

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	47
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 10x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam3n1bb-au

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. SAM3N Block Diagram

Figure 2-1. SAM3N 100-pin version Block Diagram

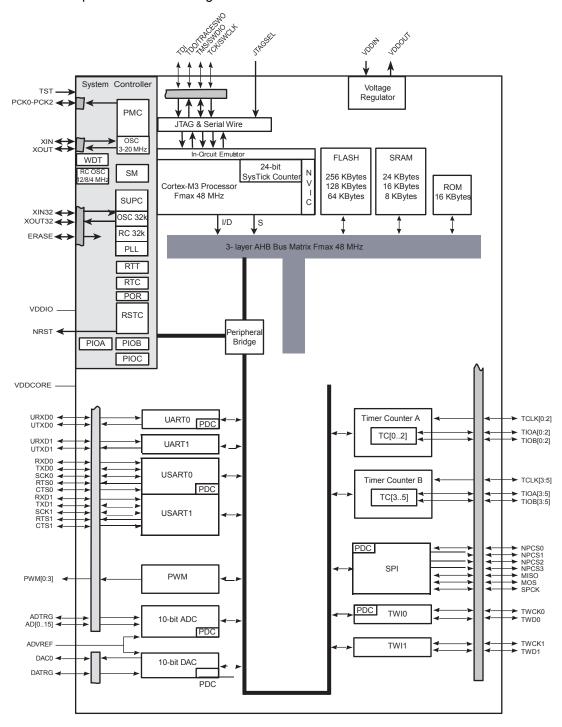


Figure 2-3. SAM3N 48-pin version Block Diagramz

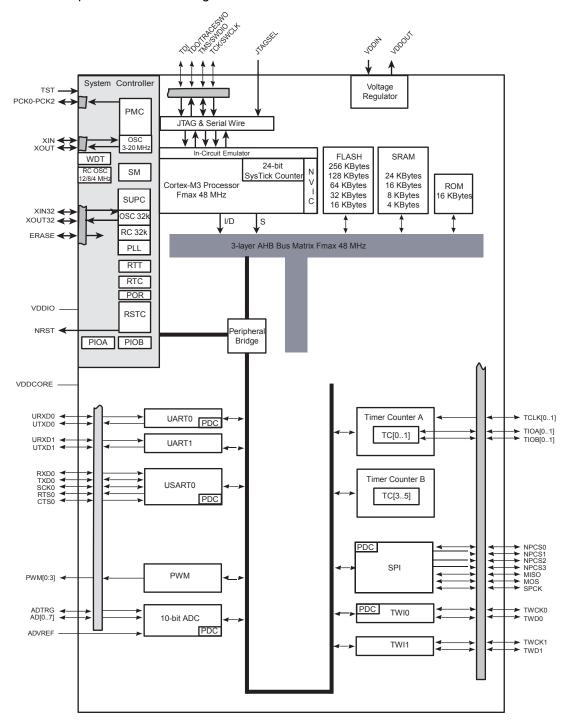
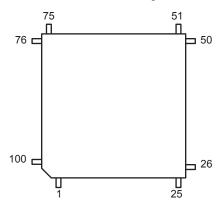


 Table 3-1.
 Signal Description List (Continued)

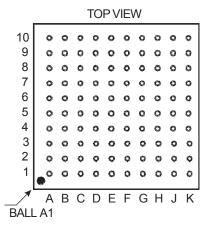
Signal Name	Function	Туре	Active Level	Voltage Reference	Comments
	Flash M	emory		J.	
ERASE	Flash and NVM Configuration Bits Erase Command	Input	High	VDDIO	Reset State: - Erase Input - Internal pull-down enabled - Schmitt Trigger enabled ⁽¹⁾
	Reset	/Test		- Ji	
NRST	Microcontroller Reset	I/O	Low	VDDIO	Permanent Internal pull-up
TST	Test Mode Select	Input		VDDIO	Permanent Internal pull-down
	Universal Asynchronous Re	ceiver Transc	eiver - UART	`x	
URXDx	UART Receive Data	Input			
UTXDx	UART Transmit Data	Output			
	PIO Controller - PI	OA - PIOB - P	IOC		
PA0 - PA31	Parallel IO Controller A	I/O			Reset State:
PB0 - PB14	Parallel IO Controller B	I/O			- PIO or System IOs ⁽²⁾
PC0 - PC31	Parallel IO Controller C	I/O		VDDIO	- Internal pull-up enabled - Schmitt Trigger enabled ⁽¹⁾
	Universal Synchronous Asynchron	ous Receiver	Transmitter	USARTx	
SCKx	USARTx Serial Clock	I/O			
TXDx	USARTx Transmit Data	I/O			
RXDx	USARTx Receive Data	Input			
RTSx	USARTx Request To Send	Output			
CTSx	USARTx Clear To Send	Input			
	Timer/Cou	nter - TC			
TCLKx	TC Channel x External Clock Input	Input			
TIOAx	TC Channel x I/O Line A	I/O			
TIOBx	TC Channel x I/O Line B	I/O			
	Pulse Width Modulation	on Controller-	PWMC		
PWMx	PWM Waveform Output for channel x	Output			


4. Package and Pinout

SAM3N4/2/1/0/00 series is pin-to-pin compatible with SAM3S products. Furthermore SAM3N4/2/1/0/00 devices have new functionalities referenced in italic inTable 4-1, Table 4-3 and Table 4-4.

4.1 SAM3N4/2/1/0/00C Package and Pinout

4.1.1 100-lead LQFP Package Outline


Figure 4-1. Orientation of the 100-lead LQFP Package

4.1.2 100-ball TFBGA Package Outline

The 100-Ball TFBGA package has a 0.8 mm ball pitch and respects Green Standards. Its dimensions are 9 x 9 x 1.1 mm.

Figure 4-2. Orientation of the 100-ball TFBGA Package

4.1.4 100-ball TFBGA Pinout

Table 4-2. 100-ball TFBGA SAM3N4/2/1/0/00C Pinout

A1	PB1
A2	PC29
A3	VDDIO
A4	PB9
A5	PB8
A6	PB13
A7	PB11
A8	PB10
A9	PB6
A10	JTAGSEL
B1	PC30
B2	ADVREF
В3	GNDANA
B4	PB14
B5	PC21
В6	PC20
В7	PA31
B8	PC19
В9	PC18
B10	PB5
C1	PB2
C2	VDDPLL
C3	PC25
C4	PC23
C5	PB12

C6	PB7
C7	PC16
C8	PA1
C9	PC17
C10	PA0
D1	PB3
D2	PB0
D3	PC24
D4	PC22
D5	GND
D6	GND
D7	VDDCORE
D8	PA2
D9	PC11
D10	PC14
E1	PA17
E2	PC31
E3	VDDIN
E4	GND
E5	GND
E6	NRST
E7	PA29
E8	PA30
E9	PC10
E10	PA3

F1	PA18
F2	PC26
F3	VDDOUT
F4	GND
F5	VDDIO
F6	PA27
F7	PC8
F8	PA28
F9	TST
F10	PC9
G1	PA21
G2	PC27
G3	PA15
G4	VDDCORE
G5	VDDCORE
G6	PA26
G7	PA12
G8	PC28
G9	PA4
G10	PA5
H1	PA19
H2	PA23
НЗ	PC7
H4	PA14
H5	PA13

PC4
PA11
PC1
PA6
PB4
PC15
PC0
PA16
PC6
PA24
PA25
PA10
GND
VDDCORE
VDDIO
PA22
PC13
PC12
PA20
PC5
PC3
PC2
PA9
PA8
PA7

4.2.1 64-Lead LQFP and QFN Pinout

64-pin version SAM3N devices are pin-to-pin compatible with SAM3S products. Furthermore, SAM3N products have new functionalities shown in italic in Table 4-3.

Table 4-3. 64-pin SAM3N4/2/1/0/00B Pinout

1	ADVREF	17	GND	33 TDI/PB4		49	TDO/TRACESWO/PB5	
2	GND	18	VDDIO	34	PA6/PGMNOE	50	JTAGSEL	
3	PB0/AD4	19	PA16/PGMD4	35	35 PA5/PGMRDY		TMS/SWDIO/PB6	
4	PB1AD5	20	PA15/PGMD3	36	PA4/PGMNCMD	52	PA31	
5	PB2/AD6	21	PA14/PGMD2	37	PA27/PGMD15	53	TCK/SWCLK/PB7	
6	PB3/AD7	22	PA13/PGMD1	38	PA28	54	VDDCORE	
7	VDDIN	23	PA24/PGMD12	39	NRST	55	ERASE/PB12	
8	VDDOUT	24	VDDCORE	40	40 TST		PB10	
9	PA17/PGMD5/AD0	25	PA25/PGMD13	41	41 PA29		PB11	
10	PA18/PGMD6/AD1	26	PA26/PGMD14	42	PA30	58	VDDIO	
11	PA21/PGMD9/AD8	27	PA12/PGMD0	43	PA3	59	PB13/DAC0	
12	VDDCORE	28	PA11/PGMM3	44	PA2/PGMEN2	60	GND	
13	PA19/PGMD7/AD2	29	PA10/PGMM2	45	VDDIO	61	XOUT/PB8	
14	PA22/PGMD10/AD9	30	PA9/PGMM1	46	GND	62	XIN/PGMCK/PB9	
15	PA23/PGMD11	31	PA8/XOUT32/PGMM 0	47	PA1/PGMEN1	63	PB14	
16	PA20/PGMD8/AD3	32	PA7/XIN32/XOUT32/ PGMNVALID	48	PA0/PGMEN0	64	VDDPLL	

Note: The bottom pad of the QFN package must be connected to ground.

4.3.1 48-Lead LQFP and QFN Pinout

Table 4-4. 48-pin SAM3N4/2/1/0/00A Pinout

	•
1	ADVREF
2	GND
3	PB0/AD4
4	PB1/AD5
5	PB2/AD6
6	PB3/AD7
7	VDDIN
8	VDDOUT
9	PA17/PGMD5/AD0
10	PA18/PGMD6/AD1
11	PA19/PGMD7/AD2
12	PA20/AD3

13	VDDIO
14	PA16/PGMD4
15	PA15/PGMD3
16	PA14/PGMD2
17	PA13/PGMD1
18	VDDCORE
19	PA12/PGMD0
20	PA11/PGMM3
21	PA10/PGMM2
22	PA9/PGMM1
23	PA8/XOUT32/PG MM0
24	PA7/XIN32/PGMN VALID

25	TDI/PB4
26	PA6/PGMNOE
27	PA5/PGMRDY
28	PA4/PGMNCMD
29	NRST
30	TST
31	PA3
32	PA2/PGMEN2
33	VDDIO
34	GND
35	PA1/PGMEN1
36	PA0/PGMEN0

37	TDO/TRACESWO/ PB5
38	JTAGSEL
39	TMS/SWDIO/PB6
40	TCK/SWCLK/PB7
41	VDDCORE
42	ERASE/PB12
43	PB10
44	PB11
45	XOUT/PB8
46	XIN/P/PB9/GMCK
47	VDDIO
48	VDDPLL

Note: The bottom pad of the QFN package must be connected to ground.

5. Power Considerations

5.1 Power Supplies

The SAM3N product has several types of power supply pins:

- VDDCORE pins: Power the core, including the processor, the embedded memories and the peripherals. Voltage ranges from 1.62V and 1.95V.
- VDDIO pins: Power the Peripherals I/O lines, Backup part, 32 kHz crystal oscillator and oscillator pads. Voltage ranges from 1.62V and 3.6V
- VDDIN pin: Voltage Regulator, ADC and DAC Power Supply. Voltage ranges from 1.8V to 3.6V for the Voltage Regulator
- VDDPLL pin: Powers the PLL, the Fast RC and the 3 to 20 MHz oscillators. Voltage ranges from 1.62V and 1.95V.

5.2 Voltage Regulator

The SAM3N embeds a voltage regulator that is managed by the Supply Controller.

This internal regulator is intended to supply the internal core of SAM3N. It features two different operating modes:

- In Normal mode, the voltage regulator consumes less than 700 µA static current and draws 60 mA of output current. Internal adaptive biasing adjusts the regulator quiescent current depending on the required load current. In Wait Mode quiescent current is only 7 µA.
- In Backup mode, the voltage regulator consumes less than 1 μA while its output (VDDOUT) is driven internally to GND. The default output voltage is 1.80V and the start-up time to reach Normal mode is less than 100 μs.

For adequate input and output power supply decoupling/bypassing, refer to the Voltage Regulator section in the Electrical Characteristics section of the datasheet.

5.3 Typical Powering Schematics

The SAM3N supports a 1.62V-3.6V single supply mode. The internal regulator input connected to the source and its output feeds VDDCORE. Figure 5-1 shows the power schematics.

As VDDIN powers the voltage regulator and the ADC/DAC, when the user does not want to use the embedded voltage regulator, it can be disabled by software via the SUPC (note that it is different from Backup mode).

Figure 5-1. Single Supply

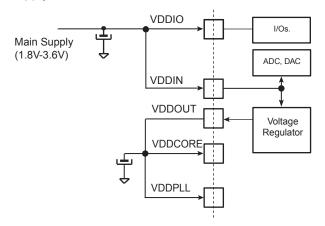
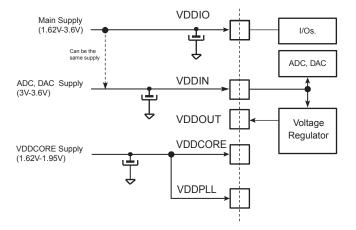



Figure 5-2. Core Externally Supplied

Note: Restrictions

With Main Supply < 3V, ADC and DAC are not usable. With Main Supply >= 3V, all peripherals are usable.

Figure 5-3 below provides an example of the powering scheme when using a backup battery. Since the PIO state is preserved when in backup mode, any free PIO line can be used to switch off the external regulator by driving the PIO line at low level (PIO is input, pull-up enabled after backup reset). External wake-up of the system can be from a push button or any signal. See Section 5.6 "Wake-up Sources" for further details.TFBGA

1

5.5.4 **Low Power Mode Summary Table**

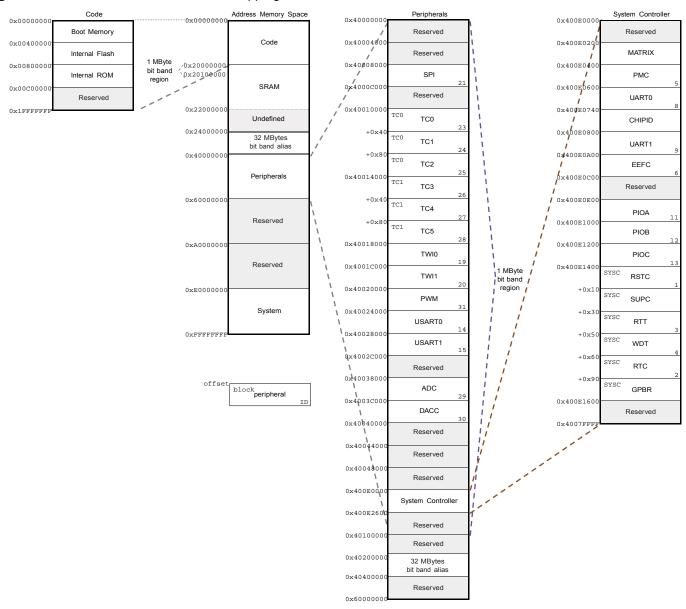
The modes detailed above are the main low power modes. Each part can be set to on or off separately and wake up sources can be individually configured. Table 5-1 below shows a summary of the configurations of the low power modes.

Table 5-1. Low Power Mode Configuration Summary

Mode	SUPC, 32 kHz Oscillator RTC RTT Backup Registers, POR (Backup Region)	Regulator	Core Memory Peripherals	Mode Entry	Potential Wake Up Sources	Core at Wake Up	PIO State while in Low Power Mode	PIO State at Wake Up	Consumption	Wake Up
Backup Mode	ON	OFF	OFF (Not powered)	WFE +SLEEPDEEP bit = 1	WUP0-15 pins BOD alarm RTC alarm RTT alarm	Reset	Previous state saved	PIOA & PIOB & PIOC Inputs with pull ups	3 μA typ ⁽⁴⁾	< 0.1 ms
Wait Mode	ON	ON	Powered (Not clocked)	WFE +SLEEPDEEP bit = 0 +LPM bit = 1	WUDPO-15 ning	Clocked back	Previous state saved	Unchanged	5 μΑ/15 μΑ ⁽⁵⁾	< 10 µs
Sleep Mode	ON	ON	Powered ⁽⁷⁾ (Not clocked)	WFE or WFI +SLEEPDEEP bit = 0 +LPM bit = 0	,	Clocked back	Previous state saved	Unchanged	(6)	(6)

- Notes: 1. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device works with the 4/8/12 MHz Fast RC oscillator. The user has to add the PLL start-up time if it is needed in the system. The wake-up time is defined as the time taken for wake up until the first instruction is fetched.
 - 2. The external loads on PIOs are not taken into account in the calculation.
 - 3. Supply Monitor current consumption is not included.
 - 4. Total Current consumption.
 - 5. 5 μA on VDDCORE, 15 μA for total current consumption (using internal voltage regulator), 8 μA for total current consumption (without using internal voltage regulator).
 - 6. Depends on MCK frequency.
 - 7. In this mode the core is supplied and not clocked but some peripherals can be clocked.

7.7 Debug and Test Features


- Debug access to all memory and registers in the system, including Cortex-M3 register bank when the core is running, halted, or held in reset.
- Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP) debug access
- Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and code patches
- Data Watchpoint and Trace (DWT) unit for implementing watchpoints, data tracing, and system profiling
- Instrumentation Trace Macrocell (ITM) for support of printf style debugging
- IEEE1149.1 JTAG Boundary-can on All Digital Pins

8. Product Mapping

Figure 8-1. SAM3N4/2/1/0/00 Product Mapping

9. Memories

9.1 Embedded Memories

9.1.1 Internal SRAM

The SAM3N4 product embeds a total of 24-Kbytes high-speed SRAM.

The SAM3N2 product embeds a total of 16-Kbytes high-speed SRAM.

The SAM3N1 product embeds a total of 8-Kbytes high-speed SRAM.

The SRAM is accessible over System Cortex-M3 bus at address 0x2000 0000.

The SRAM is in the bit band region. The bit band alias region is from 0x2200 0000 and 0x23FF FFFF.

RAM size must be configurable by calibration fuses.

9.1.2 Internal ROM

The SAM3N product embeds an Internal ROM, which contains the SAM Boot Assistant (SAM-BA), In Application Programming routines (IAP) and Fast Flash Programming Interface (FFPI).

At any time, the ROM is mapped at address 0x0080 0000.

9.1.3 Embedded Flash

9.1.3.1 Flash Overview

The Flash of the SAM3N4 (256 Kbytes) is organized in one bank of 1024 pages of 256 bytes (Single plane).

The Flash of the SAM3N2 (128 Kbytes) is organized in one bank of 512 pages of 256 bytes (Single Plane).

The Flash of the SAM3N1 (64 Kbytes) is organized in one bank of 256 pages of 256 bytes (Single plane).

The Flash contains a 128-byte write buffer, accessible through a 32-bit interface.

9.1.3.2 Flash Power Supply

The Flash is supplied by VDDCORE.

9.1.3.3 Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller (EEFC) manages accesses performed by the masters of the system. It enables reading the Flash and writing the write buffer. It also contains a User Interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block with the 32-bit internal bus. Its 128-bit wide memory interface increases performance.

The user can choose between high performance or lower current consumption by selecting either 128-bit or 64-bit access. It also manages the programming, erasing, locking and unlocking sequences of the Flash using a full set of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash organization, thus making the software generic.

10.1 System Controller and Peripherals Mapping

Please refer to Figure 8-1, "SAM3N4/2/1/0/00 Product Mapping" on page 30.

All the peripherals are in the bit band region and are mapped in the bit band alias region.

10.2 Power-on-Reset, Brownout and Supply Monitor

The SAM3N embeds three features to monitor, warn and/or reset the chip:

- Power-on-Reset on VDDIO
- Brownout Detector on VDDCORE
- Supply Monitor on VDDIO

10.2.1 Power-on-Reset

The Power-on-Reset monitors VDDIO. It is always activated and monitors voltage at start up but also during power down. If VDDIO goes below the threshold voltage, the entire chip is reset. For more information, refer to the Electrical Characteristics section of the datasheet.

10.2.2 Brownout Detector on VDDCORE

The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by software through the Supply Controller (SUPC_MR). It is especially recommended to disable it during low-power modes such as wait or sleep modes.

If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more information, refer to the Supply Controller (SUPC) and Electrical Characteristics sections of the datasheet.

10.2.3 Supply Monitor on VDDIO

The Supply Monitor monitors VDDIO. It is inactive by default. It can be activated by software and is fully programmable with 16 steps for the threshold (between 1.9V to 3.4V). It is controlled by the Supply Controller (SUPC). A sample mode is possible. It allows to divide the supply monitor power consumption by a factor of up to 2048. For more information, refer to the SUPC and Electrical Characteristics sections of the datasheet.

10.3 Reset Controller

The Reset Controller is based on a Power-on-Reset cell, and a Supply Monitor on VDDCORE.

The Reset Controller is capable to return to the software the source of the last reset, either a general reset, a wake-up reset, a software reset, a user reset or a watchdog reset.

The Reset Controller controls the internal resets of the system and the NRST pin input/output. It is capable to shape a reset signal for the external devices, simplifying to a minimum connection of a push-button on the NRST pin to implement a manual reset.

The configuration of the Reset Controller is saved as supplied on VDDIO.

10.4 Supply Controller (SUPC)

The Supply Controller controls the power supplies of each section of the processor and the peripherals (via Voltage regulator control)

The Supply Controller has its own reset circuitry and is clocked by the 32 kHz slow clock generator.

3

- Multi-drive option enables driving in open drain
- Programmable pull up on each I/O line
- Pin data status register, supplies visibility of the level on the pin at any time
- Selection of the drive level
- Synchronous output, provides Set and Clear of several I/O lines in a single write

11. Peripherals

11.1 Peripheral Identifiers

Table 11-1 defines the Peripheral Identifiers of the SAM3N4/2/1/0/00. A peripheral identifier is required for the control of the peripheral interrupt with the Nested Vectored Interrupt Controller and for the control of the peripheral clock with the Power Management Controller.

Table 11-1. Peripheral Identifiers

Instance ID	Instance Name	NVIC Interrupt	PMC Clock Control	Instance Description	
0	SUPC	X		Supply Controller	
1	RSTC	x		Reset Controller	
2	RTC	X		Real Time Clock	
3	RTT	X		Real Time Timer	
4	WDT	X		Watchdog Timer	
5	PMC	X		Power Management Controller	
6	EEFC	X		Enhanced Flash Controller	
7	-	-		Reserved	
8	UART0	X	Х	UART 0	
9	UART1	X	Х	UART 1	
10	-	-	-	Reserved	
11	PIOA	X	Х	Parallel I/O Controller A	
12	PIOB	X	Х	Parallel I/O Controller B	
13	PIOC	X	Х	Parallel I/O Controller C	
14	USART0	X	Х	USART 0	
15	USART1	X	Х	USART 1	
16	-	-	-	Reserved	
17	-	-	-	Reserved	
18	-	-	-	Reserved	
19	TWI0	X	Х	Two Wire Interface 0	
20	TWI1	X	Х	Two Wire Interface 1	
21	SPI	X	Х	Serial Peripheral Interface	
22	-	-	-	Reserved	
23	TC0	X	X	Timer/Counter 0	
24	TC1	X	Х	Timer/Counter 1	

12. Embedded Peripherals Overview

12.1 Serial Peripheral Interface (SPI)

- Supports communication with serial external devices
 - Four chip selects with external decoder support allow communication with up to 15 peripherals
 - Serial memories, such as DataFlash and 3-wire EEPROMs
 - Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
 - External co-processors
- · Master or slave serial peripheral bus interface
 - 8- to 16-bit programmable data length per chip select
 - Programmable phase and polarity per chip select
 - Programmable transfer delays between consecutive transfers and between clock and data per chip select
 - Programmable delay between consecutive transfers
 - Selectable mode fault detection
- · Very fast transfers supported
 - Transfers with baud rates up to MCK
 - The chip select line may be left active to speed up transfers on the same device

12.2 Two Wire Interface (TWI)

- Master, Multi-Master and Slave Mode Operation
- Compatibility with Atmel two-wire interface, serial memory and I²C compatible devices
- · One, two or three bytes for slave address
- Sequential read/write operations
- · Bit Rate: Up to 400 kbit/s
- General Call Supported in Slave Mode
- Connecting to PDC channel capabilities optimizes data transfers in Master Mode only (for TWI0 only)
 - One channel for the receiver, one channel for the transmitter
 - Next buffer support

12.3 Universal Asynchronous Receiver Transceiver (UART)

- Two-pin UART
 - Implemented features are 100% compatible with the standard Atmel USART
 - Independent receiver and transmitter with a common programmable Baud Rate Generator
 - Even, Odd, Mark or Space Parity Generation
 - Parity, Framing and Overrun Error Detection
 - Automatic Echo, Local Loopback and Remote Loopback Channel Modes

 Support for two PDC channels with connection to receiver and transmitter (for UART0 only)

12.4 USART

- Programmable Baud Rate Generator
- 5- to 9-bit full-duplex synchronous or asynchronous serial communications
 - 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode
 - Parity generation and error detection
 - Framing error detection, overrun error detection
 - MSB- or LSB-first
 - Optional break generation and detection
 - By 8 or by-16 over-sampling receiver frequency
 - Hardware handshaking RTS-CTS
 - Receiver time-out and transmitter timeguard
 - Optional Multi-drop Mode with address generation and detection
- RS485 with driver control signal
- ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards (Only on USART0)
 - NACK handling, error counter with repetition and iteration limit
- SPI Mode
 - Master or Slave
 - Serial Clock programmable Phase and Polarity
 - SPI Serial Clock (SCK) Frequency up to MCK/4
- IrDA modulation and demodulation (Only on USART0)
 - Communication at up to 115.2 Kbps
- Test Modes
 - Remote Loopback, Local Loopback, Automatic Echo
- PDC support (for USART0 only)

12.5 Timer Counter (TC)

- · Six 16-bit Timer Counter Channels
- · Wide range of functions including:
 - Frequency Measurement
 - Event Counting
 - Interval Measurement
 - Pulse Generation
 - Delay Timing
 - Pulse Width Modulation
 - Up/down Capabilities
- Each channel is user-configurable and contains:
 - Three external clock inputs
 - Five internal clock inputs

- Two multi-purpose input/output signals
- Two global registers that act on all three TC Channels
- · Quadrature decoder
 - Advanced line filtering
 - Position/revolution/speed
- · 2-bit Gray Up/Down Counter for Stepper Motor

12.6 Pulse Width Modulation Controller (PWM)

- Four channels, one 16-bit counter per channel
- · Common clock generator, providing thirteen different clocks
 - One Modulo n counter providing eleven clocks
 - Two independent linear dividers working on modulo n counter outputs
- Independent channel programming
 - Independent enable/disable commands
 - Independent clock selection
 - Independent period and duty cycle, with double buffering
 - Programmable selection of the output waveform polarity

12.7 10-bit Analog-to-Digital Converter

- Up to 16-channel ADC
- 10-bit 384 Ksamples/sec. or 8-bit 583 Ksamples/sec. Successive Approximation Register ADC
- ±2 LSB Integral Non Linearity, ±1 LSB Differential Non Linearity
- Integrated 8-to-1 multiplexer, offering eight independent 3.3V analog inputs
- External voltage reference for better accuracy on low voltage inputs
- · Individual enable and disable of each channel
- Multiple trigger source
 - Hardware or software trigger
 - External trigger pin
 - Timer Counter 0 to 2 outputs TIOA0 to TIOA2 trigger
- Sleep Mode and conversion sequencer
 - Automatic wakeup on trigger and back to sleep mode after conversions of all enabled channels

12.8 Digital-to-Analog Converter (DAC)

- 1 channel 10-bit DAC
- Up to 500 ksamples/s conversion rate
- Flexible conversion range
- · Multiple trigger sources
- One PDC channel

 Table 13-1.
 48-lead LQFP Package Dimensions (in mm)

) 55.	,			
Millimeter			Inch			
Min	Nom	Max	Min	Nom	Max	
_	_	1.60	_	_	0.063	
0.05	_	0.15	0.002	_	0.006	
1.35	1.40	1.45	0.053	0.055	0.057	
	9.00 BSC		0.354 BSC			
	7.00 BSC			0.276 BSC		
9.00 BSC			0.354 BSC			
	7.00 BSC		0.276 BSC			
0.08	_	0.20	0.003	-	0.008	
0.08	_	_	0.003	-	_	
0°	3.5°	7°	0°	3.5°	7°	
0°	_	_	0°	-	_	
11°	12°	13°	11°	12°	13°	
11°	12°	13°	11°	12°	13°	
0.09	_	0.20	0.004	-	0.008	
0.45	0.60	0.75	0.018	0.024	0.030	
	1.00 REF		0.039 REF			
0.20	_	_	0.008	_	_	
0.17	0.20	0.27	0.007	0.008	0.011	
	0.50 BSC.			0.020 BSC.		
5.50			0.217			
5.50			0.217			
	Tolerance	es of Form an	d Position			
0.20			0.008			
0.20			0.008			
0.08			0.003			
	0.08 0.003					
	0.05 1.35 0.08 0.08 0° 0° 11° 11° 0.09 0.45	Min Nom - - 0.05 - 1.35 1.40 9.00 BSC 7.00 BSC 9.00 BSC 7.00 BSC 0.08 - 0° 3.5° 0° - 11° 12° 11° 12° 0.09 - 0.45 0.60 1.00 REF 0.20 - 0.17 0.20 0.50 BSC 5.50 Tolerance 0.20 0.20 0.20 0.20 0.20	Min Nom Max - - 1.60 0.05 - 0.15 1.35 1.40 1.45 9.00 BSC 7.00 BSC 9.00 BSC 7.00 BSC 0.08 - 0.20 0.08 - - 0° 3.5° 7° 0° - - 11° 12° 13° 11° 12° 13° 0.09 - 0.20 0.45 0.60 0.75 1.00 REF 0.20 0.27 0.50 BSC. 5.50 5.50 5.50 Tolerances of Form and 0.20 0.20 0.20 0.08	Min Nom Max Min - - 1.60 - 0.05 - 0.15 0.002 1.35 1.40 1.45 0.053 9.00 BSC - 0.053 7.00 BSC - 0.20 0.003 0.08 - 0.20 0.003 0° 3.5° 7° 0° 0° - - 0° 11° 12° 13° 11° 11° 12° 13° 11° 0.09 - 0.20 0.004 0.45 0.60 0.75 0.018 1.00 REF 0.20 - 0.008 0.17 0.20 0.27 0.007 0.50 BSC. 5.50 5.50 5.50 Tolerances of Form and Position 0.20 0.20 0.08	Min Nom Max Min Nom - - 1.60 - - 0.05 - 0.15 0.002 - 1.35 1.40 1.45 0.053 0.055 9.00 BSC 0.354 BSC 0.276 BSC 7.00 BSC 0.276 BSC 0.276 BSC 0.08 - 0.20 0.003 - 0° 3.5° 7° 0° 3.5° 0° - - 0.003 - 11° 12° 13° 11° 12° 11° 12° 13° 11° 12° 0.09 - 0.20 0.004 - 0.45 0.60 0.75 0.018 0.024 1.00 REF 0.008 - 0.008 0.50 BSC. 0.020 D.007 0.008 0.50 BSC. 0.0217 0.007 0.008 0.20 0.217 0.008 0.217 5.50 0.21	

Revision History

Doc. Rev. 11011BS	Comments	Change Request Ref.
	Overview:	
	All mentions of 100-ball LFBGA changed into 100-ball TFBGA	8044
	Section 8. "Product Mapping", Heading was 'Memories'. Changed to 'Product Mapping'	7685
	Section 4.1.4 "100-ball TFBGA Pinout", whole pinout table updated	7201
	Updated package dimensions in 'Features'	7965

Doc. Rev	Comments	Change Request Ref.
11011AS	First issue	