



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                   |
|----------------------------|--------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M3                                                          |
| Core Size                  | 32-Bit Single-Core                                                       |
| Speed                      | 48MHz                                                                    |
| Connectivity               | I²C, IrDA, SPI, UART/USART                                               |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                               |
| Number of I/O              | 34                                                                       |
| Program Memory Size        | 32KB (32K x 8)                                                           |
| Program Memory Type        | FLASH                                                                    |
| EEPROM Size                | -                                                                        |
| RAM Size                   | 8K x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 1.62V ~ 3.6V                                                             |
| Data Converters            | A/D 8x10b                                                                |
| Oscillator Type            | Internal                                                                 |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                        |
| Mounting Type              | Surface Mount                                                            |
| Package / Case             | 48-LQFP                                                                  |
| Supplier Device Package    | 48-LQFP (7x7)                                                            |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/atsam3n0aa-aur |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



## 1. SAM3N Description

Atmel's SAM3N series is a member of a family of Flash microcontrollers based on the high performance 32-bit ARM Cortex-M3 RISC processor. It operates at a maximum speed of 48 MHz and features up to 256 Kbytes of Flash and up to 24 Kbytes of SRAM. The peripheral set includes 2x USARTs, 2x UARTs, 2x TWIs, 3x SPI, as well as 1 PWM timer, 6x general purpose 16-bit timers, an RTC, a 10-bit ADC and a 10-bit DAC.

The SAM3N series is ready for capacitive touch thanks to the QTouch library, offering an easy way to implement buttons, wheels and sliders.

The SAM3N device is an entry-level general purpose microcontroller. That makes the SAM3N the ideal starting point to move from 8- /16-bit to 32-bit microcontrollers.

It operates from 1.62V to 3.6V and is available in 48-pin, 64-pin and 100-pin QFP, 48-pin and 64-pin QFN, and 100-pin BGA packages.

The SAM3N series is the ideal migration path from the SAM3S for applications that require a reduced BOM cost. The SAM3N series is pin-to-pin compatible with the SAM3S series. Its aggressive price point and high level of integration pushes its scope of use far into cost-sensitive, high-volume applications.









## 4. Package and Pinout

SAM3N4/2/1/0/00 series is pin-to-pin compatible with SAM3S products. Furthermore SAM3N4/2/1/0/00 devices have new functionalities referenced in italic inTable 4-1, Table 4-3 and Table 4-4.

## 4.1 SAM3N4/2/1/0/00C Package and Pinout

### 4.1.1 100-lead LQFP Package Outline

Figure 4-1. Orientation of the 100-lead LQFP Package



### 4.1.2 100-ball TFBGA Package Outline

The 100-Ball TFBGA package has a 0.8 mm ball pitch and respects Green Standards. Its dimensions are  $9 \times 9 \times 1.1$  mm.

### Figure 4-2. Orientation of the 100-ball TFBGA Package



# SAM3N Summary

### 4.1.3 100-Lead LQFP Pinout

| 1  | ADVREF         | 26 | GND                     | 51 | TDI/PB4     | 76  | TDO/TRACESWO/PB5 |
|----|----------------|----|-------------------------|----|-------------|-----|------------------|
| 2  | GND            | 27 | VDDIO                   | 52 | PA6/PGMNOE  | 77  | JTAGSEL          |
| 3  | PB0/AD4        | 28 | PA16/PGMD4              | 53 | PA5/PGMRDY  | 78  | PC18             |
| 4  | PC29/AD13      | 29 | PC7                     | 54 | PC28        | 79  | TMS/SWDIO/PB6    |
| 5  | PB1/AD5        | 30 | PA15/PGMD3              | 55 | PA4/PGMNCMD | 80  | PC19             |
| 6  | PC30/AD14      | 31 | PA14/PGMD2              | 56 | VDDCORE     | 81  | PA31             |
| 7  | PB2/AD6        | 32 | PC6                     | 57 | PA27        | 82  | PC20             |
| 8  | PC31/AD15      | 33 | PA13/PGMD1              | 58 | PC8         | 83  | TCK/SWCLK/PB7    |
| 9  | PB3/AD7        | 34 | PA24                    | 59 | PA28        | 84  | PC21             |
| 10 | VDDIN          | 35 | PC5                     | 60 | NRST        | 85  | VDDCORE          |
| 11 | VDDOUT         | 36 | VDDCORE                 | 61 | TST         | 86  | PC22             |
| 12 | PA17/PGMD5/AD0 | 37 | PC4                     | 62 | PC9         | 87  | ERASE/PB12       |
| 13 | PC26           | 38 | PA25                    | 63 | PA29        | 88  | PB10             |
| 14 | PA18/PGMD6/AD1 | 39 | PA26                    | 64 | PA30        | 89  | PB11             |
| 15 | PA21/AD8       | 40 | PC3                     | 65 | PC10        | 90  | PC23             |
| 16 | VDDCORE        | 41 | PA12/PGMD0              | 66 | PA3         | 91  | VDDIO            |
| 17 | PC27           | 42 | PA11/PGMM3              | 67 | PA2/PGMEN2  | 92  | PC24             |
| 18 | PA19/PGMD7/AD2 | 43 | PC2                     | 68 | PC11        | 93  | PB13/DAC0        |
| 19 | PC15/AD11      | 44 | PA10/PGMM2              | 69 | VDDIO       | 94  | PC25             |
| 20 | PA22/AD9       | 45 | GND                     | 70 | GND         | 95  | GND              |
| 21 | PC13/AD10      | 46 | PA9/PGMM1               | 71 | PC14        | 96  | PB8/XOUT         |
| 22 | PA23           | 47 | PC1                     | 72 | PA1/PGMEN1  | 97  | PB9/PGMCK/XIN    |
| 23 | PC12/AD12      | 48 | PA8/XOUT32/<br>PGMM0    | 73 | PC16        | 98  | VDDIO            |
| 24 | PA20/AD3       | 49 | PA7/XIN32/<br>PGMNVALID | 74 | PA0/PGMEN0  | 99  | PB14             |
| 25 | PC0            | 50 | VDDIO                   | 75 | PC17        | 100 | VDDPLL           |

 Table 4-1.
 100-lead LQFP SAM3N4/2/1/0/00C Pinout





### 4.1.4 100-ball TFBGA Pinout

| A1  | PB1     | C6  | PB7     | F1  | PA18    |   | H6  | PC4     |
|-----|---------|-----|---------|-----|---------|---|-----|---------|
| A2  | PC29    | C7  | PC16    | F2  | PC26    |   | H7  | PA11    |
| A3  | VDDIO   | C8  | PA1     | F3  | VDDOUT  |   | H8  | PC1     |
| A4  | PB9     | C9  | PC17    | F4  | GND     |   | H9  | PA6     |
| A5  | PB8     | C10 | PA0     | F5  | VDDIO   |   | H10 | PB4     |
| A6  | PB13    | D1  | PB3     | F6  | PA27    |   | J1  | PC15    |
| A7  | PB11    | D2  | PB0     | F7  | PC8     |   | J2  | PC0     |
| A8  | PB10    | D3  | PC24    | F8  | PA28    |   | J3  | PA16    |
| A9  | PB6     | D4  | PC22    | F9  | TST     |   | J4  | PC6     |
| A10 | JTAGSEL | D5  | GND     | F10 | PC9     |   | J5  | PA24    |
| B1  | PC30    | D6  | GND     | G1  | PA21    |   | J6  | PA25    |
| B2  | ADVREF  | D7  | VDDCORE | G2  | PC27    |   | J7  | PA10    |
| B3  | GNDANA  | D8  | PA2     | G3  | PA15    |   | J8  | GND     |
| B4  | PB14    | D9  | PC11    | G4  | VDDCORE |   | J9  | VDDCORE |
| B5  | PC21    | D10 | PC14    | G5  | VDDCORE |   | J10 | VDDIO   |
| B6  | PC20    | E1  | PA17    | G6  | PA26    |   | K1  | PA22    |
| B7  | PA31    | E2  | PC31    | G7  | PA12    | ] | K2  | PC13    |
| B8  | PC19    | E3  | VDDIN   | G8  | PC28    |   | K3  | PC12    |
| B9  | PC18    | E4  | GND     | G9  | PA4     | ] | K4  | PA20    |
| B10 | PB5     | E5  | GND     | G10 | PA5     | ] | K5  | PC5     |
| C1  | PB2     | E6  | NRST    | H1  | PA19    |   | K6  | PC3     |
| C2  | VDDPLL  | E7  | PA29    | H2  | PA23    | ] | K7  | PC2     |
| C3  | PC25    | E8  | PA30    | H3  | PC7     |   | K8  | PA9     |
| C4  | PC23    | E9  | PC10    | H4  | PA14    |   | K9  | PA8     |
| C5  | PB12    | E10 | PA3     | H5  | PA13    |   | K10 | PA7     |
|     |         |     |         |     |         |   |     |         |

# Table 4-2. 100-ball TFBGA SAM3N4/2/1/0/00C Pinout



- Supply Monitor alarm
- RTC alarm
- RTT alarm

### 5.5.2 Wait Mode

The purpose of the wait mode is to achieve very low power consumption while maintaining the whole device in a powered state for a startup time of less than 10  $\mu$ s. Current Consumption in Wait mode is typically 15  $\mu$ A (total current consumption) if the internal voltage regulator is used or 8  $\mu$ A if an external regulator is used.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core, peripherals and memories power supplies are still powered. From this mode, a fast start up is available.

This mode is entered via Wait for Event (WFE) instructions with LPM = 1 (Low Power Mode bit in PMC\_FSMR). The Cortex-M3 is able to handle external or internal events in order to wake up the core (WFE). By configuring the WUP0-15 external lines as fast startup wake-up pins (refer to Section 5.7 "Fast Start-Up"). RTC or RTT Alarm wake-up events can be used to wake up the CPU (exit from WFE).

Entering Wait Mode:

- Select the 4/8/12 MHz fast RC oscillator as Main Clock
- Set the LPM bit in the PMC Fast Startup Mode Register (PMC\_FSMR)
- Execute the Wait-For-Event (WFE) instruction of the processor
- Note: Internal Main clock resynchronization cycles are necessary between the writing of MOSCRCEN bit and the effective entry in Wait mode. Depending on the user application, Waiting for MOSCRCEN bit to be cleared is recommended to ensure that the core will not execute undesired instructions.

### 5.5.3 Sleep Mode

The purpose of sleep mode is to optimize power consumption of the device versus response time. In this mode, only the core clock is stopped. The peripheral clocks can be enabled. The current consumption in this mode is application dependent.

This mode is entered via Wait for Interrupt (WFI) or Wait for Event (WFE) instructions with LPM = 0 in PMC\_FSMR.

The processor can be woke up from an interrupt if WFI instruction of the Cortex M3 is used, or from an event if the WFE instruction is used to enter this mode.

### 5.5.4 Low Power Mode Summary Table

The modes detailed above are the main low power modes. Each part can be set to on or off separately and wake up sources can be individually configured. Table 5-1 below shows a summary of the configurations of the low power modes.

 Table 5-1.
 Low Power Mode Configuration Summary

| Mode           | SUPC,<br>32 kHz<br>Oscillator<br>RTC RTT<br>Backup<br>Registers,<br>POR<br>(Backup<br>Region) | Regulator | Core<br>Memory<br>Peripherals           | Mode Entry                                          | Potential Wake Up<br>Sources                                                                                                                                                     | Core at<br>Wake Up | PIO State<br>while in Low<br>Power Mode | PIO State<br>at Wake Up                             | Consumption               | Wake Up<br>Time <sup>(1)</sup> |
|----------------|-----------------------------------------------------------------------------------------------|-----------|-----------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------|-----------------------------------------------------|---------------------------|--------------------------------|
| Backup<br>Mode | ON                                                                                            | OFF       | OFF<br>(Not powered)                    | WFE<br>+SLEEPDEEP<br>bit = 1                        | WUP0-15 pins<br>BOD alarm<br>RTC alarm<br>RTT alarm                                                                                                                              | Reset              | Previous<br>state saved                 | PIOA &<br>PIOB &<br>PIOC<br>Inputs with<br>pull ups | 3 μA typ <sup>(4)</sup>   | < 0.1 ms                       |
| Wait<br>Mode   | ON                                                                                            | ON        | Powered<br>(Not clocked)                | WFE<br>+SLEEPDEEP<br>bit = 0<br>+LPM bit = 1        | Any Event from: Fast<br>startup through<br>WUP0-15 pins<br>RTC alarm<br>RTT alarm                                                                                                | Clocked<br>back    | Previous<br>state saved                 | Unchanged                                           | 5 μΑ/15 μΑ <sup>(5)</sup> | < 10 µs                        |
| Sleep<br>Mode  | ON                                                                                            | ON        | Powered <sup>(7)</sup><br>(Not clocked) | WFE or WFI<br>+SLEEPDEEP<br>bit = 0<br>+LPM bit = 0 | Entry mode = WFI<br>Interrupt Only; Entry<br>mode = WFE Any<br>Enabled Interrupt<br>and/or Any Event<br>from: Fast start-up<br>through WUP0-15<br>pins<br>RTC alarm<br>RTT alarm | Clocked<br>back    | Previous<br>state saved                 | Unchanged                                           | (6)                       | (6)                            |

Notes: 1. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device works with the 4/8/12 MHz Fast RC oscillator. The user has to add the PLL start-up time if it is needed in the system. The wake-up time is defined as the time taken for wake up until the first instruction is fetched.

- 2. The external loads on PIOs are not taken into account in the calculation.
- 3. Supply Monitor current consumption is not included.
- 4. Total Current consumption.
- 5. 5 μA on VDDCORE, 15 μA for total current consumption (using internal voltage regulator), 8 μA for total current consumption (without using internal voltage regulator).
- 6. Depends on MCK frequency.
- 7. In this mode the core is supplied and not clocked but some peripherals can be clocked.





## 5.6 Wake-up Sources

The wake-up events allow the device to exit backup mode. When a wake-up event is detected, the Supply Controller performs a sequence which automatically reenables the core power supply and the SRAM power supply, if they are not already enabled.

### Figure 5-4. Wake-up Source



## 5.7 Fast Start-Up

The SAM3N allows the processor to restart in a few microseconds while the processor is in wait mode. A fast start up can occur upon detection of a low level on one of the 19 wake-up inputs (WKUP0 to 15 + SM + RTC + RTT).

The fast restart circuitry, as shown in Figure 5-5, is fully asynchronous and provides a fast startup signal to the Power Management Controller. As soon as the fast start-up signal is asserted, the PMC automatically restarts the embedded 4 MHz fast RC oscillator, switches the master clock on this 4 MHz clock and reenables the processor clock.



### Figure 5-5. Fast Start-Up Sources





## 6. Input/Output Lines

The SAM3N has several kinds of input/output (I/O) lines such as general purpose I/Os (GPIO) and system I/Os. GPIOs can have alternate functionality due to multiplexing capabilities of the PIO controllers. The same PIO line can be used whether in IO mode or by the multiplexed peripheral. System I/Os include pins such as test pins, oscillators, erase or analog inputs.

## 6.1 General Purpose I/O Lines

GPIO Lines are managed by PIO Controllers. All I/Os have several input or output modes such as pull-up or pull-down, input Schmitt triggers, multi-drive (open-drain), glitch filters, debouncing or input change interrupt. Programming of these modes is performed independently for each I/O line through the PIO controller user interface. For more details, refer to the product PIO controller section.

The input output buffers of the PIO lines are supplied through VDDIO power supply rail.

The SAM3N embeds high speed pads able to handle up to 45 MHz for SPI clock lines and 35 MHz on other lines. See AC Characteristics Section in the Electrical Characteristics Section of the datasheet for more details. Typical pull-up and pull-down value is 100 k $\Omega$  for all I/Os.

Each I/O line also embeds an ODT (On-Die Termination), (see Figure 6-1). It consists of an internal series resistor termination scheme for impedance matching between the driver output (SAM3N) and the PCB trace impedance preventing signal reflection. The series resistor helps to reduce I/O switching current (di/dt) thereby reducing in turn, EMI. It also decreases overshoot and undershoot (ringing) due to inductance of interconnect between devices or between boards. In conclusion ODT helps diminish signal integrity issues.





## 6.2 System I/O Lines

System I/O lines are pins used by oscillators, test mode, reset and JTAG to name but a few. Described below are the SAM3N system I/O lines shared with PIO lines:

These pins are software configurable as general purpose I/O or system pins. At startup the default function of these pins is always used.

# **SAM3N Summary**

# 7. Processor and Architecture

## 7.1 ARM Cortex-M3 Processor

- Version 2.0
- Thumb-2 (ISA) subset consisting of all base Thumb-2 instructions, 16-bit and 32-bit.
- Harvard processor architecture enabling simultaneous instruction fetch with data load/store.
- Three-stage pipeline.
- Single cycle 32-bit multiply.
- · Hardware divide.
- Thumb and Debug states.
- Handler and Thread modes.
- · Low latency ISR entry and exit.

## 7.2 APB/AHB Bridge

The SAM3N4/2/1/0/00 product embeds one peripheral bridge:

The peripherals of the bridge are clocked by MCK.

### 7.3 Matrix Masters

The Bus Matrix of the SAM3N product manages 3 masters, which means that each master can perform an access concurrently with others, to an available slave.

Each master has its own decoder, which is defined specifically for each master. In order to simplify the addressing, all the masters have the same decodings.

| Table 7-1.List of Bus Matrix Masters |  |
|--------------------------------------|--|
|--------------------------------------|--|

| Master 0 | Cortex-M3 Instruction/Data      |
|----------|---------------------------------|
| Master 1 | Cortex-M3 System                |
| Master 2 | Peripheral DMA Controller (PDC) |

### 7.4 Matrix Slaves

The Bus Matrix of the SAM3N product manages 4 slaves. Each slave has its own arbiter, allowing a different arbitration per slave.

#### Table 7-2. List of Bus Matrix Slaves

| Slave 0 | Internal SRAM     |
|---------|-------------------|
| Slave 1 | Internal ROM      |
| Slave 2 | Internal Flash    |
| Slave 3 | Peripheral Bridge |







FSTT0 - FSTT15 are possible Fast Startup Sources, generated by WKUP0-WKUP15 Pins, but are not physical pins.





| Instance ID | Instance ID Instance Name |     | PMC Clock Control | Instance Description        |
|-------------|---------------------------|-----|-------------------|-----------------------------|
| 25          | TC2                       | x x |                   | Timer/Counter 2             |
| 26          | TC3                       | x   | X                 | Timer/Counter 3             |
| 27          | TC4                       | X   | X                 | Timer/Counter 4             |
| 28          | TC5                       | x   | x                 | Timer/Counter 5             |
| 29          | ADC                       | X   | X                 | Analog-to-Digital Converter |
| 30          | DACC                      | X   | X                 | Digital-to-Analog Converter |
| 31          | PWM                       | X   | X                 | Pulse Width Modulation      |

### Table 11-1. Peripheral Identifiers (Continued)

## 11.2 Peripheral Signals Multiplexing on I/O Lines

The SAM3N product features 2 PIO controllers (48-pin and 64-pin version) or 3 PIO controllers (100-pin version), PIOA, PIOB and PIOC, that multiplex the I/O lines of the peripheral set.

The SAM3N 64-pin and 100-pin PIO Controller controls up to 32 lines (see Table 10-2, "PIO available according to pin count," on page 40). Each line can be assigned to one of three peripheral functions: A, B or C. The multiplexing tables in the following paragraphs define how the I/O lines of the peripherals A, B and C are multiplexed on the PIO Controllers. The column "Comments" has been inserted in this table for the user's own comments; it may be used to track how pins are defined in an application.

Note that some peripheral functions which are output only, might be duplicated within the tables.



## 11.2.2 PIO Controller B Multiplexing

| I/O Line | Peripheral A | Peripheral B | Peripheral C | Extra Function | System Function  | Comments            |
|----------|--------------|--------------|--------------|----------------|------------------|---------------------|
| PB0      | PWM0         |              |              | AD4            |                  |                     |
| PB1      | PWM1         |              |              | AD5            |                  |                     |
| PB2      | URXD1        | NPCS2        |              | AD6/WKUP12     |                  |                     |
| PB3      | UTXD1        | PCK2         |              | AD7            |                  |                     |
| PB4      | TWD1         | PWM2         |              |                | TDI              |                     |
| PB5      | TWCK1        |              |              | WKUP13         | TDO/<br>TRACESWO |                     |
| PB6      |              |              |              |                | TMS/SWDIO        |                     |
| PB7      |              |              |              |                | TCK/SWCLK        |                     |
| PB8      |              |              |              |                | XOUT             |                     |
| PB9      |              |              |              |                | XIN              |                     |
| PB10     |              |              |              |                |                  |                     |
| PB11     |              |              |              |                |                  |                     |
| PB12     |              |              |              |                | ERASE            |                     |
| PB13     |              | PCK0         |              | DAC0           |                  | 64/100-pin versions |
| PB14     | NPCS1        | PWM3         |              |                |                  | 64/100-pin versions |

## Table 11-3. Multiplexing on PIO Controller B (PIOB)



# 12. Embedded Peripherals Overview

## 12.1 Serial Peripheral Interface (SPI)

- Supports communication with serial external devices
  - Four chip selects with external decoder support allow communication with up to 15 peripherals
  - Serial memories, such as DataFlash and 3-wire EEPROMs
  - Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
  - External co-processors
- · Master or slave serial peripheral bus interface
  - 8- to 16-bit programmable data length per chip select
  - Programmable phase and polarity per chip select
  - Programmable transfer delays between consecutive transfers and between clock and data per chip select
  - Programmable delay between consecutive transfers
  - Selectable mode fault detection
- · Very fast transfers supported
  - Transfers with baud rates up to MCK
  - The chip select line may be left active to speed up transfers on the same device

### 12.2 Two Wire Interface (TWI)

- Master, Multi-Master and Slave Mode Operation
- · Compatibility with Atmel two-wire interface, serial memory and I<sup>2</sup>C compatible devices
- One, two or three bytes for slave address
- · Sequential read/write operations
- Bit Rate: Up to 400 kbit/s
- · General Call Supported in Slave Mode
- Connecting to PDC channel capabilities optimizes data transfers in Master Mode only (for TWI0 only)
  - One channel for the receiver, one channel for the transmitter
  - Next buffer support

## 12.3 Universal Asynchronous Receiver Transceiver (UART)

- Two-pin UART
  - Implemented features are 100% compatible with the standard Atmel USART
  - Independent receiver and transmitter with a common programmable Baud Rate Generator
  - Even, Odd, Mark or Space Parity Generation
  - Parity, Framing and Overrun Error Detection
  - Automatic Echo, Local Loopback and Remote Loopback Channel Modes

# 4 SAM3N Summary



- Two multi-purpose input/output signals
- Two global registers that act on all three TC Channels
- Quadrature decoder
  - Advanced line filtering
  - Position/revolution/speed
- 2-bit Gray Up/Down Counter for Stepper Motor

## 12.6 Pulse Width Modulation Controller (PWM)

- Four channels, one 16-bit counter per channel
- · Common clock generator, providing thirteen different clocks
  - One Modulo n counter providing eleven clocks
  - Two independent linear dividers working on modulo n counter outputs
- Independent channel programming
  - Independent enable/disable commands
  - Independent clock selection
  - Independent period and duty cycle, with double buffering
  - Programmable selection of the output waveform polarity

## 12.7 10-bit Analog-to-Digital Converter

- Up to 16-channel ADC
- 10-bit 384 Ksamples/sec. or 8-bit 583 Ksamples/sec. Successive Approximation Register ADC
- ±2 LSB Integral Non Linearity, ±1 LSB Differential Non Linearity
- Integrated 8-to-1 multiplexer, offering eight independent 3.3V analog inputs
- · External voltage reference for better accuracy on low voltage inputs
- · Individual enable and disable of each channel
- Multiple trigger source
  - Hardware or software trigger
  - External trigger pin
  - Timer Counter 0 to 2 outputs TIOA0 to TIOA2 trigger
- · Sleep Mode and conversion sequencer
  - Automatic wakeup on trigger and back to sleep mode after conversions of all enabled channels

## 12.8 Digital-to-Analog Converter (DAC)

- 1 channel 10-bit DAC
- Up to 500 ksamples/s conversion rate
- · Flexible conversion range
- Multiple trigger sources
- One PDC channel

## 13. Package Drawings

The SAM3N series devices are available in LQFP, QFN and TFBGA packages.



Note: 1. This drawing is for general information only. Refer to JEDEC Drawing MS-026 for additional information.





Figure 13-3. 64 and 4B · lead LQFP Package Drawing



|        |      | Millimeter |               |            | Inch      |       |  |  |
|--------|------|------------|---------------|------------|-----------|-------|--|--|
| Symbol | Min  | Nom        | Мах           | Min        | Nom       | Max   |  |  |
| A      | -    | -          | 1.60          | _          | _         | 0.063 |  |  |
| A1     | 0.05 | -          | 0.15          | 0.002      | -         | 0.006 |  |  |
| A2     | 1.35 | 1.40       | 1.45          | 0.053      | 0.055     | 0.057 |  |  |
| D      |      | 12.00 BSC  |               |            | 0.472 BSC |       |  |  |
| D1     |      | 10.00 BSC  |               |            | 0.383 BSC |       |  |  |
| E      |      | 12.00 BSC  |               |            | 0.472 BSC |       |  |  |
| E1     |      | 10.00 BSC  |               |            | 0.383 BSC |       |  |  |
| R2     | 0.08 | -          | 0.20          | 0.003      | _         | 0.008 |  |  |
| R1     | 0.08 | -          | _             | 0.003      | _         | _     |  |  |
| q      | 0°   | 3.5°       | 7°            | 0°         | 3.5°      | 7°    |  |  |
| θ1     | 0°   | -          | -             | 0°         | _         | -     |  |  |
| θ2     | 11°  | 12°        | 13°           | 11°        | 12°       | 13°   |  |  |
| θ3     | 11°  | 12°        | 13°           | 11°        | 12°       | 13°   |  |  |
| С      | 0.09 | -          | 0.20          | 0.004      | -         | 0.008 |  |  |
| L      | 0.45 | 0.60       | 0.75          | 0.018      | 0.024     | 0.030 |  |  |
| L1     |      | 1.00 REF   |               |            | 0.039 REF |       |  |  |
| S      | 0.20 | -          | -             | 0.008      | -         | _     |  |  |
| b      | 0.17 | 0.20       | 0.27          | 0.007      | 0.008     | 0.011 |  |  |
| е      |      | 0.50 BSC.  |               | 0.020 BSC. |           |       |  |  |
| D2     |      | 7.50       |               | 0.285      |           |       |  |  |
| E2     |      | 7.50       |               | 0.285      |           |       |  |  |
|        |      | Tolerance  | es of Form an | d Position |           |       |  |  |
| aaa    |      | 0.20       |               | 0.008      |           |       |  |  |
| bbb    |      | 0.20       |               | 0.008      |           |       |  |  |
| CCC    |      | 0.08       |               |            | 0.003     |       |  |  |
| ddd    |      | 0.08       |               |            | 0.003     |       |  |  |

| Table 13-2. | 64-lead LQFP Package Dimensions (in mm) |
|-------------|-----------------------------------------|



|        |                                 | Millimeter |       |           | Inch      |       |  |  |  |
|--------|---------------------------------|------------|-------|-----------|-----------|-------|--|--|--|
| Symbol | Min                             | Nom        | Max   | Min       | Nom       | Max   |  |  |  |
| А      | _                               | -          | 090   | -         | -         | 0.035 |  |  |  |
| A1     | _                               | _          | 0.050 | _         | _         | 0.002 |  |  |  |
| A2     | -                               | 0.65       | 0.70  | -         | 0.026     | 0.028 |  |  |  |
| A3     |                                 | 0.20 REF   |       |           | 0.008 REF |       |  |  |  |
| b      | 0.18                            | 0.20       | 0.23  | 0.007     | 0.008     | 0.009 |  |  |  |
| D      | 7.00 bsc                        |            |       | 0.276 bsc |           |       |  |  |  |
| D2     | 5.45                            | 5.60       | 5.75  | 0.215     | 0.220     | 0.226 |  |  |  |
| E      |                                 | 7.00 bsc   |       | 0.276 bsc |           |       |  |  |  |
| E2     | 5.45                            | 5.60       | 5.75  | 0.215     | 0.220     | 0.226 |  |  |  |
| L      | 0.35                            | 0.40       | 0.45  | 0.014     | 0.016     | 0.018 |  |  |  |
| е      |                                 | 0.50 bsc   |       | 0.020 bsc |           |       |  |  |  |
| R      | 0.09                            | _          | _     | 0.004     | _         | _     |  |  |  |
|        | Tolerances of Form and Position |            |       |           |           |       |  |  |  |
| ааа    | 0.10                            |            |       | 0.004     |           |       |  |  |  |
| bbb    |                                 | 0.10       |       | 0.004     |           |       |  |  |  |
| CCC    |                                 | 0.05       |       |           | 0.002     |       |  |  |  |

 Table 13-3.
 48-pad QFN Package Dimensions (in mm)

