

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 16x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-TFBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/atmel/atsam3n1ca-cu

 Table 3-1.
 Signal Description List (Continued)

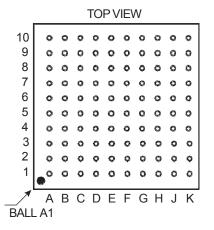
Signal Name	Function	Туре	Active Level	Voltage Reference	Comments
	Flash M	emory		J.	
ERASE Flash and NVM Configuration Bits Erase Command		Input	High	VDDIO	Reset State: - Erase Input - Internal pull-down enabled - Schmitt Trigger enabled ⁽¹⁾
	Reset	/Test		- Ji	
NRST	Microcontroller Reset	I/O	Low	VDDIO	Permanent Internal pull-up
TST Test Mode Select		Input		VDDIO	Permanent Internal pull-down
	Universal Asynchronous Re	ceiver Transc	eiver - UART	`x	
URXDx	UART Receive Data	Input			
UTXDx	UART Transmit Data	Output			
	PIO Controller - PI	OA - PIOB - P	IOC		
PA0 - PA31	Parallel IO Controller A	I/O			Reset State:
PB0 - PB14	Parallel IO Controller B	I/O			- PIO or System IOs ⁽²⁾
PC0 - PC31	Parallel IO Controller C	I/O	VDDIO	- Internal pull-up enabled - Schmitt Trigger enabled ⁽¹⁾	
	Universal Synchronous Asynchron	ous Receiver	Transmitter	USARTx	
SCKx	USARTx Serial Clock	I/O			
TXDx	USARTx Transmit Data	I/O			
RXDx	USARTx Receive Data	Input			
RTSx	USARTx Request To Send	Output			
CTSx	USARTx Clear To Send	Input			
	Timer/Cou	nter - TC			
TCLKx	TC Channel x External Clock Input	Input			
TIOAx	TC Channel x I/O Line A	I/O			
TIOBx	TC Channel x I/O Line B	I/O			
	Pulse Width Modulation	on Controller-	PWMC		
PWMx	VMx PWM Waveform Output for channel x				


4. Package and Pinout

SAM3N4/2/1/0/00 series is pin-to-pin compatible with SAM3S products. Furthermore SAM3N4/2/1/0/00 devices have new functionalities referenced in italic inTable 4-1, Table 4-3 and Table 4-4.

4.1 SAM3N4/2/1/0/00C Package and Pinout

4.1.1 100-lead LQFP Package Outline


Figure 4-1. Orientation of the 100-lead LQFP Package

4.1.2 100-ball TFBGA Package Outline

The 100-Ball TFBGA package has a 0.8 mm ball pitch and respects Green Standards. Its dimensions are 9 x 9 x 1.1 mm.

Figure 4-2. Orientation of the 100-ball TFBGA Package

4.1.3 100-Lead LQFP Pinout

Table 4-1. 100-lead LQFP SAM3N4/2/1/0/00C Pinout

1	ADVREF	
2	GND	
3	PB0/AD4	
4	PC29/AD13	
5	PB1/AD5	
6	PC30/AD14	
7	PB2/AD6	
8	PC31/AD15	
9	PB3/AD7	
10	VDDIN	
11	VDDOUT	
12	PA17/PGMD5/AD0	
13	PC26	
14	PA18/PGMD6/AD1	
15	PA21/AD8	
16	VDDCORE	
17	PC27	
18	PA19/PGMD7/AD2	
19	PC15/AD11	
20	PA22/AD9	
21	PC13/AD10	
22	PA23	
23	PC12/AD12	
24	PA20/AD3	
25	PC0	

	1
26	GND
27	VDDIO
28	PA16/PGMD4
29	PC7
30	PA15/PGMD3
31	PA14/PGMD2
32	PC6
33	PA13/PGMD1
34	PA24
35	PC5
36	VDDCORE
37	PC4
38	PA25
39	PA26
40	PC3
41	PA12/PGMD0
42	PA11/PGMM3
43	PC2
44	PA10/PGMM2
45	GND
46	PA9/PGMM1
47	PC1
48	PA8/XOUT32/ PGMM0
49	PA7/XIN32/ PGMNVALID
50	VDDIO

51	TDI/PB4	
52	PA6/PGMNOE	
53	PA5/PGMRDY	
54	PC28	
55	PA4/PGMNCMD	
56	VDDCORE	
57	PA27	
58	PC8	
59	PA28	
60	NRST	
61	TST	
62	PC9	
63	PA29	
64	PA30	
65	PC10	
66	PA3	
67	PA2/PGMEN2	
68	PC11	
69	VDDIO	
70	GND	
71	PC14	
72	PA1/PGMEN1	
73	PC16	
74	PA0/PGMEN0	
75	PC17	

76	TDO/TRACESWO/PB5		
77	JTAGSEL		
78	PC18		
79	TMS/SWDIO/PB6		
80	PC19		
81	PA31		
82	PC20		
83	TCK/SWCLK/PB7		
84	PC21		
85	VDDCORE		
86	PC22		
87	ERASE/PB12		
88	PB10		
89	PB11		
90	PC23		
91	VDDIO		
92	PC24		
93	PB13/DAC0		
94	PC25		
95	GND		
96	PB8/XOUT		
97	PB9/PGMCK/XIN		
98	VDDIO		
99	PB14		
100	VDDPLL		

4.1.4 100-ball TFBGA Pinout

Table 4-2. 100-ball TFBGA SAM3N4/2/1/0/00C Pinout

A1	PB1		
A2	PC29		
A3	VDDIO		
A4	PB9		
A5	PB8		
A6	PB13		
A7	PB11		
A8	PB10		
A9	PB6		
A10	JTAGSEL		
B1	PC30		
B2	ADVREF		
В3	GNDANA		
B4	PB14		
B5	PC21		
В6	PC20		
В7	PA31		
B8	PC19		
В9	PC18		
B10	PB5		
C1	PB2		
C2	VDDPLL		
C3	PC25		
C4	PC23		
C5	PB12		

C6	PB7		
C7	PC16		
C8	PA1		
C9	PC17		
C10	PA0		
D1	PB3		
D2	PB0		
D3	PC24		
D4	PC22		
D5	GND		
D6	GND		
D7	VDDCORE		
D8	PA2		
D9	PC11		
D10	PC14		
E1	PA17		
E2	PC31		
E3	VDDIN		
E4	GND		
E5	GND		
E6	NRST		
E7	PA29		
E8	PA30		
E9	PC10		
E10	PA3		

F1	PA18		
F2	PC26		
F3	VDDOUT		
F4	GND		
F5	VDDIO		
F6	PA27		
F7	PC8		
F8	PA28		
F9	TST		
F10	PC9		
G1	PA21		
G2	PC27		
G3	PA15		
G4	VDDCORE		
G5	VDDCORE		
G6	PA26		
G7	PA12		
G8	PC28		
G9	PA4		
G10	PA5		
H1	PA19		
H2	PA23		
НЗ	PC7		
H4	PA14		
H5	PA13		

PC4		
PA11		
PC1		
PA6		
PB4		
PC15		
PC0		
PA16		
PC6		
PA24		
PA25		
PA10		
GND		
VDDCORE		
VDDIO		
PA22		
PC13		
PC12		
PA20		
PC5		
PC3		
PC2		
PA9		
PA8		
PA7		

Figure 5-1. Single Supply

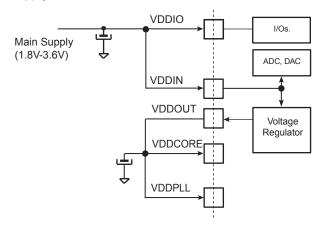
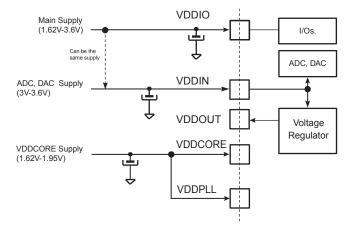



Figure 5-2. Core Externally Supplied

Note: Restrictions

With Main Supply < 3V, ADC and DAC are not usable. With Main Supply >= 3V, all peripherals are usable.

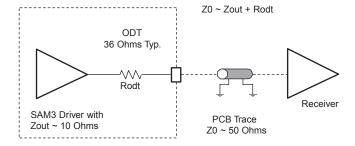
Figure 5-3 below provides an example of the powering scheme when using a backup battery. Since the PIO state is preserved when in backup mode, any free PIO line can be used to switch off the external regulator by driving the PIO line at low level (PIO is input, pull-up enabled after backup reset). External wake-up of the system can be from a push button or any signal. See Section 5.6 "Wake-up Sources" for further details.TFBGA

1

6. Input/Output Lines

The SAM3N has several kinds of input/output (I/O) lines such as general purpose I/Os (GPIO) and system I/Os. GPIOs can have alternate functionality due to multiplexing capabilities of the PIO controllers. The same PIO line can be used whether in IO mode or by the multiplexed peripheral. System I/Os include pins such as test pins, oscillators, erase or analog inputs.

6.1 General Purpose I/O Lines


GPIO Lines are managed by PIO Controllers. All I/Os have several input or output modes such as pull-up or pull-down, input Schmitt triggers, multi-drive (open-drain), glitch filters, debouncing or input change interrupt. Programming of these modes is performed independently for each I/O line through the PIO controller user interface. For more details, refer to the product PIO controller section.

The input output buffers of the PIO lines are supplied through VDDIO power supply rail.

The SAM3N embeds high speed pads able to handle up to 45 MHz for SPI clock lines and 35 MHz on other lines. See AC Characteristics Section in the Electrical Characteristics Section of the datasheet for more details. Typical pull-up and pull-down value is $100 \text{ k}\Omega$ for all I/Os.

Each I/O line also embeds an ODT (On-Die Termination), (see Figure 6-1). It consists of an internal series resistor termination scheme for impedance matching between the driver output (SAM3N) and the PCB trace impedance preventing signal reflection. The series resistor helps to reduce I/O switching current (di/dt) thereby reducing in turn, EMI. It also decreases overshoot and undershoot (ringing) due to inductance of interconnect between devices or between boards. In conclusion ODT helps diminish signal integrity issues.

Figure 6-1. On-Die Termination

6.2 System I/O Lines

System I/O lines are pins used by oscillators, test mode, reset and JTAG to name but a few. Described below are the SAM3N system I/O lines shared with PIO lines:

These pins are software configurable as general purpose I/O or system pins. At startup the default function of these pins is always used.

Table 6-1. System I/O Configuration Pin List.

SYSTEM_IO bit number	Default function after reset	Other function	Constraints for normal start	Configuration	
12	ERASE	PB12	Low Level at startup ⁽¹⁾	In Matrix User Interface Registers	
7	TCK/SWCLK	PB7	-	(Refer to the System I/O	
6	TMS/SWDIO	PB6	-	Configuration Register in the Bus Matrix section of the product datasheet.)	
5	TDO/TRACESWO	PB5	-		
4	TDI	PB4	-		
-	PA7	XIN32	-	0 - 5 - 4 - 4 - (2) h - 1	
-	PA8	XOUT32	-	See footnote (2) below	
-	PB9	XIN	-	Confortuato (3) holour	
-	PB8	XOUT	-	See footnote (3) below	

Notes: 1. If PB12 is used as PIO input in user applications, a low level must be ensured at startup to prevent Flash erase before the user application sets PB12 into PIO mode.

- 2. In the product Datasheet Refer to: Slow Clock Generator of the Supply Controller section.
- 3. In the product Datasheet Refer to: 3 to 20 MHZ Crystal Oscillator information in the PMC section.

6.2.1 Serial Wire JTAG Debug Port (SWJ-DP) Pins

The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on a standard 20-pin JTAG connector defined by ARM. For more details about voltage reference and reset state, refer to Table 3-1 on page 7.

At startup, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging probe. Please refer to the Debug and Test Section of the product datasheet.

SWJ-DP pins can be used as standard I/Os to provide users more general input/output pins when the debug port is not needed in the end application. Mode selection between SWJ-DP mode (System IO mode) and general IO mode is performed through the AHB Matrix Special Function Registers (MATRIX_SFR). Configuration of the pad for pull-up, triggers, debouncing and glitch filters is possible regardless of the mode.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It integrates a permanent pull-down resistor of about 15 k Ω to GND, so that it can be left unconnected for normal operations.

By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables the JTAG-DP and enables the SW-DP. When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace.

The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous trace can only be used with SW-DP, not JTAG-DP. For more information about SW-DP and JTAG-DP switching, please refer to the Debug and Test Section.

7. Processor and Architecture

7.1 ARM Cortex-M3 Processor

- Version 2.0
- Thumb-2 (ISA) subset consisting of all base Thumb-2 instructions, 16-bit and 32-bit.
- Harvard processor architecture enabling simultaneous instruction fetch with data load/store.
- Three-stage pipeline.
- · Single cycle 32-bit multiply.
- · Hardware divide.
- · Thumb and Debug states.
- · Handler and Thread modes.
- · Low latency ISR entry and exit.

7.2 APB/AHB Bridge

The SAM3N4/2/1/0/00 product embeds one peripheral bridge:

The peripherals of the bridge are clocked by MCK.

7.3 Matrix Masters

The Bus Matrix of the SAM3N product manages 3 masters, which means that each master can perform an access concurrently with others, to an available slave.

Each master has its own decoder, which is defined specifically for each master. In order to simplify the addressing, all the masters have the same decodings.

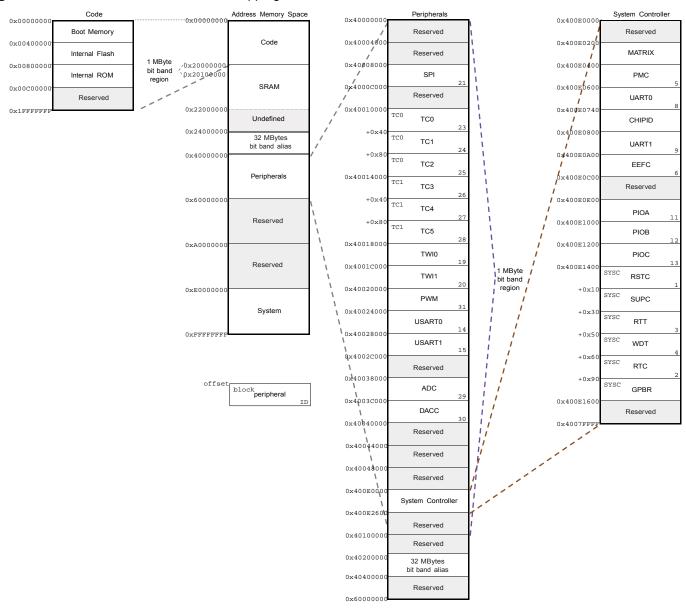
Table 7-1. List of Bus Matrix Masters

Master 0	Cortex-M3 Instruction/Data
Master 1	Cortex-M3 System
Master 2	Peripheral DMA Controller (PDC)

7.4 Matrix Slaves

The Bus Matrix of the SAM3N product manages 4 slaves. Each slave has its own arbiter, allowing a different arbitration per slave.

Table 7-2. List of Bus Matrix Slaves


Slave 0	Internal SRAM		
Slave 1	Internal ROM		
Slave 2	Internal Flash		
Slave 3	Peripheral Bridge		

8. Product Mapping

Figure 8-1. SAM3N4/2/1/0/00 Product Mapping

9. Memories

9.1 Embedded Memories

9.1.1 Internal SRAM

The SAM3N4 product embeds a total of 24-Kbytes high-speed SRAM.

The SAM3N2 product embeds a total of 16-Kbytes high-speed SRAM.

The SAM3N1 product embeds a total of 8-Kbytes high-speed SRAM.

The SRAM is accessible over System Cortex-M3 bus at address 0x2000 0000.

The SRAM is in the bit band region. The bit band alias region is from 0x2200 0000 and 0x23FF FFFF.

RAM size must be configurable by calibration fuses.

9.1.2 Internal ROM

The SAM3N product embeds an Internal ROM, which contains the SAM Boot Assistant (SAM-BA), In Application Programming routines (IAP) and Fast Flash Programming Interface (FFPI).

At any time, the ROM is mapped at address 0x0080 0000.

9.1.3 Embedded Flash

9.1.3.1 Flash Overview

The Flash of the SAM3N4 (256 Kbytes) is organized in one bank of 1024 pages of 256 bytes (Single plane).

The Flash of the SAM3N2 (128 Kbytes) is organized in one bank of 512 pages of 256 bytes (Single Plane).

The Flash of the SAM3N1 (64 Kbytes) is organized in one bank of 256 pages of 256 bytes (Single plane).

The Flash contains a 128-byte write buffer, accessible through a 32-bit interface.

9.1.3.2 Flash Power Supply

The Flash is supplied by VDDCORE.

9.1.3.3 Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller (EEFC) manages accesses performed by the masters of the system. It enables reading the Flash and writing the write buffer. It also contains a User Interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block with the 32-bit internal bus. Its 128-bit wide memory interface increases performance.

The user can choose between high performance or lower current consumption by selecting either 128-bit or 64-bit access. It also manages the programming, erasing, locking and unlocking sequences of the Flash using a full set of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash organization, thus making the software generic.

9.1.3.4 Flash Speed

The user needs to set the number of wait states depending on the frequency used.

For more details, refer to the AC Characteristics sub section in the product Electrical Characteristics Section.

9.1.3.5 Lock Regions

Several lock bits used to protect write and erase operations on lock regions. A lock region is composed of several consecutive pages, and each lock region has its associated lock bit.

Table 9-1. Lock bit number

Product	Number of lock bits	Lock region size
SAM3N4	16	16 kbytes (64 pages)
SAM3N2	8	16 kbytes (64 pages)
SAM3N1	4	16 kbytes (64 pages)

If a locked-region's erase or program command occurs, the command is aborted and the EEFC triggers an interrupt.

The lock bits are software programmable through the EEFC User Interface. The command "Set Lock Bit" enables the protection. The command "Clear Lock Bit" unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

9.1.3.6 Security Bit Feature

The SAM3N features a security bit, based on a specific General Purpose NVM bit (GPNVM bit 0). When the security is enabled, any access to the Flash, either through the ICE interface or through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality of the code programmed in the Flash.

This security bit can only be enabled, through the command "Set General Purpose NVM Bit 0" of the EEFC User Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, after a full Flash erase is performed. When the security bit is deactivated, all accesses to the Flash are permitted.

It is important to note that the assertion of the ERASE pin should always be longer than 200 ms.

As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal operation. However, it is safer to connect it directly to GND for the final application.

9.1.3.7 Calibration Bits

NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are factory configured and cannot be changed by the user. The ERASE pin has no effect on the calibration bits.

9.1.3.8 Unique Identifier

3

Each device integrates its own 128-bit unique identifier. These bits are factory configured and cannot be changed by the user. The ERASE pin has no effect on the unique identifier.

10. System Controller

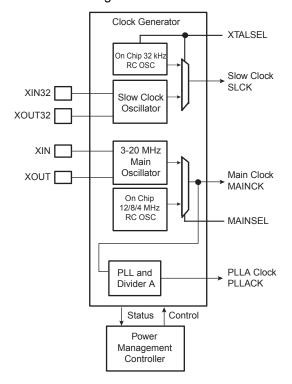
The System Controller is a set of peripherals, which allow handling of key elements of the system, such as power, resets, clocks, time, interrupts, watchdog, etc...

See the System Controller block diagram in Figure 10-1 on page 35.

The reset circuitry is based on a zero-power power-on reset cell and a brownout detector cell. The zero-power power-on reset allows the Supply Controller to start properly, while the software-programmable brownout detector allows detection of either a battery discharge or main voltage loss.

The Slow Clock generator is based on a 32 kHz crystal oscillator and an embedded 32 kHz RC oscillator. The Slow Clock defaults to the RC oscillator, but the software can enable the crystal oscillator and select it as the Slow Clock source.

The Supply Controller starts up the device by sequentially enabling the internal power switches and the Voltage Regulator, then it generates the proper reset signals to the core power supply.


It also enables to set the system in different low power modes and to wake it up from a wide range of events.

10.5 Clock Generator

The Clock Generator is made up of:

- One Low Power 32768Hz Slow Clock Oscillator with bypass mode
- One Low-Power RC Oscillator
- One 3-20 MHz Crystal or Ceramic resonator Oscillator, which can be bypassed
- One Fast RC Oscillator factory programmed, 3 output frequencies can be selected: 4, 8 or 12 MHz. By default 4 MHz is selected.
- One 60 to 130 MHz programmable PLL, capable to provide the clock MCK to the processor and to the peripherals. The input frequency of PLL is from 3.5 to 20 MHz.

Figure 10-2. Clock Generator Block Diagram

10.8 SysTick Timer

- 24-bit down counter
- Self-reload capability
- Flexible System timer

10.9 Real-time Timer

- · Real-time Timer, allowing backup of time with different accuracies
 - 32-bit Free-running back-up Counter
 - Integrates a 16-bit programmable prescaler running on slow clock
 - Alarm register capable to generate a wake-up of the system through the Shut Down Controller

10.10 Real Time Clock

- · Low power consumption
- Full asynchronous design
- · Two hundred year calendar
- · Programmable Periodic Interrupt
- · Alarm and update parallel load
- · Control of alarm and update Time/Calendar Data In

10.11 General Purpose Backup Registers

• Eight 32-bit general-purpose backup registers

10.12 Nested Vectored Interrupt Controller

- Thirty Two maskable external interrupts
- · Sixteen priority levels
- · Processor state automatically saved on interrupt entry, and restored on
- Dynamic reprioritization of interrupts
- Priority grouping
 - selection of pre-empting interrupt levels and non pre-empting interrupt levels
- Support for tail-chaining and late arrival of interrupts
 - back-to-back interrupt processing without the overhead of state saving and restoration between interrupts.
- Processor state automatically saved on interrupt entry and restored on interrupt exit, with no instruction overhead

10.13 Chip Identification

• Chip Identifier (CHIPID) registers permit recognition of the device and its revision.

Table 10-1. SAM3N Chip ID Register

Chip Name	CHIPID_CIDR	CHIPID_EXID
ATSAM3N4C (Rev A)	0x29540960	0x0
ATSAM3N2C (Rev A)	0x29590760	0x0
ATSAM3N1C (Rev A)	0x29580560	0x0
ATSAM3N4B (Rev A)	0x29440960	0x0
ATSAM3N2B (Rev A)	0x29490760	0x0
ATSAM3N1B (Rev A)	0x29480560	0x0
ATSAM3N4A (Rev A)	0x29340960	0x0
ATSAM3N2A (Rev A)	0x29390760	0x0
ATSAM3N1A (Rev A)	0x29380560	0x0

[•] JTAG ID: 0x05B2E03F

10.14 UART

- Two-pin UART
 - Implemented features are 100% compatible with the standard Atmel USART
 - Independent receiver and transmitter with a common programmable Baud Rate Generator
 - Even, Odd, Mark or Space Parity Generation
 - Parity, Framing and Overrun Error Detection
 - Automatic Echo, Local Loopback and Remote Loopback Channel Modes
 - Support for two PDC channels with connection to receiver and transmitter

10.15 PIO Controllers

- 3 PIO Controllers, PIOA, PIOB and PIOC (100-pin version only) controlling a maximum of 79 I/O Lines
- Each PIO Controller controls up to 32 programmable I/O Lines
- Fully programmable through Set/Clear Registers

Table 10-2. PIO available according to pin count

Version	Version 48 pin		100 pin	
PIOA	21	32	32	
PIOB	13	15	15	
PIOC	-	-	32	

- Multiplexing of four peripheral functions per I/O Line
- For each I/O Line (whether assigned to a peripheral or used as general purpose I/O)
 - Input change, rising edge, falling edge, low level and level interrupt
 - Debouncing and Glitch filter

11.2.2 PIO Controller B Multiplexing

Table 11-3. Multiplexing on PIO Controller B (PIOB)

					1	
I/O Line	Peripheral A	Peripheral B	Peripheral C	Extra Function	System Function	Comments
PB0	PWM0			AD4		
PB1	PWM1			AD5		
PB2	URXD1	NPCS2		AD6/WKUP12		
PB3	UTXD1	PCK2		AD7		
PB4	TWD1	PWM2			TDI	
PB5	TWCK1			WKUP13	TDO/ TRACESWO	
PB6					TMS/SWDIO	
PB7					TCK/SWCLK	
PB8					XOUT	
PB9					XIN	
PB10						
PB11						
PB12					ERASE	
PB13		PCK0		DAC0		64/100-pin versions
PB14	NPCS1	PWM3				64/100-pin versions

12. Embedded Peripherals Overview

12.1 Serial Peripheral Interface (SPI)

- Supports communication with serial external devices
 - Four chip selects with external decoder support allow communication with up to 15 peripherals
 - Serial memories, such as DataFlash and 3-wire EEPROMs
 - Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
 - External co-processors
- · Master or slave serial peripheral bus interface
 - 8- to 16-bit programmable data length per chip select
 - Programmable phase and polarity per chip select
 - Programmable transfer delays between consecutive transfers and between clock and data per chip select
 - Programmable delay between consecutive transfers
 - Selectable mode fault detection
- · Very fast transfers supported
 - Transfers with baud rates up to MCK
 - The chip select line may be left active to speed up transfers on the same device

12.2 Two Wire Interface (TWI)

- Master, Multi-Master and Slave Mode Operation
- Compatibility with Atmel two-wire interface, serial memory and I²C compatible devices
- · One, two or three bytes for slave address
- Sequential read/write operations
- · Bit Rate: Up to 400 kbit/s
- General Call Supported in Slave Mode
- Connecting to PDC channel capabilities optimizes data transfers in Master Mode only (for TWI0 only)
 - One channel for the receiver, one channel for the transmitter
 - Next buffer support

12.3 Universal Asynchronous Receiver Transceiver (UART)

- Two-pin UART
 - Implemented features are 100% compatible with the standard Atmel USART
 - Independent receiver and transmitter with a common programmable Baud Rate Generator
 - Even, Odd, Mark or Space Parity Generation
 - Parity, Framing and Overrun Error Detection
 - Automatic Echo, Local Loopback and Remote Loopback Channel Modes

- Two multi-purpose input/output signals
- Two global registers that act on all three TC Channels
- · Quadrature decoder
 - Advanced line filtering
 - Position/revolution/speed
- · 2-bit Gray Up/Down Counter for Stepper Motor

12.6 Pulse Width Modulation Controller (PWM)

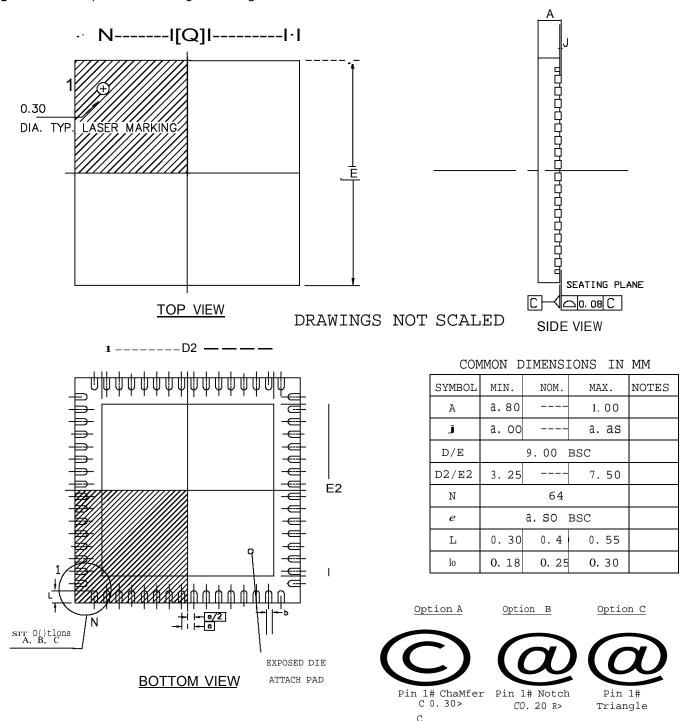
- Four channels, one 16-bit counter per channel
- · Common clock generator, providing thirteen different clocks
 - One Modulo n counter providing eleven clocks
 - Two independent linear dividers working on modulo n counter outputs
- Independent channel programming
 - Independent enable/disable commands
 - Independent clock selection
 - Independent period and duty cycle, with double buffering
 - Programmable selection of the output waveform polarity

12.7 10-bit Analog-to-Digital Converter

- Up to 16-channel ADC
- 10-bit 384 Ksamples/sec. or 8-bit 583 Ksamples/sec. Successive Approximation Register ADC
- ±2 LSB Integral Non Linearity, ±1 LSB Differential Non Linearity
- Integrated 8-to-1 multiplexer, offering eight independent 3.3V analog inputs
- External voltage reference for better accuracy on low voltage inputs
- · Individual enable and disable of each channel
- Multiple trigger source
 - Hardware or software trigger
 - External trigger pin
 - Timer Counter 0 to 2 outputs TIOA0 to TIOA2 trigger
- Sleep Mode and conversion sequencer
 - Automatic wakeup on trigger and back to sleep mode after conversions of all enabled channels

12.8 Digital-to-Analog Converter (DAC)

- 1 channel 10-bit DAC
- Up to 500 ksamples/s conversion rate
- Flexible conversion range
- · Multiple trigger sources
- One PDC channel


 Table 13-3.
 48-pad QFN Package Dimensions (in mm)

14510 10 01	10 para 4	T donago Biii		,		
0	Millimeter			Inch		
Symbol	Min	Nom	Max	Min	Nom	Max
Α	-	_	090	_	-	0.035
A1	_	-	0.050	_	-	0.002
A2	_	0.65	0.70	_	0.026	0.028
A3	0.20 REF				0.008 REF	
b	0.18	0.20	0.23	0.007	0.008	0.009
D		7.00 bsc			0.276 bsc	
D2	5.45	5.60	5.75	0.215	0.220	0.226
E	7.00 bsc		0.276 bsc			
E2	5.45	5.60	5.75	0.215 0.220 0		0.226
L	0.35	0.40	0.45	0.014	0.016	0.018
е	0.50 bsc		0.50 bsc 0.020 bsc			
R	0.09	_	_	0.004	_	_
Tolerances of Form and Position						
aaa	0.10			0.004		
bbb	0.10			0.004		
ccc	0.05				0.002	

Figure 13-5. 64-pad QFN Package Drawing

