | DACC          | X              | X                 | Digital-to-Analog Converter |
| 31          | PWM           | X              | X                 | Pulse Width Modulation      |

### Table 11-1. Peripheral Identifiers (Continued)

## 11.2 Peripheral Signals Multiplexing on I/O Lines

The SAM3N product features 2 PIO controllers (48-pin and 64-pin version) or 3 PIO controllers (100-pin version), PIOA, PIOB and PIOC, that multiplex the I/O lines of the peripheral set.

The SAM3N 64-pin and 100-pin PIO Controller controls up to 32 lines (see Table 10-2, "PIO available according to pin count," on page 40). Each line can be assigned to one of three peripheral functions: A, B or C. The multiplexing tables in the following paragraphs define how the I/O lines of the peripherals A, B and C are multiplexed on the PIO Controllers. The column "Comments" has been inserted in this table for the user's own comments; it may be used to track how pins are defined in an application.

Note that some peripheral functions which are output only, might be duplicated within the tables.

# SAM3N Summary

## 11.2.1 PIO Controller A Multiplexing

| I/O Line | Peripheral A | Peripheral B | Peripheral C | Extra Function | System Function | Comments            |
|----------|--------------|--------------|--------------|----------------|-----------------|---------------------|
| PA0      | PWM0         | TIOA0        |              | WKUP0          |                 | High drive          |
| PA1      | PWM1         | TIOB0        |              | WKUP1          |                 | High drive          |
| PA2      | PWM2         | SCK0         | DATRG        | WKUP2          |                 | High drive          |
| PA3      | TWD0         | NPCS3        |              |                |                 | High drive          |
| PA4      | TWCK0        | TCLK0        |              | WKUP3          |                 |                     |
| PA5      | RXD0         | NPCS3        |              | WKUP4          |                 |                     |
| PA6      | TXD0         | PCK0         |              |                |                 |                     |
| PA7      | RTS0         | PWM3         |              |                | XIN32           |                     |
| PA8      | CTS0         | ADTRG        |              | WKUP5          | XOUT32          |                     |
| PA9      | URXD0        | NPCS1        |              | WKUP6          |                 |                     |
| PA10     | UTXD0        | NPCS2        |              |                |                 |                     |
| PA11     | NPCS0        | PWM0         |              | WKUP7          |                 |                     |
| PA12     | MISO         | PWM1         |              |                |                 |                     |
| PA13     | MOSI         | PWM2         |              |                |                 |                     |
| PA14     | SPCK         | PWM3         |              | WKUP8          |                 |                     |
| PA15     |              | TIOA1        |              | WKUP14         |                 |                     |
| PA16     |              | TIOB1        |              | WKUP15         |                 |                     |
| PA17     |              | PCK1         |              | AD0            |                 |                     |
| PA18     |              | PCK2         |              | AD1            |                 |                     |
| PA19     |              |              |              | AD2/WKUP9      |                 |                     |
| PA20     |              |              |              | AD3/WKUP10     |                 |                     |
| PA21     | RXD1         | PCK1         |              | AD8            |                 | 64/100-pin versions |
| PA22     | TXD1         | NPCS3        |              | AD9            |                 | 64/100-pin versions |
| PA23     | SCK1         | PWM0         |              |                |                 | 64/100-pin versions |
| PA24     | RTS1         | PWM1         |              |                |                 | 64/100-pin versions |
| PA25     | CTS1         | PWM2         |              |                |                 | 64/100-pin versions |
| PA26     |              | TIOA2        |              |                |                 | 64/100-pin versions |
| PA27     |              | TIOB2        |              |                |                 | 64/100-pin versions |
| PA28     |              | TCLK1        |              |                |                 | 64/100-pin versions |
| PA29     |              | TCLK2        |              |                |                 | 64/100-pin versions |
| PA30     |              | NPCS2        |              | WKUP11         |                 | 64/100-pin versions |
| PA31     | NPCS1        | PCK2         |              |                |                 | 64/100-pin versions |

 Table 11-2.
 Multiplexing on PIO Controller A (PIOA)



 Support for two PDC channels with connection to receiver and transmitter (for UART0 only)

## 12.4 USART

- Programmable Baud Rate Generator
- 5- to 9-bit full-duplex synchronous or asynchronous serial communications
  - 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode
  - Parity generation and error detection
  - Framing error detection, overrun error detection
  - MSB- or LSB-first
  - Optional break generation and detection
  - By 8 or by-16 over-sampling receiver frequency
  - Hardware handshaking RTS-CTS
  - Receiver time-out and transmitter timeguard
  - Optional Multi-drop Mode with address generation and detection
- RS485 with driver control signal
- ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards (Only on USART0)
  - NACK handling, error counter with repetition and iteration limit
- SPI Mode
  - Master or Slave
  - Serial Clock programmable Phase and Polarity
  - SPI Serial Clock (SCK) Frequency up to MCK/4
- IrDA modulation and demodulation (Only on USART0)
  - Communication at up to 115.2 Kbps
- Test Modes
  - Remote Loopback, Local Loopback, Automatic Echo
- PDC support (for USART0 only)

## 12.5 Timer Counter (TC)

- Six 16-bit Timer Counter Channels
- Wide range of functions including:
  - Frequency Measurement
  - Event Counting
  - Interval Measurement
  - Pulse Generation
  - Delay Timing
  - Pulse Width Modulation
  - Up/down Capabilities
- Each channel is user-configurable and contains:
  - Three external clock inputs
  - Five internal clock inputs



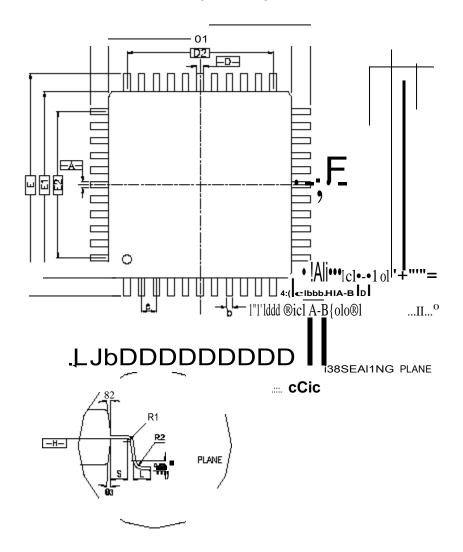



Figure 13-3. 64 and 4B · lead LQFP Package Drawing

