

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM
Number of I/O	37
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.63V
Data Converters	A/D 20x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamd51g19a-mu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

11.	2. Features	79
11.	3. Block Diagram	80
11.	4. Signal Description	81
11.	5. Product Dependencies	81
11.	6. Functional Description	81
11.	7. DEBUG Mode	84
11.	8. RAM Properties	85
11.	9. Register Summary	86
11.	10. Register Description	87
12 DS	SU - Device Service Unit	101
12. 20		101
12	2 Features	101
12	3 Block Diagram	102
12.	Signal Description	102
12.	5. Product Dependencies	102
12.	6 Debug Operation	102
12.		105
12.	7. Onlp Elase 9. Drogramming	106
12.	0. Intellectual Property Protection	106
12.	10 Device Identification	100
12.	10. Device identification	100
12.	12 Register Summary	11/
12.	12. Register Description	116
12.		110
13. Cl	ock System	144
13. Cl 13.	ock System 1. Clock Distribution	144 144
13. Cl 13. 13.	ock System 1. Clock Distribution 2. Synchronous and Asynchronous Clocks	144 144 146
13. Cl 13. 13. 13.	ock System 1. Clock Distribution 2. Synchronous and Asynchronous Clocks	144 144 146 146
13. Cl 13. 13. 13. 13.	ock System 1. Clock Distribution 2. Synchronous and Asynchronous Clocks 3. Register Synchronization 4. Enabling a Peripheral	144 144 146 146 149
13. Cl 13. 13. 13. 13. 13.	 Clock Distribution	144 144 146 146 149 149
13. Cl 13. 13. 13. 13. 13. 13. 13.	ock System 1. Clock Distribution 2. Synchronous and Asynchronous Clocks 3. Register Synchronization 4. Enabling a Peripheral 5. On Demand Clock Requests 6. Power Consumption vs. Speed	144 144 146 146 149 149 150
13. Cl 13. 13. 13. 13. 13. 13. 13. 13.	 Clock Distribution. Synchronous and Asynchronous Clocks. Register Synchronization. Enabling a Peripheral. On Demand Clock Requests. Power Consumption vs. Speed. Clocks after Reset. 	144 144 146 146 149 149 150 150
13. Cl 13. 13. 13. 13. 13. 13. 13. 13. 14. G	Dock System	144 144 146 149 149 150 150 151
13. Cl 13. 13. 13. 13. 13. 13. 13. 14. G(14.	ock System	144 144 146 149 149 150 150 151
13. Cl 13. 13. 13. 13. 13. 13. 13. 14. G(14. 14.	ock System	144 144 146 149 149 150 150 151 151 151
13. Cl 13. 13. 13. 13. 13. 13. 13. 14. G(14. 14. 14. 14. 14.	ock System. 1. Clock Distribution. 2. Synchronous and Asynchronous Clocks. 3. Register Synchronization. 4. Enabling a Peripheral. 5. On Demand Clock Requests. 6. Power Consumption vs. Speed. 7. Clocks after Reset. CLK - Generic Clock Controller. 1. Overview. 2. Features. 3. Block Diagram	144 144 146 149 149 150 150 151 151 151
13. Cl 13. 13. 13. 13. 13. 13. 13. 14. G(14. 14. 14. 14. 14. 14.	ock System	144 144 146 149 149 150 150 151 151 151 151
13. Cl 13. 13. 13. 13. 13. 13. 14. G(14. 14. 14. 14. 14. 14. 14. 14.	ock System	144 144 146 149 149 150 150 151 151 151 151 152 152
13. Cl 13. 13. 13. 13. 13. 13. 13. 14. G(14. 14. 14. 14. 14. 14. 14. 14.	ock System. 1. Clock Distribution. 2. Synchronous and Asynchronous Clocks. 3. Register Synchronization. 4. Enabling a Peripheral. 5. On Demand Clock Requests. 6. Power Consumption vs. Speed. 7. Clocks after Reset. CLK - Generic Clock Controller. 1. Overview. 2. Features. 3. Block Diagram. 4. Signal Description. 5. Product Dependencies. 6. Functional Description	144 144 146 149 149 150 150 151 151 151 151 152 152 152
13. Cl 13. 13. 13. 13. 13. 13. 13. 14. G(14. 14. 14. 14. 14. 14. 14. 14.	Dock System. 1. Clock Distribution. 2. Synchronous and Asynchronous Clocks. 3. Register Synchronization. 4. Enabling a Peripheral. 5. On Demand Clock Requests. 6. Power Consumption vs. Speed. 7. Clocks after Reset. CLK - Generic Clock Controller. 1. Overview. 2. Features. 3. Block Diagram. 4. Signal Description. 5. Product Dependencies. 6. Functional Description.	144 144 149 149 150 150 151 151 151 152 152 153 153
13. Cl 13. 13. 13. 13. 13. 13. 13. 14. G(14. 14. 14. 14. 14. 14. 14. 14.	Dock System. 1. Clock Distribution. 2. Synchronous and Asynchronous Clocks. 3. Register Synchronization. 4. Enabling a Peripheral. 5. On Demand Clock Requests. 6. Power Consumption vs. Speed. 7. Clocks after Reset. CLK - Generic Clock Controller. 1. Overview. 2. Features. 3. Block Diagram. 4. Signal Description. 5. Product Dependencies. 6. Functional Description. 7. Register Summary. 8. Register Summary.	144 144 146 149 149 150 150 150 151 151 151 152 152 152 153 159 154
13. Cl 13. 13. 13. 13. 13. 13. 13. 14. G(14. 14. 14. 14. 14. 14. 14. 14.	ock System. 1. Clock Distribution. 2. Synchronous and Asynchronous Clocks. 3. Register Synchronization. 4. Enabling a Peripheral. 5. On Demand Clock Requests. 6. Power Consumption vs. Speed. 7. Clocks after Reset. CLK - Generic Clock Controller. 1. Overview. 2. Features. 3. Block Diagram. 4. Signal Description. 5. Product Dependencies. 6. Functional Description. 7. Register Summary. 8. Register Description.	144 144 146 149 149 150 150 151 151 151 151 152 152 153 159 164
13. Cl 13. 13. 13. 13. 13. 13. 13. 13.	Dock System. 1. Clock Distribution. 2. Synchronous and Asynchronous Clocks. 3. Register Synchronization. 4. Enabling a Peripheral. 5. On Demand Clock Requests 6. Power Consumption vs. Speed. 7. Clocks after Reset. CLK - Generic Clock Controller. 1. Overview. 2. Features. 3. Block Diagram. 4. Signal Description. 5. Product Dependencies. 6. Functional Description. 7. Register Summary. 8. Register Description. CLK – Main Clock.	144 144 146 149 149 150 150 151 151 151 151 152 152 153 159 164 173
13. Cl 13. 13. 13. 13. 13. 13. 13. 13.	Dock System. 1. Clock Distribution. 2. Synchronous and Asynchronous Clocks. 3. Register Synchronization. 4. Enabling a Peripheral. 5. On Demand Clock Requests. 6. Power Consumption vs. Speed. 7. Clocks after Reset. CLK - Generic Clock Controller. 1. Overview. 2. Features. 3. Block Diagram. 4. Signal Description. 5. Product Dependencies. 6. Functional Description. 7. Register Summary. 8. Register Description. CLK – Main Clock. 1. Overview.	144 144 146 149 149 150 150 151 151 151 152 153 153 159 164 173
13. Cl 13. 13. 13. 13. 13. 13. 13. 13.	Dock System. 1. Clock Distribution. 2. Synchronous and Asynchronous Clocks. 3. Register Synchronization. 4. Enabling a Peripheral. 5. On Demand Clock Requests. 6. Power Consumption vs. Speed. 7. Clocks after Reset. CLK - Generic Clock Controller. 1. Overview. 2. Features. 3. Block Diagram. 4. Signal Description. 5. Product Dependencies. 6. Functional Description. 7. Register Summary. 8. Register Description. 7. Eleview. 7. Overview. 7. Features.	144 144 149 149 150 150 150 151 151 151 152 152 152 153 159 164 173 173 173

Configuration Summary

												Pe	ripher	als										Analo	g			s	ecurit	y	
Device	Program Memory (KB)	Data Memory (KB)	Pins	Packages	CAN-FD	SERCOM	TC/Compare	TCC (24-bit/16-bit)	12S	USB	GSPI	SDHC	DMA Channels	PCC (data size)	ccL	Position Decoder	RTC	Frequency Measurement	Event System (Channels)	External Interrupt Lines	I/O Pins	ADC (Channels ADC0/ADC1)	Analog Comparators (Channels)	DAC (Channels)	PTC (Mutual/Self-capacitance Channels)	Temperature Sensor	AES	TRNG	Public Key Cryptography (PUKCC)	Integrity Check Monitor	Tamper Pins
SAME51J19	512	192																													
SAME51J18	256	128																													

Related Links

6.2.6 SERCOM I2C Configurations6.2.9 GPIO Clusters

I/O Multiplexing and Considerations

I ² S Signal	IOSET 1 PINs	IOSET 2 PINs
MCK0	PA08	PB17
FS0	PA09	PA20
SCK0	PA10	PB16
SDO	PA11	PA21
SDI	PB10	PA22
FS1	PB11	PA23
SCK1	PB12	PB28
MCK1	PB13	PB29

Table 6-19. I²S IO SET Configuration

6.2.8.4 TC IOSET Configurations

The following tables lists each IOSET Pins for each TC instance.

Table 6-20. TC0 IO SET Configuration

TC Signal	IOSET 1 PINs	IOSET 2 PINs	IOSET 3 PINs
WO0	PA04	PA08	PB30
WO1	PA05	PA09	PB31

Table 6-21. TC1 IO SET Configuration

TC Signal	IOSET 1 PINs	IOSET 2 PINs
WO0	PA06	PA10
WO1	PA07	PA11

Table 6-22. TC2 IO SET Configuration

TC Signal	IOSET 1 PINs	IOSET 2 PINs	IOSET 3 PINs		
WO0	PA00	PA12	PA16		
WO1	PA01	PA13	PA17		

Table 6-23. TC3 IO SET Configuration

TC Signal	IOSET 1 PINs	IOSET 2 PINs
WO0	PA14	PA18
WO1	PA15	PA19

Memories

Bit Pos.	Name	Usage	Related Peripheral Register	Default Values
14:11	BOD33 Hysteresis	BOD33 Hysteresis configuration at power-on.	SUPC.BOD33	0x2
25:15	Reserved	Factory settings - do not change.	·	-
29:26	NVM BOOT	NVM Bootloader Size	NVMCTRL	0xF
31:30	Reserved	Factory settings - do not change.	·	-
35:32	SEESBLK	Number of NVM Blocks composing a SmartEEPROM sector	NVMCTRL	0x0
38:36	SEEPSZ	SmartEEPROM Page Size	NVMCTRL	0x0
39	RAM ECCDIS	RAM ECC Disable	RAMECC	0x1
47:40	Reserved	Factory settings - do not change.	·	-
48	WDT Enable	WDT Enable at power-on.	WDT.CTRLA	0x0
49	WDT Always-On	WDT Always-On at power-on.	WDT.CTRLA	0x0
53:50	WDT Period	WDT Period at power-on.	WDT.CONFIG	0xB
57:54	WDT Window	WDT Window mode time-out at power-on.	WDT.CONFIG	0xB
61:58	WDT EWOFFSET	WDT Early Warning Interrupt Time Offset at power-on.	WDT.EWCTRL	0xB
62	WDT WEN	WDT Timer Window Mode Enable at power-on.	WDT.CTRLA	0x0
63	Reserved	Factory settings - do not change.	'	
95:64	NVM LOCKS	NVM Region Lock Bits.	NVMCTRL	0xFFFF FFFF
127:96	(fourth word)	User page		
159:128	Reserved	Factory settings - do not change.		
Other	-	User pages		

Related Links

25. NVMCTRL – Nonvolatile Memory Controller
19. SUPC – Supply Controller
19.8.6 BOD12
19.8.5 BOD33
20. WDT – Watchdog Timer
20.8.1 CTRLA
20.8.2 CONFIG
20.8.3 EWCTRL
45.6.3.1 Device Temperature Measurement

17.5.2 Power Management

The RAMECC will continue to operate in any sleep mode where the selected source clock is running. The RAMECC's interrupts can be used to wake up the device from sleep modes. Refer to the Power Manager chapter for details on the different sleep modes.

Related Links

18. PM – Power Manager

17.5.3 Clocks

The RAMECC bus clock is provided by the Main Clock Controller (MCLK) through the AHB-APB B bridge. The clock is enabled and disabled by writing RAMECC bit the in the APB B Mask register (MCLK.APBBMASK.RAMECC). See the register description for the default state of the RAMECC bus clock.

Related Links

15.6.2.6 Peripheral Clock Masking

17.5.4 DMA

Not applicable.

17.5.5 Interrupts

The interrupt request line is connected to the interrupt controller. Using the RAMECC interrupt(s) requires the interrupt controller to be configured first.

Related Links

10.2 Nested Vector Interrupt Controller

17.5.6 Events

Not applicable.

Related Links

31. EVSYS – Event System

17.5.7 Debug Operation

When the CPU is halted in debug mode the RAMECC will correct and log ECC errors based on the table below.

Table 17-1. ECC Debug Operation

DBGCTRL.ECCELOG	DBGCTRL.ECCDIS	Description
0	0	ECC errors from debugger reads are corrected but not logged in INTFLAG.
1	0	ECC errors from debugger reads are corrected and logged in INTFLAG.
X	1	ECC errors from debugger reads are not corrected or logged in INTFLAG.

21. RTC – Real-Time Counter

21.1 Overview

The Real-Time Counter (RTC) is a 32-bit counter with a 10-bit programmable prescaler that typically runs continuously to keep track of time. The RTC can wake up the device from sleep modes using the alarm/ compare wake up, periodic wake up, or overflow wake up mechanisms, or from the wake inputs.

The RTC can generate periodic peripheral events from outputs of the prescaler, as well as alarm/compare interrupts and peripheral events, which can trigger at any counter value. Additionally, the timer can trigger an overflow interrupt and peripheral event, and can be reset on the occurrence of an alarm/compare match. This allows periodic interrupts and peripheral events at very long and accurate intervals.

The 10-bit programmable prescaler can scale down the clock source. By this, a wide range of resolutions and time-out periods can be configured. With a 32.768kHz clock source, the minimum counter tick interval is 30.5μ s, and time-out periods can range up to 36 hours. For a counter tick interval of 1s, the maximum time-out period is more than 136 years.

21.2 Features

- 32-bit counter with 10-bit prescaler
- Multiple clock sources
- 32-bit or 16-bit counter mode
- Two 32-bit or four 16-bit compare values
- Clock/Calendar mode
 - Time in seconds, minutes, and hours (12/24)
 - Date in day of month, month, and year
 - Leap year correction
- Digital prescaler correction/tuning for increased accuracy
- Overflow, alarm/compare match and prescaler interrupts and events
 - Optional clear on alarm/compare match
- 8 backup registers with retention capability
- Tamper Detection
 - Timestamp on event or up to 5 inputs with debouncing
 - Active layer protection

zero) divide the frame length to generate the IPG. IPG stretch only works in full duplex mode and when bit 28 is set in the Network Configuration register. The IPG Stretch register cannot be used to shrink the IPG below 96 bits.

If the back pressure bit is set in the Network Control register, or if the HDFC configuration bit is set in the UR register (10M or 100M half duplex mode), the transmit block transmits 64 bits of data, which can consist of 16 nibbles of 1011 or in bit rate mode 64 1s, whenever it sees an incoming frame to force a collision. This provides a way of implementing flow control in half duplex mode.

24.6.5 MAC Receive Block

All processing within the MAC receive block is implemented using a 16-bit data path. The MAC receive block checks for valid preamble, FCS, alignment and length, presents received frames to the FIFO interface and stores the frame destination address for use by the address checking block.

If, during the frame reception, the frame is found to be too long, a bad frame indication is sent to the FIFO interface. The receiver logic ceases to send data to memory as soon as this condition occurs.

At end of frame reception the receive block indicates to the DMA block whether the frame is good or bad. The DMA block will recover the current receive buffer if the frame was bad.

Ethernet frames are normally stored in DMA memory complete with the FCS. Setting the FCS remove bit in the network configuration (bit 17) causes frames to be stored without their corresponding FCS. The reported frame length field is reduced by four bytes to reflect this operation.

The receive block signals to the register block to increment the alignment, CRC (FCS), short frame, long frame, jabber or receive symbol errors when any of these exception conditions occur.

If bit 26 is set in the network configuration, CRC errors will be ignored and CRC errored frames will not be discarded, though the Frame Check Sequence Errors statistic register will still be incremented. Additionally, if not enabled for jumbo frames mode, then bit[13] of the receiver descriptor word 1 will be updated to indicate the FCS validity for the particular frame. This is useful for applications such as EtherCAT whereby individual frames with FCS errors must be identified.

Received frames can be checked for length field error by setting the length field error frame discard bit of the Network Configuration register (bit-16). When this bit is set, the receiver compares a frame's measured length with the length field (bytes 13 and 14) extracted from the frame. The frame is discarded if the measured length is shorter. This checking procedure is for received frames between 64 bytes and 1518 bytes in length.

Each discarded frame is counted in the 10-bit length field error statistics register. Frames where the length field is greater than or equal to 0x0600 hex will not be checked.

24.6.6 Checksum Offload for IP, TCP and UDP

The GMAC can be programmed to perform IP, TCP and UDP checksum offloading in both receive and transmit directions, which is enabled by setting bit 24 in the Network Configuration register for receive and bit 11 in the DMA Configuration register for transmit.

IPv4 packets contain a 16-bit checksum field, which is the 16-bit 1's complement of the 1's complement sum of all 16-bit words in the header. TCP and UDP packets contain a 16-bit checksum field, which is the 16-bit 1's complement of the 1's complement sum of all 16-bit words in the header, the data and a conceptual IP pseudo header.

To calculate these checksums in software requires each byte of the packet to be processed. For TCP and UDP this can use a large amount of processing power. Offloading the checksum calculation to hardware can result in significant performance improvements.

© 2018 Microchip Technology Inc.

34.8.8 Interrupt Flag Status and Clear

Name:	INTFLAG
Offset:	0x18
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
ſ	ERROR		RXBRK	CTSIC	RXS	RXC	TXC	DRE
Access	R/W		R/W	R/W	R/W	R	R/W	R
Reset	0		0	0	0	0	0	0

Bit 7 – ERROR Error

This flag is cleared by writing '1' to it.

This bit is set when any error is detected. Errors that will set this flag have corresponding status flags in the STATUS register. Errors that will set this flag are COLL, ISF, BUFOVF, FERR, and PERR.Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the flag.

Bit 5 – RXBRK Receive Break

This flag is cleared by writing '1' to it.

This flag is set when auto-baud is enabled (CTRLA.FORM) and a break character is received.

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the flag.

Bit 4 – CTSIC Clear to Send Input Change

This flag is cleared by writing a '1' to it.

This flag is set when a change is detected on the CTS pin.

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the flag.

Bit 3 – RXS Receive Start

This flag is cleared by writing '1' to it.

This flag is set when a start condition is detected on the RxD line and start-of-frame detection is enabled (CTRLB.SFDE is '1').

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Receive Start interrupt flag.

Bit 2 – RXC Receive Complete

This flag is cleared by reading the Data register (DATA) or by disabling the receiver.

This flag is set when there are unread data in DATA.

Writing '0' to this bit has no effect.

Figure 38-8. Pad Events

The Suspend Interrupt bit in the Device Interrupt Flag register (INTFLAG.SUSPEND) is set when a USB Suspend state has been detected on the USB bus. The USB pad is then automatically put in the Idle state. The detection of a non-idle state sets the Wake Up Interrupt bit (INTFLAG.WAKEUP) and wakes the USB pad.

The pad goes to the Idle state if the USB module is disabled or if CTRLB.DETACH is written to one. It returns to the Active state when CTRLA.ENABLE is written to one and CTRLB.DETACH is written to zero.

38.6.2.14 Remote Wakeup

The remote wakeup request (also known as upstream resume) is the only request the device may send on its own initiative. This should be preceded by a DEVICE_REMOTE_WAKEUP request from the host.

First, the USB must have detected a "Suspend" state on the bus, i.e. the remote wakeup request can only be sent after INTFLAG.SUSPEND has been set.

The user may then write a one to the Remote Wakeup bit (CTRLB.UPRSM) to send an Upstream Resume to the host initiating the wakeup. This will automatically be done by the controller after 5 ms of inactivity on the USB bus.

When the controller sends the Upstream Resume INTFLAG.WAKEUP is set and INTFLAG.SUSPEND is cleared.

The CTRLB.UPRSM is cleared at the end of the transmitting Upstream Resume.

In case of a rebroadcast resume initiated by the host, the End of Resume bit (INTFLAG.EORSM) flag is set when the rebroadcast resume is completed.

38.8.2.5 Device Interrupt Enable Clear

Name:	INTENCLR
Offset:	0x14
Reset:	0x0000
Property:	PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Set (INTENSET) register.

Bit	15	14	13	12	11	10	9	8
							LPMSUSP	LPMNYET
Access							R/W	R/W
Reset							0	0
Bit	7	6	5	4	3	2	1	0
	RAMACER	UPRSM	EORSM	WAKEUP	EORST	SOF		SUSPEND
Access	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	0		0

Bit 9 – LPMSUSP Link Power Management Suspend Interrupt Enable Writing a zero to this bit has no effect.

Writing a one to this bit will clear the Link Power Management Suspend Interrupt Enable bit and disable the corresponding interrupt request.

Value	Description
0	The Link Power Management Suspend interrupt is disabled.
1	The Link Power Management Suspend interrupt is enabled and an interrupt request will be
	generated when the Link Power Management Suspend interrupt Flag is set.

Bit 8 – LPMNYET Link Power Management Not Yet Interrupt Enable Writing a zero to this bit has no effect.

Writing a one to this bit will clear the Link Power Management Not Yet interrupt Enable bit and disable the corresponding interrupt request.

Value	Description
0	The Link Power Management Not Yet interrupt is disabled.
1	The Link Power Management Not Yet interrupt is enabled and an interrupt request will be
	generated when the Link Power Management Not Yet interrupt Flag is set.

Bit 7 – RAMACER RAM Access Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will clear the RAM Access interrupt Enable bit and disable the corresponding interrupt request.

Value	Description
0	The RAM Access interrupt is disabled.
1	The RAM Access interrupt is enabled and an interrupt request will be generated when the
	RAM Access interrupt Flag is set.

Writing a one to this bit will set the Upstream Resume Enable bit and enable the corresponding interrupt request.

Value	Description
0	The Upstream Resume interrupt is disabled.
1	The Upstream Resume interrupt is enabled.

Bit 5 – EORSM End Of Resume Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will set the End Of Resume interrupt Enable bit and enable the corresponding interrupt request.

Value	Description
0	The End Of Resume interrupt is disabled.
1	The End Of Resume interrupt is enabled.

Bit 4 – WAKEUP Wake-Up Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will set the Wake Up interrupt Enable bit and enable the corresponding interrupt request.

Value	Description
0	The Wake Up interrupt is disabled.
1	The Wake Up interrupt is enabled.

Bit 3 – EORST End of Reset Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will set the End of Reset interrupt Enable bit and enable the corresponding interrupt request.

Value	Description
0	The End of Reset interrupt is disabled.
1	The End of Reset interrupt is enabled.

Bit 2 – SOF Start-of-Frame Interrupt Enable Writing a zero to this bit has no effect.

Writing a one to this bit will set the Start-of-Frame interrupt Enable bit and enable the corresponding interrupt request.

Value	Description
0	The Start-of-Frame interrupt is disabled.
1	The Start-of-Frame interrupt is enabled.

Bit 0 – SUSPEND Suspend Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will set the Suspend interrupt Enable bit and enable the corresponding interrupt request.

CAN - Control Area Network

Offset	Name	Bit Pos.									
		31:24	TOP[15:8]								
		7:0	TOC[7:0]								
		15:8		 TOC[15:8]							
0x2C	TOCV	23:16									
		31:24									
0x30											
	Reserved										
0x3F											
		7:0				TEC	[7:0]				
0x40	FCR	15:8	RP				REC[6:0]				
0,40	LOR	23:16				CEL	[7:0]				
		31:24									
		7:0	BO	EW	EP	ACT	[1:0]		LEC[2:0]		
0x44	PSP	15:8		PXE	RFDF	RBRS	RESI		DLEC[2:0]		
0,44		23:16					TDCV[6:0]				
		31:24									
		7:0					TDCF[6:0]				
0x48	TDCR	15:8			1		TDCO[6:0]				
0,110	1 DOIX	23:16									
		31:24									
0x4C											
	Reserved										
0x4F											
		7:0	RF1L	RF1F	RF1W	RF1N	RFUL	RFUF	RFUW	REUN	
0x50	IR	15:8		TEFF	TEFW	TEFN	IFE	TOP		HPM	
		23:16	EP	ELO	BEU	BEC	DRX		MRAF	ISW	
		31:24		DE4EE					BOWE		
		15.0		TEEE			TEEE		TOF		
0x54	IE	23.16			BEIJE	BECE		TOOE	MDAEE		
		23.10		ELUE		DECE		WDIE			
		7.0	RE111	RE1EI	RE1W/	RE1NI	REOLI	REAEL	REOWI	REONI	
		15.8	TEFII	TEFEI		TEENI	TEEI	TCFI	TCI	HPMI	
0x58	ILS	23.16	FPI	FLOI	BELI	BECI		TOOL	MRAFI	TSWI	
		31.24		LLOL	ARAI	PEDI	PEAL	WDII	BOI	FWI	
		7:0			7.1012	, LDL		TIDIE .	FINT	n[1:0]	
0x5C		15:8								[]	
	ILE	23:16									
		31:24									
0x60											
	Reserved										
0x7F											
		7:0			ANF	S[1:0]	ANFI	E[1:0]	RRFS	RRFE	
		15:8									
0x80	GFC	23:16									
		31:24									
		31:24									

CCL – Configurable Custom Logic

41.8.2 Sequential Control x

Name:	SEQCTRL
Offset:	0x04 + n*0x01 [n=01]
Reset:	0x00
Property:	PAC Write-Protection, Enable-Protected

Bit	7	6	5	4	3	2	1	0
						SEQSI	EL[3:0]	
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bits 3:0 – SEQSEL[3:0] Sequential Selection These bits select the sequential configuration:

Sequential Selection

Value	Name	Description
0x0	DISABLE	Sequential logic is disabled
0x1	DFF	D flip flop
0x2	JK	JK flip flop
0x3	LATCH	D latch
0x4	RS	RS latch
0x5 -		Reserved
0xF		

- {nu1XBase, u2XLength}, {nu1ZBase, 2*u2XLength} or {nu1RBase, 2*u2XLength} are not in Crypto RAM
- u2XLength is either: < 4, > 0xffc or not a 32-bit length
- {nu1RBase, 2*u2XLength} overlaps {nu1XBase,u2XLength}
- {nu1RBase, 2*u2XLength} overlaps {nu1ZBase, 2*u2XLength} and nu1RBase >nu1ZBase

If a modular reduction is specified, the relevant parameters must be defined according to the chosen reduction and follow the description in 43.3.5.1 Modular Reduction. Additional constraints to be respected and error codes are described in this section and in Table 43-49.

Multiplication with Accumulation or Subtraction

Where the options bits specify that either an Accumulation or a subtraction should be performed, this command performs the following operation:

 $R = (Z \pm (X^2 + CarryOperand))mod B^{2 \times XLength}$

Table 43-32. Multiplication with Accumulation or Subtraction

Option AND CARRYOPTIONS	CarryOperand	Resulting Operation
SET_CARRYOPTION(ADD_CARRY)	CarryIn	$R = Z \pm (X^2 + CarryIn)$
SET_CARRYOPTION(SUB_CARRY)	- CarryIn	$R = Z \pm (X^2 - CarryIn)$
SET_CARRYOPTION(ADD_1_PLUS_CARRY)	1 + CarryIn	$R = Z \pm (X^2 + 1 + CarryIn)$
SET_CARRYOPTION(ADD_1_MINUS_CARRY)	1 - CarryIn	$R = Z \pm (X^2 + 1 - CarryIn)$
SET_CARRYOPTION(CARRY_NONE)	0	$R = Z \pm (X^2)$
SET_CARRYOPTION(ADD_1)	1	$R = Z \pm (X^2 + 1)$
SET_CARRYOPTION(SUB_1)	- 1	$R = Z \pm (X^2 - 1)$
SET_CARRYOPTION(ADD_2)	2	$R = Z \pm (X^2 + 2)$

43.3.4.10.9 Multiplication without Accumulation or Subtraction

Where the options bits specify that either an accumulation or a subtraction should be performed, this command performs the following operation:

 $R = (X^2 + CarryOperand)mod B^{2 \times XLength}$

Table 43-33. Square Service Carry Settings

Option AND CARRYOPTIONS	CarryOperand	Resulting Operation
SET_CARRYOPTION(ADD_CARRY)	CarryIn	$R = X^2 + CarryIn$
SET_CARRYOPTION(SUB_CARRY)	- CarryIn	R = X ² - CarryIn
SET_CARRYOPTION(ADD_1_PLUS_CARRY)	1 + CarryIn	$R = X^2 + 1 + CarryIn$
SET_CARRYOPTION(ADD_1_MINUS_CARRY)	1 - CarryIn	$R = X^2 + 1 - CarryIn$
SET_CARRYOPTION(CARRY_NONE)	0	R = X ²
SET_CARRYOPTION(ADD_1)	1	$R = X^2 + 1$
SET_CARRYOPTION(SUB_1)	- 1	R = X ² - 1
SET_CARRYOPTION(ADD_2)	2	$R = X^2 + 2$

Public Key Cryptography Controller (PUKCC)

Figure 43-5. Value Rval and Precomp in {nu1PrecompBase, RandPrecompLen}

43.3.5.4.9 CRT Service Modular Exponentiation Maximum Size

The following table details the maximum size in bits of P or Q, of N and of EP or EQ.

- The maximum size in bits of P or Q equals:
 <Max Size Bits P> = <Max Size Bits Q> = 8 * <Max u2ModLength bytes>
- The maximum size in bits of N=P*Q equals:
 <Max Size Bits N> = 2 * <Max Size Bits P>
- The maximum size in bits of EP or EQ equals:
 <Max Size Bits EP> = <Max Size Bits EQ> = 8 * <Max u2ExpLength bytes>
- In case of the PUKCL_EXPMOD_EXPINPUKCCRAM option is specified, for the computation of the maximum acceptable size, it is assumed the Exponent is entirely in the Crypto RAM and its length equal the Modulus one.
- Otherwise, the Exponent is entirely out of the Crypto RAM and so the computation do not depend on its length.

Table 43-66. CRT Service Maximum Sizes

Characteristics of the Operation	P or Q Max Bit Sizes	N Max Bit Sizes	EP or EQ Max Bit Sizes
Exponent in Crypto RAM, 1 bit window	2912	5824	2912
Exponent in Crypto RAM, 2 bits window	2688	5376	2688
Exponent in Crypto RAM, 3 bits window	2464	4928	2464
Exponent in Crypto RAM, 4 bits window	2304	4608	2304
Exponent not in Crypto RAM, 1 bit window	3584	7168	<application dependent=""></application>
Exponent not in Crypto RAM, 2 bits window	3232	6464	<application dependent=""></application>

© 2018 Microchip Technology Inc.

43.3.7.9.6 Constraints

No overlapping between either input and output are allowed. The following conditions must be avoided to ensure the service works correctly:

- nu1ModBase, nu1CnsBase, nu1PointABase, nu1PrivateKey, nu1ScalarNumber, nu1OrderPointBase,nu1ABase, nu1Workspace or nu1HashBase are not aligned on 32-bit boundaries
- {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase, 3*u2ModLength + 12}, {nu1PrivateKey, u2ScalarLength + 4}, {nu1ScalarNumber, u2ScalarLength + 4}, {nu1OrderPointBase, u2ScalarLength + 4}, {nu1ABase, u2ModLength + 4}, {nu1Workspace,
 WorkspaceLength>} or {nu1HashBase, u2ScalarLength + 4} are not in Crypto RAM
- u2ModLength is either: < 12, > 0xffc or not a 32-bit length
- All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength +8}, {nu1PointABase, 3*u2ModLength + 12}, {nu1PrivateKey, u2ScalarLength + 4}, {nu1ScalarNumber, u2ScalarLength + 4}, {nu1OrderPointBase, u2ScalarLength + 4}, {nu1ABase, u2ModLength + 4}, {nu1Workspace, <WorkspaceLength>} and {nu1HashBase, u2ScalarLength + 4}

43.3.7.9.7 Status Returned Values

Table 43-109. GF2NEcDsaGenerate Fast Service Return Codes

Returned Status	Importance	Meaning
PUKCL_OK	-	The computation passed without problem.
PUKCL_WRONG_SELECTNUMBER	Warning	The given value for nu1ScalarNumber is not good to perform this signature generation.

43.3.7.10 Verifying an ECDSA Signature (Compliant with FIPS 186-2)

43.3.7.10.1 Purpose

This service is used to verify an ECDSA signature following the FIPS 186-2. It performs the second step of the Signature Verification.

A hash value (HashVal) must be provided as input, it has to be previously computed from the message to be signed using a secure hash algorithm.

As second significant input, the Signature is provided to be checked. This service checks the signature and fills the status accordingly.

43.3.7.10.2 How to Use the Service

43.3.7.10.3 Description

The operation performed is:

Verify = *EcDsaVerifySignature*(Pt_A, *HashVal*, *Signature*, *CurveParameters*, *PublicKey*)

The points used for this operation are represented in different coordinate systems. In this computation, the following parameters need to be provided:

Public Key Cryptography Controller (PUKCC)

PUKCL Service	STACK Usage (Bytes)
CondCopy	24
FastCopy	16
Smult	16
Smult (with reduction)	88
Comp	8
Fmult	24
Fmult (with reduction)	96
Square	16
Square (with reduction)	88
Div	144
GCD	136
RedMod (Setup)	160
RedMod (using fast reduction)	80
RedMod (randomize)	80
RedMod (Normalize)	80
RedMod (Using Division)	184
ExpMod	200
PrimeGen	416
CRT	304
ZpEccAddFast	104
ZpEccAddSubFast	92
ZpEcConvProjToAffine	280
ZpEcConvAffineToProjective	64
ZpEccDblFast	96
ZpEccMulFast	168
ZpEccQuickDualMulFast	216
ZpEcDsaGenerateFast	392
ZpEcDsaVerifyFast	456
ZpEcDsaQuickVerify	368
ZpEcRandomiseCoordinate	56
GF2NEccAddFast	128
GF2NEcConvProjToAffine	264

ADC – Analog-to-Digital Converter

45.8.20 DSEQCTRL

	Name: Offset: Reset: Property:	DSEQCTRL 0x38 0x00000000 PAC Write-Pro	otection					
Bit	31	30	29	28	27	26	25	24
	AUTOSTART							
Access	R/W							
Reset	0							
Bit	23	22	21	20	19	18	17	16
Accoss								
Reset								
Bit	15	14	13	12	11	10	9	8
								OFFSETCORR
Access								R/W
Reset								0
Bit	7	6	5	4	3	2	1	0
	GAINCORR	WINUT	WINLT	SAMPCTRL	AVGCTRL	REFCTRL	CTRLB	INPUTCTRL
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 31 - AUTOSTART ADC Auto-Start Conversion

Value	Description
0	ADC conversion starts when a DMA sequence is complete and a start software or event
	trigger is received.
1	ADC conversion automatically starts when a DMA sequence is complete. This setting is
	ignored if the convertion start by event is enabled (EVCTRL.STARTEI=1).

Bit 8 - OFFSETCORR Offset Correction

Value	Description
0	DMA update of the Offset Correction register is disabled.
1	DMA update of the Offset Correction register is enabled.

Bit 7 – GAINCORR Gain Correction

Value	Description
0	DMA update of the Gain Correction register is disabled.
1	DMA update of the Gain Correction register is enabled.

Bit 6 – WINUT Window Monitor Upper Threshold

PCC - Parallel Capture Controller

	Name: Offset: Reset: Property:	IER 0x04 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
_								
Bit	7	6	5	4	3	2	1	0
					RXBUF	ENDRX	OVRE	DRDY
Access					W	W	W	W
Reset					0	0	0	0

Bit 3 – RXBUF Reception Buffer Full Interrupt Enable.

Writing a '1' to this register enables the Reception Buffer Full interrupt.

Writing a '0' has no effect.

Interrupt Enable Register

52.8.2

Bit 2 – ENDRX End of Reception Transfer Interrupt Enable

Writing a '1' to this register enables the End of Reception Transfer interrupt.

Writing a '0' has no effect.

Bit 1 – OVRE Overrun Error Interrupt Enable Writing a '1' to this register enables the Overrun Error interrupt.

Writing a '0' has no effect.

Bit 0 – DRDY Data Ready Interrupt Enable Writing a '1' to this register enables the Data Ready Interrupt interrupt.

Writing a '0' has no effect.

18. PM – Power Manager

53.5.3 Clocks

A generic clock (GCLK_PDEC) is required to clock the PDEC. This clock must be configured and enabled in the generic clock controller before using the PDEC.

This generic clock is asynchronous to the bus clock (CLK_PDEC_APB). Due to this asynchronicity, writes to certain registers will require synchronization between the clock domains.

Related Links

14. GCLK - Generic Clock Controller13.3 Register Synchronization

53.5.4 DMA

Not applicable.

53.5.5 Interrupts

The interrupt request line is connected to the Interrupt Controller. In order to use interrupt requests of this peripheral, the Interrupt Controller (NVIC) must be configured first. Refer to *Nested Vector Interrupt Controller* for details.

Related Links

10.2 Nested Vector Interrupt Controller

- 10.2.1 Overview
- 10.2.2 Interrupt Line Mapping

53.5.6 Events

The events of this peripheral are connected to the Event System.

Related Links

31. EVSYS - Event System

53.5.7 Debug Operation

When the CPU is halted in debug mode the PDEC will halt normal operation. The PDEC can be forced to continue operation during debugging. Refer to DBGCTRL register for details.

53.5.8 Register Access Protection

All registers with write-access can be write-protected optionally by the Peripheral Access Controller (PAC), except for the following registers:

- Interrupt Flag register (INTFLAG)
- Filter register (FILTER)
- Precaler register (PRESC)
- Compare x Value register (CCx)
- Channel x Compare Buffer Value register (CCBUFx)
- Status register (STATUS)

Optional write-protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-Protection" property in each individual register description.

PAC write-protection does not apply to accesses through an external debugger.