

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM
Number of I/O	51
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.63V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamd51j18a-aut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CMCC - Cortex M Cache Controller

11.10.7 Cache Maintenance 1

	Name: Offset: Reset: Property:	MAINT1 0x24 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
		WAY	[3:0]					
Access	W	W	W	W				
Reset	0	0	0	0				
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
								_
Bit	15	14	13	12	11	10	9	8
							X[7:4]	
Access					W	W	W	W
Reset					0	0	0	0
Bit	7	6	5	4	3	2	1	0
		INDEX[3:0]						
Access	W	W	W	W				
Reset	0	0	0	0				

Bits 31:28 - WAY[3:0] Invalidate Way

Value	Name	Description
0x0	WAY0	Way 0 is selection for index invalidation
0x1	WAY1	Way 1 is selection for index invalidation
0x2	WAY2	Way 2 is selection for index invalidation
0x3	WAY3	Way 3 is selection for index invalidation
$0 \times 4 - 0 \times F$		Reserved

Bits 11:4 – INDEX[7:0] Invalidate Index

This field selects the index value for invalidation

Bit 5 – B12SRDY BOD12 Synchronization Ready Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the BOD12 Synchronization Ready Interrupt Enable bit, which disables the BOD12 Synchronization Ready interrupt.

Value	Description
0	The BOD12 Synchronization Ready interrupt is disabled.
1	The BOD12 Synchronization Ready interrupt is enabled, and an interrupt request will be
	generated when the BOD12 Synchronization Ready Interrupt flag is set.

Bit 4 – BOD12DET BOD12 Detection Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the BOD12 Detection Interrupt Enable bit, which disables the BOD12 Detection interrupt.

Value	Description
0	The BOD12 Detection interrupt is disabled.
1	The BOD12 Detection interrupt is enabled, and an interrupt request will be generated when the BOD12 Detection Interrupt flag is set.

Bit 3 – BOD12RDY BOD12 Ready Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the BOD12 Ready Interrupt Enable bit, which disables the BOD12 Ready interrupt.

Value	Description
0	The BOD12 Ready interrupt is disabled.
1	The BOD12 Ready interrupt is enabled and an interrupt request will be generated when the BOD12 Ready Interrupt flag is set.

Bit 2 – B33SRDY BOD33 Synchronization Ready Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the BOD33 Synchronization Ready Interrupt Enable bit, which disables the BOD33 Synchronization Ready interrupt.

Value	Description
0	The BOD33 Synchronization Ready interrupt is disabled.
1	The BOD33 Synchronization Ready interrupt is enabled, and an interrupt request will be generated when the BOD33 Synchronization Ready Interrupt flag is set.

Bit 1 – BOD33DET BOD33 Detection Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the BOD33 Detection Interrupt Enable bit, which disables the BOD33 Detection interrupt.

Value	Description
0	The BOD33 Detection interrupt is disabled.
1	The BOD33 Detection interrupt is enabled, and an interrupt request will be generated when the BOD33 Detection Interrupt flag is set.

The action of each tamper channel is configured using the Input n Action bits in the Tamper Control register (TAMPCTRL.INnACT):

- Off: Detection for tamper channel n is disabled.
- Wake: A transition on INn input (tamper channel n) matching TAMPCTRL.TAMPLVLn will be detected and the tamper interrupt flag (INTFLAG.TAMPER) will be set. The RTC value will not be captured in the TIMESTAMP register.
- Capture: A transition on INn input (tamper channel n) matching TAMPCTRL.TAMPLVLn will be detected and the tamper interrupt flag (INTFLAG.TAMPER) will be set. The RTC value will be captured in the TIMESTAMP register.
- Active Layer Protection: A mismatch of an internal RTC signal routed between INn and OUTn pins will be detected and the tamper interrupt flag (INTFLAG.TAMPER) will be set. The RTC value will be captured in the TIMESTAMP register.

In order to determine which tamper source caused a tamper event, the Tamper ID register (TAMPID) provides the detection status of each tamper channel. These bits remain active until cleared by software.

A single interrupt request (TAMPER) is available for all tamper channels.

The RTC also supports an input event (TAMPEVT) for generating a tamper condition within the Event System. The tamper input event is enabled by the Tamper Input Event Enable bit in the Event Control register (EVCTRL.TAMPEVEI).

Up to four polarity external inputs (INn) can be used for tamper detection. The polarity for each input is selected with the Tamper Level bits in the Tamper Control register (TAMPCTRL.TAMPLVLn).

Separate debouncers are embedded for each external input. The debouncer for each input is enabled/ disabled with the Debounce Enable bits in the Tamper Control register (TAMPCTRL.DEBNCn). The debouncer configuration is fixed for all inputs as set by the Control B register (CTRLB). The debouncing period duration is configurable using the Debounce Frequency field in the Control B register (CTRLB.DEBF). The period is set for all debouncers (i.e., the duration cannot be adjusted separately for each debouncer).

When TAMPCTRL.DEBNCn = 0, INn is detected asynchronously. See Figure 21-6 for an example.

When TAMPCTRL.DEBNCn = 1, the detection time depends on whether the debouncer operates synchronously or asynchronously, and whether majority detection is enabled or not. Refer to the table below for more details. Synchronous versus asynchronous stability debouncing is configured by the Debounce Asynchronous Enable bit in the Control B register (CTRLB.DEBASYNC):

- Synchronous (CTRLB.DEBASYNC = 0): INn is synchronized in two CLK_RTC periods and then must remain stable for four CLK_RTC_DEB periods before a valid detection occurs. See Figure 21-7 for an example.
- Asynchronous (CTRLB.DEBASYNC = 1): The first edge on INn is detected. Further detection is blanked until INn remains stable for four CLK_RTC_DEB periods. See Figure 21-8 for an example.

Majority debouncing is configured by the Debounce Majority Enable bit in the Control B register (CTRLB.DEBMAJ). INn must be valid for two out of three CLK_RTC_DEB periods. See Figure 21-9 for an example.

DMAC – Direct Memory Access Controller

Index	Instance	Channel	Presentation
0x0F	SERCOM5	тх	Index of DMA TX trigger
0x10	SERCOM6	RX	Index of DMA RX trigger
0x11	SERCOM6	ТХ	Index of DMA TX trigger
0x12	SERCOM7	RX	Index of DMA RX trigger
0x13	SERCOM7	ТХ	Index of DMA TX trigger
0x14	CAN0	DEBUG	DMA CAN Debug Req
0x15	CAN1	DEBUG	DMA CAN Debug Req
0x16	TCC0	OVF	DMA overflow/underflow/retrigger trigger
0x1C - 0x17	TCC0	MC	Indexes of DMA Match/Compare triggers
0x1D	TCC1	OVF	DMA overflow/underflow/retrigger trigger
0x21- 0x1E	TCC1	MC	Indexes of DMA Match/Compare triggers
0x22	TCC2	OVF	DMA overflow/underflow/retrigger trigger
0x25 - 0x23	TCC2	MC	Indexes of DMA Match/Compare triggers
0x26	TCC3	OVF	DMA overflow/underflow/retrigger trigger
0x28 - 0x27	TCC3	MC	Indexes of DMA Match/Compare triggers
0x29	TCC4	OVF	DMA overflow/underflow/retrigger trigger
0x2B - 0x2A	TCC4	MC	Indexes of DMA Match/Compare triggers
0x2C	TC0	OVF	Indexes of DMA Overflow trigger
0x2E - 0x2D	TC0	MC	Indexes of DMA Match/Compare triggers
0x2F	TC1	OVF	Indexes of DMA Overflow trigger
0x31 - 0x30	TC1	MC	Indexes of DMA Match/Compare triggers
0x32	TC2	OVF	Indexes of DMA Overflow trigger
0x34 - 0x33	TC2	MC	Indexes of DMA Match/Compare triggers
0x35	TC3	OVF	Indexes of DMA Overflow trigger
0x37 - 0x36	TC3	MC	Indexes of DMA Match/Compare triggers
0x38	TC4	OVF	Indexes of DMA Overflow trigger
0x3A - 0x39	TC4	MC	Indexes of DMA Match/Compare triggers
0x3B	TC5	OVF	Indexes of DMA Overflow trigger
0x3D:0x3C	TC5	MC	Indexes of DMA Match/Compare triggers
0x3E	TC6	OVF	Indexes of DMA Overflow trigger
0x40 - 0x3F	TC6	MC	Indexes of DMA Match/Compare triggers
0x41	TC7	OVF	Indexes of DMA Overflow trigger

This bit will always read '0'.

Bit 4 – MPE Management Port Enable

Writing a '1' to this bit enables the Management Port.

Writing a '0' to this bit disables the Management Port, and forces MDIO to high impedance state and MDC to low impedance.

Value	Description
0	Management Port is disabled
1	Management Port is enabled

Bit 3 – TXEN Transmit Enable

Writing a '1' to this bit enables the GMAC transmitter to send data.

Writing a '0' to this bit stops transmission immediately, the transmit pipeline and control registers is cleared, and the Transmit Queue Pointer Register will be set to point to the start of the transmit descriptor list.

Value	Description
0	Transmit is disabled
1	Transmit is enabled

Bit 2 – RXEN Receive Enable

Writing a '1' to this bit enables the GMAC to receive data.

Writing a '0' to this bit stops frame reception immediately, and the receive pipeline is cleared. The Receive Queue Pointer Register is not affected.

Value	Description
0	Receive is disabled
1	Receive is enabled

Bit 1 – LBL Loop Back Local

Writing '1' to this bit connects GTX to GRX, GTXEN to GRXDV, and forces full duplex mode.

GRXCK and GTXCK may malfunction as the GMAC is switched into and out of internal loop back. It is important that receive and transmit circuits have already been disabled when making the switch into and out of internal loop back.

Value	e Description		
0	Loop back local is disabled		
1	Loop back local is enabled		

Value	Description
0x00	Reserved
0x01-0x	1255 x 64 byte buffer
FF	

Bit 11 – TXCOEN Transmitter Checksum Generation Offload Enable Transmitter IP, TCP and UDP checksum generation offload enable.

Value	Description				
0	Frame data is unaffected.				
1	The transmitter checksum generation engine calculates and substitutes checksums for				
	transmit frames.				

Bit 10 – TXPBMS Transmitter Packet Buffer Memory Size Select

When written to zero, the amount of memory used for the transmit packet buffer is reduced by 50%. This reduces the amount of memory used by the GMAC.

It is important to write this bit to '1' if the full configured physical memory is available. The value in parentheses represents the size that would result for the default maximum configured memory size of 4KBytes.

Value	Description	
0	Top address bits not used. (2KByte used.)	
1 Full configured addressable space (4KBytes) used.		

Bits 9:8 - RXBMS[1:0] Receiver Packet Buffer Memory Size Select

The default receive packet buffer size is FULL=RECEIVE_BUFFER_SIZE Kbytes. The table below shows how to configure this memory to FULL, HALF, QUARTER or EIGHTH of the default size.

Value	Name	Description
0	EIGHTH	RECEIVE_BUFFER_SIZE/8 Kbyte Memory Size
1	QUARTER	RECEIVE_BUFFER_SIZE/4 Kbytes Memory Size
2	HALF	RECEIVE_BUFFER_SIZE/2 Kbytes Memory Size
3	FULL	RECEIVE_BUFFER_SIZE Kbytes Memory Size

Bit 7 – ESPA Endian Swap Mode Enable for Packet Data Accesses

Value	Description
0	Little endian mode for AHB transfers selected.
1	Big endian mode for AHB transfers selected.

Bit 6 – ESMA Endian Swap Mode Enable for Management Descriptor Accesses

Val	ue	Description
0		Little endian mode for AHB transfers selected.
1		Big endian mode for AHB transfers selected.

Bits 4:0 – FBLDO[4:0] Fixed Burst Length for DMA Data Operations

Selects the burst length to attempt to use on the AHB when transferring frame data. Not used for DMA management operations and only used where space and data size allow. Otherwise SINGLE type AHB transfers are used.

	Name: Offset: Reset: Property:	TPSF 0x040 0x00000FFF -						
Bit	31	30	29	28	27	26	25	24
	ENTXP							
Access	R/W							
Reset	0							
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Dit	45		10	10	44	10	0	0
Bit	15	14	13	12	11	10	9	8
							DR[11:8]	
Access					R/W	R/W	R/W	R/W
Reset					1	1	1	1
Bit	7	6	5	4	3	2	1	0
				TPB1A				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

24.9.17 GMAC TX Partial Store and Forward Register

Bit 31 – ENTXP Enable TX Partial Store and Forward Operation

Bits 11:0 – TPB1ADR[11:0] Transmit Partial Store and Forward Address Watermark value.

PAC - Peripheral Access Controller

27.6 Register Summary

Offset	Name	Bit Pos.								
		7:0				PERI	D[7:0]		I	
		15:8				PERID)[15:8]			
0x00	WRCTRL	23:16				KEY	[7:0]			
		31:24								
0x04	EVCTRL	7:0								ERREO
0x05										
	Reserved									
0x07										
0x08	INTENCLR	7:0								ERR
0x09	INTENSET	7:0								ERR
0x0A 0x0F	Reserved									
		7:0	HPB0	RAMDMACIC M	RAMDMAWR	RAMPPPDSU	RAMCM4S	NVMCTRL2	NVMCTRL1	NVMCTRL0
0x10	INTFLAGAHB	15:8		QSPI	SDHC1	SDHC0	PUKCC	HPB3	HPB2	HPB1
		23:16								
		31:24								
		7:0	GCLK	SUPC	OSC32KCTR L	OSCCTRL	RSTC	MCLK	РМ	PAC
0x14	INTFLAGA	15:8	TC1	TC0	SERCOM1	SERCOM0	FREQM	EIC	RTC	WDT
		23:16								
		31:24								
		7:0	EVSYS		DMAC	PORT	CMCC	NVMCTRL	DSU	USB
0x18	INTFLAGB	15:8		TC3	TC2	TCC1	TCC0	SERCOM3	SERCOM2	
0210	INTELAGE	23:16								RAMECC
		31:24								
		7:0	PDEC	TC5	TC4	TCC3	TCC2	GMAC	CAN1	CAN0
0x1C	INTFLAGC	15:8		CCL	QSPI	PUKCC	ICM	TRNG	AES	
0x10		23:16								
		31:24								
		7:0	ADC0	TC7	TC6	TCC4	SERCOM7	SERCOM6	SERCOM5	SERCOM4
0x20	INTFLAGD	15:8					PCC	12S	DAC	ADC1
		23:16								
		31:24								
0x24 0x33	Reserved									
		7:0	GCLK	SUPC	OSC32KCTR L	OSCCTRL	RSTC	MCLK	PM	PAC
0x34	STATUSA	15:8	TC1	TC0	SERCOM1	SERCOM0	FREQM	EIC		WDT
		23:16								
		31:24								
0x38	STATUSB	7:0	EVSYS		DMAC	PORT	CMCC	NVMCTRL	DSU	USB

PAC - Peripheral Access Controller

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the PUKCC interrupt flag.

Bit 11 – ICM Interrupt Flag for ICM

This flags is set when a Peripheral Access Error occurs while accessing the peripheral associated with the ICM, and will generate an interrupt request if INTENCLR/SET.ERR is '1'.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the ICM interrupt flag.

Bit 10 – TRNG Interrupt Flag for TRNG

This flags is set when a Peripheral Access Error occurs while accessing the peripheral associated with the TRNG, and will generate an interrupt request if INTENCLR/SET.ERR is '1'.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the TRNG interrupt flag.

Bit 9 – AES Interrupt Flag for AES

This flags is set when a Peripheral Access Error occurs while accessing the peripheral associated with the AES, and will generate an interrupt request if INTENCLR/SET.ERR is '1'.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the AES interrupt flag.

Bit 7 – PDEC Interrupt Flag for PDEC

This flags is set when a Peripheral Access Error occurs while accessing the peripheral associated with the PDEC, and will generate an interrupt request if INTENCLR/SET.ERR is '1'.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the PDEC interrupt flag.

Bit 6 – TC5 Interrupt Flag for TC5

This flags is set when a Peripheral Access Error occurs while accessing the peripheral associated with the TC5, and will generate an interrupt request if INTENCLR/SET.ERR is '1'.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the TC5 interrupt flag.

Bit 5 – TC4 Interrupt Flag for TC4

This flags is set when a Peripheral Access Error occurs while accessing the peripheral associated with the TC4, and will generate an interrupt request if INTENCLR/SET.ERR is '1'.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the TC4 interrupt flag.

Bit 4 – TCC3 Interrupt Flag for TCC3

This flags is set when a Peripheral Access Error occurs while accessing the peripheral associated with the TCC3, and will generate an interrupt request if INTENCLR/SET.ERR is '1'.

Writing a '0' to this bit has no effect.

28.6.9 Synchronization

Due to the multiple clock domains, some registers in the DFLL48M must be synchronized when accessed. A register can require:

- Synchronization when written
- Synchronization when read
- No synchronization

When executing an operation that requires synchronization, the relevant synchronization bit in the Synchronization Busy register (DFLLSYNC) will be set immediately, and cleared when synchronization is complete.

The following registers need synchronization:

- ENABLE bit in DFLLCTRLA register write-synchronized
- DFLLCTRLB register read-synchronized
- DFLLVAL register read- and write-synchronized
- DFLLMUL register write-synchronized

Due to the multiple clock domains (XOSC32K, XOSC, GCLK and CK), some registers in the DPLL must be synchronized when accessed. A register can require:

- Synchronization when written
- No synchronization

When executing an operation that requires synchronization, the relevant synchronization bit in the Synchronization Busy register (DPLLnSYNCBUSY) will be set immediately, and cleared when synchronization is complete.

The following bits need synchronization when written:

- Enable bit in control register A (DPLLnCTRLA.ENABLE)
- DPLLn Ratio register (DPLLnRATIO)

- XOSC32KRDY 32KHz Crystal Oscillator Ready: A 0-to-1 transition on the STATUS.XOSC32KRDY bit is detected
- XOSC32KFAIL Clock Failure Detector: A 0-to-1 transition on the STATUS.XOSC32KFAIL bit is detected

All these interrupts are synchronous wake-up source.

Each interrupt source has an interrupt flag associated with it. The interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG) is set when the interrupt condition occurs. Each interrupt can be enabled individually by setting the corresponding bit in the Interrupt Enable Set register (INTENSET), and disabled by setting the corresponding bit in the Interrupt Enable Clear register (INTENCLR). An interrupt request is generated when the interrupt flag is set and the corresponding interrupt is enabled. The interrupt request remains active until the interrupt flag is cleared, the interrupt is disabled or the OSC32KCTRL is reset. See the INTFLAG register for details on how to clear interrupt flags.

The OSC32KCTRL has one common interrupt request line for all the interrupt sources. The user must read the INTFLAG register to determine which interrupt condition is present. Refer to the INTFLAG register for details.

Note: Interrupts must be globally enabled for interrupt requests to be generated.

Related Links

18. PM – Power Manager10.2 Nested Vector Interrupt Controller

29.6.8 Events

The CFD can generate the following output event:

 Clock Failure Detector (XOSC32KFAIL): Generated when the Clock Failure Detector status bit is set in the Status register (STATUS.XOSC32KFAIL). The CFD event is not generated when the Clock Switch bit (STATUS.SWBACK) in the Status register is set.

Writing a '1' to an Event Output bit in the Event Control register (EVCTRL.CFDEO) enables the CFD output event. Writing a '0' to this bit disables the CFD output event. Refer to the Event System chapter for details on configuring the event system.

EVSYS – Event System

Value	Name	Description		
0x33	TCC1_TRG	TCC1 Trigger Event		
0x34	TCC1_CNT	TCC1 Counter		
0x35 - 0x38	TCC1_MCx	TCC1 Match/Compare x=03		
0x39	TCC2_OVF	TCC2 Overflow		
0x3A	TCC2_TRG	TCC2 Trigger Event		
0x3B	TCC2_CNT	TCC2 Counter		
0x3C - 0x3E	TCC2_MCx	TCC2 Match/Compare x=02		
0x3F	TCC3_OVF	TCC3 Overflow		
0x40	TCC3_TRG	TCC3 Trigger Event		
0x41	TCC3_CNT	TCC3 Counter		
0x42 - 0x43	TCC3_MCx	TCC3 Match/Compare x=01		
0x44	TCC4_OVF	TCC4 Overflow		
0x45	TCC4_TRG	TCC4 Trigger Event		
0x46	TCC4_CNT	TCC4 Counter		
0x47 - 0x48	TCC4_MCx	TCC4 Match/Compare x=01		
0x49	TC0_OVF	TC0 Overflow		
0x4A - 0x4B	TC0_MCx	TC0 Match/Compare x=01		
0x4C	TC1_OVF	TC1 Overflow		
0x4D - 0x4E	TC1_MCx	TC1 Match/Compare x=01		
0x4F	TC2_OVF	TC2 Overflow		
0x50 - 0x51	TC2_MCx	TC2 Match/Compare x=01		
0x52	TC3_OVF	TC3 Overflow		
0x53 - 0x54	TC3_MCx	TC3 Match/Compare x=01		
0x55	TC4_OVF	TC4 Overflow		
0x56 - 0x57	TC4_MCx	TC4 Match/Compare x=01		
0x58	TC5_OVF	TC5 Overflow		
0x59 - 0x5A	TC5_MCx	TC5 Match/Compare x=01		
0x5B	TC6_OVF	TC6 Overflow		
0x5C - 0x5D	TC6_MCx	TC6 Match/Compare x=01		
0x5E	TC7_OVF	TC7 Overflow		
0x5F - 0x60	TC7_MCx	TC7 Match/Compare x=01		
0x61	PDEC_OVF	PDEC Overflow		

32. PORT - I/O Pin Controller

32.1 Overview

The IO Pin Controller (PORT) controls the I/O pins of the device. The I/O pins are organized in a series of groups, collectively referred to as a PORT group. Each PORT group can have up to 32 pins that can be configured and controlled individually or as a group. The number of PORT groups on a device may depend on the package/number of pins. Each pin may either be used for general-purpose I/O under direct application control or be assigned to an embedded device peripheral. When used for general-purpose I/O, each pin can be configured as input or output, with highly configurable driver and pull settings.

All I/O pins have true read-modify-write functionality when used for general-purpose I/O; the direction or the output value of one or more pins may be changed (set, reset or toggled) explicitly without unintentionally changing the state of any other pins in the same port group by a single, atomic 8-, 16- or 32-bit write.

The PORT is connected to the high-speed bus matrix through an AHB/APB bridge.

32.2 Features

- Selectable input and output configuration for each individual pin
- Software-controlled multiplexing of peripheral functions on I/O pins
- Flexible pin configuration through a dedicated Pin Configuration register
- Configurable output driver and pull settings:
 - Totem-pole (push-pull)
 - Pull configuration
 - Driver strength
- Configurable input buffer and pull settings:
 - Internal pull-up or pull-down
 - Input sampling criteria
 - Input buffer can be disabled if not needed for lower power consumption
- Input event:
 - Up to four input event pins for each PORT group
 - SET/CLEAR/TOGGLE event actions for each event input on output value of a pin
 - Can be output to pin

Bit 2 – RXC Receive Complete Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Receive Complete Interrupt Enable bit, which enables the Receive Complete interrupt.

Value	Description
0	Receive Complete interrupt is disabled.
1	Receive Complete interrupt is enabled.

Bit 1 – TXC Transmit Complete Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Transmit Complete Interrupt Enable bit, which enables the Transmit Complete interrupt.

Value	Description			
0	Transmit Complete interrupt is disabled.			
1 Transmit Complete interrupt is enabled.				

Bit 0 – DRE Data Register Empty Interrupt Enable

Writing '0' to this bit has no effect.

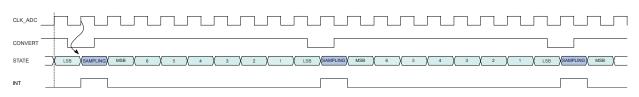
Writing '1' to this bit will set the Data Register Empty Interrupt Enable bit, which enables the Data Register Empty interrupt.

Value	Description
0	Data Register Empty interrupt is disabled.
1	Data Register Empty interrupt is enabled.

Public Key Cryptography Controller (PUKCC)

Parameter	Туре	Direction	Location	Data Length	Before Executing the Service	After Executing the Service
u2ScalarLength	u2	1	-	_	Length of scalar (<u>sam</u> e length as the length of order)	Length of scalar
nu1PointABase (see Note 2)	nu1	I/O	Crypto RAM	3*u2ModLength + 12	Input point A (three coordinates (X,Y) affine and Z = 1)	Resulting signature (R,S,0)
nu1ABase	nu1	1	Crypto RAM	u2ModLength + 4	Parameter a of the elliptic curve	Unchanged
nu1Workspace	nu1	1	Crypto RAM	8*u2ModLength + 44	_	Corrupted workspace

Note:


- 1. The hash value calculus is defined by the ECDSA norm and depends on the elliptic curve domain parameters. To construct the input parameter, the 4 Most Significant Bytes must be set to zero.
- 2. The resulting signature format is different from the point A format (see Description above for information on the point A format).

43.3.6.11.5 Code Example

```
PUKCL PARAM PUKCLParam;
PPUKCL PARAM pvPUKCLParam = & PUKCLParam;
// ! The Random Number Generator must be initialized and started
// ! following the directives given for the RNG on the chip
PUKCL (u2Option) = 0;
// Depending on the option specified, not all fields should be filled PUKCL
ZpEcDsaGenerate(nulModBase) = <Base of the ram location of P>; PUKCL
 ZpEcDsaGenerate(u2ModLength) = <Byte length of P>;
PUKCL _ZpEcDsaGenerate(nulCnsBase) = <Base of the ram location of Cns>;
PUKCL ZpEcDsaGenerate(nulPointABase) = <Base of the A point>;
PUKCL _ZpEcDsaGenerate(nulPrivateKey) = <Base of the Private Key>;
PUKCL _ZpEcDsaGenerate(nulScalarNumber) = <Base of the ScalarNumber>;
PUKCL _ZpEcDsaGenerate(nulOrderPointBase) = <Base of the order of A point>;
PUKCL
       _ZpEcDsaGenerate(nulABase) = <Base of the a parameter of the curve>;
PUKCL _ZpEcDsaGenerate(nulWorkspace) = <Base of the workspace>;
       ZpEcDsaGenerate(nulHashBase) = <Base of the SHA resulting hash>;
PUKCL
PUKCL ZpEcDsaGenerate(u2ScalarLength)
                                           = < Length of ScalarNumber>;
// vPUKCL Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL Process(ZpEcDsaGenerateFast, pvPUKCLParam);
if (PUKCL (u2Status) == PUKCL OK)
             {
             . . .
else // Manage the error
```

ADC – Analog-to-Digital Converter

Figure 45-7. ADC Timing for Free Running in 8-bit Resolution

The propagation delay of an ADC measurement is given by:

 $PropagationDelay = \frac{1 + Resolution}{f_{ADC}}$

Example. In order to obtain 1MSPS in 12-bit resolution with a sampling time length of four CLK_ADC cycles, f_{CLK_ADC} must be 1MSPS * (4 + 12) = 16MHz. As the minimal division factor of the prescaler is 2, GCLK_ADC must be 32MHz.

45.6.2.9 Accumulation

The results of multiple, consecutive conversions can be accumulated. The number of samples to be accumulated is specified by the Sample Number field in the Average Control register (AVGCTRL.SAMPLENUM). When accumulating more than 16 samples, the result will be too large to fit the 16-bit RESULT register size. To avoid overflow, the result is right shifted automatically to fit within the available register size. The number of automatic right shifts is specified in the table below.

Note: To perform the accumulation of two or more samples, the Conversion Result Resolution field in the Control B register (CTRLB.RESSEL) must be set.

Number of Accumulated Samples	AVGCTRL. SAMPLENUM	Number of Automatic Right Shifts	Final Result Precision	Automatic Division Factor
1	0x0	0	12 bits	0
2	0x1	0	13 bits	0
4	0x2	0	14 bits	0
8	0x3	0	15 bits	0
16	0x4	0	16 bits	0
32	0x5	1	16 bits	2
64	0x6	2	16 bits	4
128	0x7	3	16 bits	8
256	0x8	4	16 bits	16
512	0x9	5	16 bits	32
1024	0xA	6	16 bits	64
Reserved	0xB –0xF		12 bits	0

Table 45-1. Accumulation

AC – Analog Comparators

Bits 14:12 - MUXPOS[2:0] Positive Input Mux Selection

These bits select which input will be connected to the positive input of comparator n. COMPCTRLn.MUXPOS can be written only while COMPCTRLn.ENABLE is zero.

These bits are not synchronized.

Value	Name	Description
0x0	PIN0	I/O pin 0
0x1	PIN1	I/O pin 1
0x2	PIN2	I/O pin 2
0x3	PIN3	I/O pin 3
0x4	VSCALE	VDD scaler
0x5-0x7	-	Reserved

Bits 10:8 - MUXNEG[2:0] Negative Input Mux Selection

These bits select which input will be connected to the negative input of comparator n. COMPCTRLn.MUXNEG can only be written while COMPCTRLn.ENABLE is zero.

These bits are not synchronized.

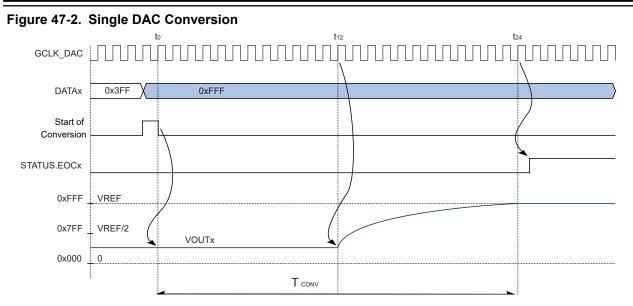
Value	Name	Description
0x0	PIN0	I/O pin 0
0x1	PIN1	I/O pin 1
0x2	PIN2	I/O pin 2
0x3	PIN3	I/O pin 3
0x4	GND	Ground
0x5	VSCALE	VDD scaler
0x6	BANDGAP	Internal bandgap voltage
0x7	DAC	DAC output

Bit 6 – RUNSTDBY Run in Standby

This bit controls the behavior of the comparator during standby sleep mode.

This bit is not synchronized

Value	Description
0	The comparator is disabled during sleep.
1	The comparator continues to operate during sleep.

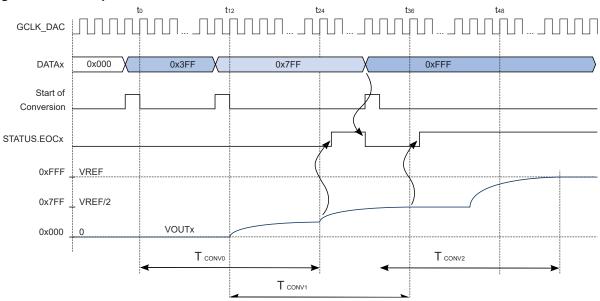

Bits 4:3 – INTSEL[1:0] Interrupt Selection

These bits select the condition for comparator n to generate an interrupt or event. COMPCTRLn.INTSEL can be written only while COMPCTRLn.ENABLE is zero.

These bits are not synchronized.

Value	Name	Description
0x0	TOGGLE	Interrupt on comparator output toggle
0x1	RISING	Interrupt on comparator output rising
0x2	FALLING	Interrupt on comparator output falling
0x3	EOC	Interrupt on end of comparison (single-shot mode only)

DAC – Digital-to-Analog Converter



Since the DAC conversion is implemented as pipelined procedure, a new conversion can be started after only 12 GCLK_DAC periods. Therefore if DATAx is written while a conversion is ongoing, start of conversion is postponed until DACx is ready to start next conversion.

The maximum conversion rate (samples per second) is therefore:

$$CR_{max} = \frac{2}{T_{conv}}$$

Figure 47-3. Multiple DAC Conversions

Related Links

19. SUPC – Supply Controller

47.6.3 Operating Conditions

- The DAC voltage reference must be below VDDANA.
- The maximum conversion rate of 1MSPS can be achieved only if VDDANA is above 2.4V.

48.7.2.7 Interrupt Flag Status and Clear

Name:	INTFLAG
Offset:	0x0A
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
			MC1	MC0			ERR	OVF
Access			R/W	R/W			R/W	R/W
Reset			0	0			0	0

Bit 5 – MC1 Match or Capture Channel x

This flag is set on a comparison match, or when the corresponding CCx register contains a valid capture value. This flag is set on the next CLK_TC_CNT cycle, and will generate an interrupt request if the corresponding Match or Capture Channel x Interrupt Enable bit in the Interrupt Enable Set register (INTENSET.MCx) is '1'.

Writing a '0' to one of these bits has no effect.

Writing a '1' to one of these bits will clear the corresponding Match or Capture Channel x interrupt flag

In capture operation, this flag is automatically cleared when CCx register is read.

Bit 4 – MC0 Match or Capture Channel x

This flag is set on a comparison match, or when the corresponding CCx register contains a valid capture value. This flag is set on the next CLK_TC_CNT cycle, and will generate an interrupt request if the corresponding Match or Capture Channel x Interrupt Enable bit in the Interrupt Enable Set register (INTENSET.MCx) is '1'.

Writing a '0' to one of these bits has no effect.

Writing a '1' to one of these bits will clear the corresponding Match or Capture Channel x interrupt flag

In capture operation, this flag is automatically cleared when CCx register is read.

Bit 1 – ERR Error Interrupt Flag

This flag is set when a new capture occurs on a channel while the corresponding Match or Capture Channel x interrupt flag is set, in which case there is nowhere to store the new capture.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit clears the Error interrupt flag.

Bit 0 – OVF Overflow Interrupt Flag

This flag is set on the next CLK_TC_CNT cycle after an overflow condition occurs, and will generate an interrupt request if INTENCLR.OVF or INTENSET.OVF is '1'.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit clears the Overflow interrupt flag.

49.8.8 Debug control

Name:	DBGCTRL
Offset:	0x1E
Reset:	0x00
Property:	PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
						FDDBD		DBGRUN
Access						R/W		R/W
Reset						0		0

Bit 2 – FDDBD Fault Detection on Debug Break Detection

This bit is not affected by software reset and should not be changed by software while the TCC is enabled.

By default this bit is zero, and the on-chip debug (OCD) fault protection is disabled. When this bit is written to '1', OCD break request from the OCD system will trigger non-recoverable fault. When this bit is set, OCD fault protection is enabled and OCD break request from the OCD system will trigger a non-recoverable fault.

Value	Description
0	No faults are generated when TCC is halted in debug mode.
1	A non recoverable fault is generated and FAULTD flag is set when TCC is halted in debug mode.

Bit 0 – DBGRUN Debug Running State

This bit is not affected by software reset and should not be changed by software while the TCC is enabled.

Value	Description
0	The TCC is halted when the device is halted in debug mode.
1	The TCC continues normal operation when the device is halted in debug mode.