

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Dectano	
Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM
Number of I/O	51
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192К х 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.63V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamd51j19a-mu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DSU - Device Service Unit

	Name: Offset: Reset: Property:	CID2 0x1FF8 0x00000005 -						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Dit			10	12			<u> </u>	<u> </u>
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
				PREAMB	LEB2[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	1	0	1

12.13.24 Component Identification 2

Bits 7:0 – PREAMBLEB2[7:0] Preamble Byte 2 These bits will always return 0x00000005 when read.

GCLK - Generic Clock Controller

Value	Name	Description
0x00	XOSC0	XOSC 0 oscillator output
0x01	XOSC1	XOSC 1 oscillator output
0x02	GCLK_IN	Generator input pad (GCLK_IO)
0x03	GCLK_GEN1	Generic clock generator 1 output
0x04	OSCULP32K	OSCULP32K oscillator output
0x05	XOSC32K	XOSC32K oscillator output
0x06	DFLL	DFLL oscillator output
0x07	DPLL0	DPLL0 output
0x08	DPLL1	DPLL1 output
0x09-0x1F	Reserved	Reserved for future use

Table 14-4. Generator Clock Source Selection

A Power Reset will reset all GENCTRLn registers. the Reset values of the GENCTRLn registers are shown in table below.

Table 14-5. GENCTRLn Reset Value after a Power Reset

GCLK Generator	Reset Value after a Power Reset
0	0x0000106
others	0x0000000

A User Reset will reset the associated GENCTRL register unless the Generator is the source of a locked Peripheral Channel (PCHCTRLm.WRTLOCK=1). The reset values of the GENCTRL register are as shown in the table below.

Table 14-6. GENCTRLn Reset Value after a User Reset

GCLK Generator	Reset Value after a User Reset
0	0x0000106
others	No change if the generator is used by a Peripheral Channel m with PCHCTRLm.WRTLOCK=1 else 0x00000000

Related Links

14.8.4 PCHCTRLm

Related Links

6. I/O Multiplexing and Considerations

16.5 Product Dependencies

In order to use this peripheral, other parts of the system must be configured correctly, as described below.

16.5.1 I/O Lines

Not applicable.

16.5.2 Power Management

The Reset Controller module is always on.

16.5.3 Clocks

The RSTC bus clock (CLK_RSTC_APB) can be enabled and disabled in the Main Clock Controller.

Related Links

MCLK – Main Clock
 Main Clock Masking

16.5.4 DMA

Not applicable.

16.5.5 Interrupts

Not applicable.

16.5.6 Events

Not applicable.

16.5.7 Debug Operation

When the CPU is halted in debug mode, the RSTC continues normal operation.

16.5.8 Register Access Protection

All registers with write-access can be optionally write-protected by the Peripheral Access Controller (PAC).

Note: Optional write-protection is indicated by the "PAC Write-Protection" property in the register description.

Write-protection does not apply for accesses through an external debugger.

16.5.9 Analog Connections

Not applicable.

16.6 Functional Description

16.6.1 Principle of Operation

The Reset Controller collects the various Reset sources and generates Reset for the device.

21.7 Register Summary - Mode 0 - 32-Bit Counter

Offset	Name	Bit Pos.								
000	CTRLA	7:0	MATCHCLR				MOE	DE[1:0]	ENABLE	SWRST
0x00	CIRLA	15:8	COUNTSYNC	GPTRST				PRESCA	LER[3:0]	
0.00		7:0	DMAEN	RTCOUT	DEBASYNC	DEBMAJ			GP2EN	GP0EN
0x02	CTRLB	15:8			ACTF[2:0]				DEBF[2:0]	
		7:0				PERE	On[7:0]			
0.04	EVCTRL	15:8	OVFEO	TAMPEREO					CMPE	On[1:0]
0x04	EVCIRL	23:16								TAMPEVEI
		31:24								
0.00		7:0				PER	n[7:0]			
0x08	INTENCLR	15:8	OVF	TAMPER					CMP	n[1:0]
004		7:0				PER	n[7:0]			
0x0A	INTENSET	15:8	OVF	TAMPER					CMP	n[1:0]
0.00		7:0				PER	n[7:0]			
0x0C	INTFLAG	15:8	OVF	TAMPER					CMP	n[1:0]
0x0E	DBGCTRL	7:0								DBGRUN
0x0F	Reserved									
		7:0		COM	Pn[1:0]		COUNT	FREQCORR	ENABLE	SWRST
0.40		15:8	COUNTSYNC							
0x10	SYNCBUSY	23:16						GPn	[3:0]	
		31:24								
0x14	FREQCORR	7:0	SIGN				VALUE[6:0]			
0x15										
	Reserved									
0x17										
		7:0				COUN	NT[7:0]			
0x18	COUNT	15:8				COUN	T[15:8]			
0,10	000111	23:16				COUNT[23:16]				
		31:24				COUN	Г[31:24]			
0x1C										
	Reserved									
0x1F										
		7:0					P[7:0]			
0x20	COMP0	15:8					P[15:8]			
		23:16					[23:16]			
		31:24				COMP	[31:24]			
		7:0					P[7:0]			
0x24	COMP1	15:8					P[15:8]			
		23:16					[23:16]			
		31:24				COMP	[31:24]			
0x28										
	Reserved									
0x3F										
0x40	GP0	7:0				GP	[7:0]			

DMAC – Direct Memory Access Controller

Offset	Name	Bit Pos.						
0x023B								
0x023C	CHINTENCLR31	7:0				SUSP	TCMPL	TERR
0x023D	CHINTENSET31	7:0				SUSP	TCMPL	TERR
0x023E	CHINTFLAG31	7:0				SUSP	TCMPL	TERR
0x023F	CHSTATUS31	7:0			CRCERR	FERR	BUSY	PEND

22.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional PAC write-protection is denoted by the "PAC Write-Protection" property in each individual register description. For details, refer to 22.5.8 Register Access Protection.

Some registers are enable-protected, meaning they can only be written when the peripheral is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

22.8.14 Descriptor Memory Section Base Address

Name:	BASEADDR
Offset:	0x34
Reset:	0x0000000
Property:	PAC Write-Protection, Enable-Protected

Bit	31	30	29	28	27	26	25	24
				BASEAD	DR[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				BASEAD	DR[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				BASEAD	DR[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				BASEAD	DDR[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - BASEADDR[31:0] Descriptor Memory Base Address

These bits store the Descriptor memory section base address. The value must be 128-bit aligned.

DMAC – Direct Memory Access Controller

	Offset: Property:	0x08 -						
	The DSTAD	DR register of	fset is relative	to (BASEAD	DR or WRBA	.DDR) + Char	nel Number	* 0x10
Bit	31	30	29	28	27	26	25	24
				DSTADE	DR[31:24]			
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				DSTADE	DR[23:16]			
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
				DSTADI	DR[15:8]			
Access								
Reset								
	_		_					
Bit	7	6	5	4	3	2	1	0
				DSTAD	DR[7:0]			
Access								
Reset								

22.10.4 Block Transfer Destination Address

DSTADDR

Name:

Bits 31:0 – DSTADDR[31:0] Transfer Destination Address

This bit group holds the destination address corresponding to the last beat transfer address in the block transfer.

A multicast match will be signaled if the multicast hash enable bit is set, da[0] is logic 1 and the hash index points to a bit set in the Hash register.

A unicast match will be signaled if the unicast hash enable bit is set, da[0] is logic 0 and the hash index points to a bit set in the Hash register.

To receive all multicast frames, the Hash register should be set with all ones and the multicast hash enable bit should be set in the Network Configuration register.

24.6.10 Copy all Frames (Promiscuous Mode)

If the Copy All Frames bit is set in the Network Configuration register then all frames (except those that are too long, too short, have FCS errors or have GRXER asserted during reception) will be copied to memory. Frames with FCS errors will be copied if bit 26 is set in the Network Configuration register.

24.6.11 Disable Copy of Pause Frames

Pause frames can be prevented from being written to memory by setting the disable copying of pause frames control bit 23 in the Network Configuration register. When set, pause frames are not copied to memory regardless of the Copy All Frames bit, whether a hash match is found, a type ID match is identified or if a destination address match is found.

24.6.12 VLAN Support

The following table describes an Ethernet encoded 802.1Q VLAN tag.

Table 24-4. 802.1Q VLAN Tag

TPID (Tag Protocol Identifier) 16 bits	TCI (Tag Control Information) 16 bits
0x8100	First 3 bits priority, then CFI bit, last 12 bits VID

The VLAN tag is inserted at the 13th byte of the frame adding an extra four bytes to the frame. To support these extra four bytes, the GMAC can accept frame lengths up to 1536 bytes by setting bit 8 in the Network Configuration register.

If the VID (VLAN identifier) is null (0x000) this indicates a priority-tagged frame.

The following bits in the receive buffer descriptor status word give information about VLAN tagged frames:-

- Bit 21 set if receive frame is VLAN tagged (i.e., type ID of 0x8100).
- Bit 20 set if receive frame is priority tagged (i.e., type ID of 0x8100 and null VID). (If bit 20 is set, bit 21 will be set also.)
- Bit 19, 18 and 17 set to priority if bit 21 is set.
- Bit 16 set to CFI if bit 21 is set.

The GMAC can be configured to reject all frames except VLAN tagged frames by setting the discard non-VLAN frames bit in the Network Configuration register.

24.6.13 Wake on LAN Support

The receive block supports Wake on LAN by detecting the following events on incoming receive frames:

- Magic packet
- Address Resolution Protocol (ARP) request to the device IP address
- Specific address 1 filter match
- Multicast hash filter match

24.9.9 GMAC Receive Status Register

Name:	RSR
Offset:	0x020
Reset:	0x00000000
Property:	-

This register, when read, provides receive status details. Once read, individual bits may be cleared by writing a '1' to them. It is not possible to set a bit to '1' by writing to this register.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
					HNO	RXOVR	REC	BNA
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bit 3 – HNO HRESP Not OK

This bit is set when the DMA block sees HRESP not OK.

This bit is cleared by writing a '1' to it.

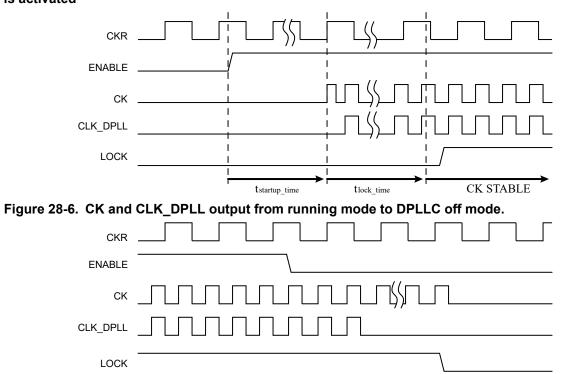
Bit 2 - RXOVR Receive Overrun

This bit is set if the receive status was not taken at the end of the frame. The buffer will be recovered if an overrun occurs.

This bit is cleared by writing a '1' to it.

Bit 1 – REC Frame Received

This bit is set to when one or more frames have been received and placed in memory.


This bit is cleared by writing a '1' to it.

Bit 0 – BNA Buffer Not Available

When this bit is set, an attempt was made to get a new buffer and the pointer indicated that it was owned by the processor. The DMA will re-read the pointer each time an end of frame is received until a valid pointer is found. This bit is set following each descriptor read attempt that fails, even if consecutive pointers are unsuccessful and software has in the mean time cleared the status flag.

© 2018 Microchip Technology Inc.

OSCCTRL – Oscillators Controller

Figure 28-5. CK and CLK_DPLL output from DPLL off mode to running mode when wake up fast is activated

Operating modes

The DPLLn will behave differently in different sleep modes based on the settings of DPLLnCTRLA.RUNSTDBY, DPLLnCTRLA.ONDEMAND and DPLLnCTRLA.ENABLE.

DPLLCTRLA.RUNSTD BY	DPLLCTRLA.ONDEMA ND	DPLLCTRLA.ENABLE	Sleep Behavior
-	-	0	Disabled
0	0	1	Always run in Idle Sleep modes. Run in Standby Sleep mode if requested by a peripheral.
0	1	1	Only run in Idle or Standby Sleep modes if requested by a peripheral.
1	0	1	Always run in Idle and Standby Sleep modes.
1	1	1	Only run in Idle or Standby Sleep modes if requested by a peripheral.

PORT - I/O Pin Controller

Offset	Name	Bit Pos.					
0x59	PINCFG25	7:0	DRVSTR		PULLEN	INEN	PMUXEN
0x5A	PINCFG26	7:0	DRVSTR		PULLEN	INEN	PMUXEN
0x5B	PINCFG27	7:0	DRVSTR		PULLEN	INEN	PMUXEN
0x5C	PINCFG28	7:0	DRVSTR		PULLEN	INEN	PMUXEN
0x5D	PINCFG29	7:0	DRVSTR		PULLEN	INEN	PMUXEN
0x5E	PINCFG30	7:0	DRVSTR		PULLEN	INEN	PMUXEN
0x5F	PINCFG31	7:0	DRVSTR		PULLEN	INEN	PMUXEN

32.8 PORT Pin Groups and Register Repetition

Tip: The I/O pins are assembled in pin groups ("PORT groups") with up to 32 pins. Group 0 consists of the PA pins, group 1 is for the PB pins, etc. Each pin group has its own PORT registers, with a 0x80 address spacing. For example, the register address offset for the Data Direction (DIR) register for group 0 (PA00 to PA31) is 0x00, and the register address offset for the DIR register for group 1 (PB00 to PB31) is 0x80.

32.9 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional PAC write-protection is denoted by the "PAC Write-Protection" property in each individual register description. For details, refer to 32.5.8 Register Access Protection.

Bit 0 – PMUXEN Peripheral Multiplexer Enable

This bit enables or disables the peripheral multiplexer selection set in the Peripheral Multiplexing register (PMUXn) to enable or disable alternative peripheral control over an I/O pin direction and output drive value.

Writing a zero to this bit allows the PORT to control the pad direction via the Data Direction register (DIR) and output drive value via the Data Output Value register (OUT). The peripheral multiplexer value in PMUXn is ignored. Writing '1' to this bit enables the peripheral selection in PMUXn to control the pad. In this configuration, the physical pin state may still be read from the Data Input Value register (IN) if PINCFGn.INEN is set.

Value	Description
0	The peripheral multiplexer selection is disabled, and the PORT registers control the direction and output drive value.
1	The peripheral multiplexer selection is enabled, and the selected peripheral function controls the direction and output drive value.

QSPI - Quad Serial Peripheral Interface

Value	Description
0	Data is captured on the leading edge of SCK and changed on the following edge of SCK.
1	Data is changed on the leading edge of SCK and captured on the following edge of SCK.

Bit 0 – CPOL Clock Polarity

CPOL is used to determine the inactive state value of the serial clock (SCK). It is used with CPHA to produce the required clock/data relationship between master and slave devices.

Value	Description
0	The inactive state value of SCK is logic level zero.
0	The inactive state value of SCK is logic level 'one'.

AES – Advanced Encryption Standard

42.8.1 Control A

Name:CTRLAOffset:0x00Reset:0x0000000Property:PAC Write-Protection, Enable-protected

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
						CTYP	E[3:0]	
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	15	14	13	12	11	10	9	8
		XORKEY	KEYGEN	LOD	STARTMODE	CIPHER	KEYSI	ZE[1:0]
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
		CFBS[2:0]			AESMODE[2:0]		ENABLE	SWRST
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 19:16 - CTYPE[3:0] Counter Measure Type

Value	Name	Description
XXX0	CTYPE1 disabled	Countermeasure1 disabled
XXX1	CTYPE1 enabled	Countermeasure1 enabled
XXOX	CTYPE2 disabled	Countermeasure2 disabled
XX1X	CTYPE2 enabled	Countermeasure2 enabled
XOXX	CTYPE3 disabled	Countermeasure3 disabled
X1XX	CTYPE3 enabled	Countermeasure3 enabled
0XXX	CTYPE4 disabled	Countermeasure4 disabled
1XXX	CTYPE4 enabled	Countermeasure4 enabled

Bit 14 – XORKEY XOR Key Operation

Value	Description
0	No effect
1	The user keyword gets XORed with the previous keyword register content.

Bit 13 – KEYGEN Last Key Generation

Public Key Cryptography Controller (PUKCC)

43.3.7.3.5 Code Example

43.3.7.3.6 Constraints

No overlapping between either input and output are allowed. The following conditions must be avoided to ensure the service works correctly:

- nu1ModBase, nu1CnsBase, nu1PointABase, nu1ABBase, nu1Workspace are not aligned on 32-bit boundaries
- {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase, 3*u2ModLength+ 12}, {nu1ABBase, 2*u2ModLength + 8}, {nu1Workspace, <WorkspaceLength>} are not in Crypto RAM
- u2ModLength is either: < 12, > 0xffc or not a 32-bit length
- All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase, 3*u2ModLength + 12}, {nu1ABase, u2ModLength + 4} and {nu1Workspace, 4*u2ModLength + 28}

43.3.7.3.7 Status Returned Values

Table 43-97. GF2NEccDblFast Service Return Codes

Returned Status	Importance	Meaning
PUKCL_OK	_	The computation passed without problem.

43.3.7.4 Scalar Point Multiply

43.3.7.4.1 Purpose

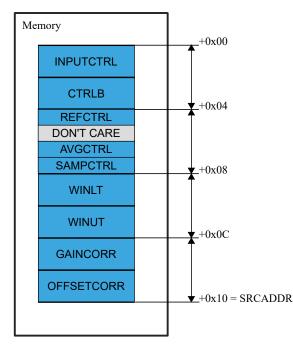
This service is used to multiply a point by an integral constant K on a given elliptic curve over GF(2ⁿ).

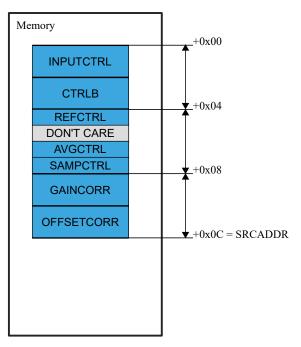
43.3.7.4.2 How to Use the Service

43.3.7.4.3 Description

The operation performed is:

 $Pt_C = K \times Pt_A$


In this computation, the following parameters need to be provided:


- A the input point is filled in projective coordinates (X,Y,Z) (pointed by {nu1PointABase, 3*u2ModLength + 12}). This point can be the Infinite Point.
- Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength + 8})

ADC – Analog-to-Digital Converter

- Enable the source address increment options (DMAC.BTCTRL.SRCINC = 1, DMAC.BTCTRL.STEPSEL = SRC, DMAC.BTCTRL.STEPSIZE = X1).
- Disable the destination address increment (DMAC.BTCTRL.DSTINC=0).
- Set the block transfer count value (DMAC.BTCNT).
- Set the block transfer source address (DMAC.SRCADDR), as described in the DMAC Addressing section. The address corresponds to the memory section from where the DMA reads the data.
- Select the ADC.DSEQDATA address as value for the block transfer destination address (DMAC.DSTADDR = ADC.DSEQDATA address).
- Select the channel single transfer type (DMAC.CHCTRLA.BURSTLEN=SINGLE)
- Select the channel burst trigger action (DMAC.CHCTRLA.TRIGACT=BURST)
- Select the ADC DMA Sequencing trigger as channel trigger source (DMAC.CHCTRLA.TRIGSRC=DSEQ)
- Enable optional channel interrupts (DMAC.CHINTENSET)
- Enable the corresponding DMA channel (DMAC.CHCTRLA.ENABLE)

When an ADC condition is enabled to trigger a DMA transfer, one word (32-bit) will be read by the DMA from the memory source location. Since the source address is incrementing by 0x1, the data memory must be organized in a contiguous memory area. As consequence, if an ADC group of registers does not generate any DMA trigger, no data must be reserved in the memory area for this register group. The next figure shows an example of memory organization when all ADC registers are part of the sequence, and a second example where WINLT and WINUT registers are not part of the sequence.

All registers are in the sequence

Automatic Start Conversion

By default, a new conversion starts when a new start software or event trigger is received. It is also possible to automatically enable an ADC conversion by writing '1' to the AUTOSTART bit in DSEQCTRL register (DSEQCTRL.AUTOSTART). When set, the ADC automatically starts a new conversion when a DMA sequence is complete.

register, and disabled by writing a '1' to the corresponding bit in the Interrupt Enable Clear (INTENCLR) register.

An interrupt request is generated when the interrupt flag is set and the corresponding interrupt is enabled. The interrupt request remains active until the interrupt flag is cleared, the interrupt is disabled, or the DAC Controller is reset. See 47.8.6 INTFLAG for details on how to clear interrupt flags.

All interrupt requests from the peripheral are ORed together on system level to generate one combined interrupt request to the NVIC. The user must read the INTFLAG register to determine which interrupt condition is present.

Note that interrupts must be globally enabled for interrupt requests to be generated.

47.6.6 Events

The DAC Controller can generate the following output events:

- Data Buffer 0 Empty (EMPTY0): Generated when the internal data buffer of DAC0 is empty. Refer to 47.6.4 DMA Operation for details.
- Data Buffer 1 Empty (EMPTY1): Generated when the internal data buffer of DAC1 is empty. Refer to 47.6.4 DMA Operation for details.
- Filter 0 Result Ready (RESRDY0): Generated when standalone filter 0 result is ready.
- Filter 1 Result Ready (RESRDY1): Generated when standalone filter 1 result is ready.

Writing a '1' to an Event Output bit in the Event Control Register (EVCTRL.EMPTYEOx) enables the corresponding output event. Writing a '0' to this bit disables the corresponding output event. Refer to the Event System chapter for details on configuring the event system.

The DAC Controller can take the following actions on an input event:

- DAC0 Start Conversion (START0): DATABUF0 value is transferred into DATA0 as soon as DAC0 is ready for the next conversion, and then conversion is started. START0 is considered as asynchronous to GCLK_DAC, thus it is resynchronized in the DAC Controller. Refer to 47.6.2.4 Digital to Analog Conversion for details.
- DAC1 Start Conversion (START1): DATABUF1 value is transferred into DATA1 as soon as DAC1 is ready for the next conversion, and then conversion is started. START1 is considered as asynchronous to GCLK_DAC, thus it is resynchronized in the DAC Controller. Refer to 47.6.2.4 Digital to Analog Conversion for details.

Writing a '1' to an Event Input bit in the Event Control register (EVCTRL.STARTEIx) enables the corresponding action on input event. Writing a '0' to this bit will disable the corresponding action on input event.

Note: When several events are connected to the DAC Controller, the enabled action will be taken on any of the incoming events.

By default, DAC Controller detects rising edge events. Falling edge detection can be enabled by writing '1' to EVCTRL.INVEIx.

Note that if an event occurs before startup time is completed, DATAx is loaded but start of conversion is ignored.

47.6.7 Sleep Mode Operation

If the Run In Standby bit in the DAC Control x register DACCCTRLx.RUNSTDBY=1, the DACx will continue the conversions in standby sleep mode.

If DACCCTRLx.RUNSTDBY=0, the DACx will stop conversions in standby sleep mode.

48.7.3.5 Interrupt Enable Clear

Name:INTENCLROffset:0x08Reset:0x00Property:PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Set register (INTENSET).

Bit	7	6	5	4	3	2	1	0
			MC1	MC0			ERR	OVF
Access			R/W	R/W			R/W	R/W
Reset			0	0			0	0

Bit 5 – MC1 Match or Capture Channel x Interrupt Enable Writing a '0' to these bits has no effect.

Writing a '1' to MCx will clear the corresponding Match or Capture Channel x Interrupt Enable bit, which disables the Match or Capture Channel x interrupt.

V	/alue	Description
0		The Match or Capture Channel x interrupt is disabled.
1		The Match or Capture Channel x interrupt is enabled.

Bit 4 – MC0 Match or Capture Channel x Interrupt Enable

Writing a '0' to these bits has no effect.

Writing a '1' to MCx will clear the corresponding Match or Capture Channel x Interrupt Enable bit, which disables the Match or Capture Channel x interrupt.

Value	Description
0	The Match or Capture Channel x interrupt is disabled.
1	The Match or Capture Channel x interrupt is enabled.

Bit 1 – ERR Error Interrupt Disable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Error Interrupt Enable bit, which disables the Error interrupt.

Value	Description
0	The Error interrupt is disabled.
1	The Error interrupt is enabled.

Bit 0 – OVF Overflow Interrupt Disable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Overflow Interrupt Enable bit, which disables the Overflow interrupt request.

Value	Description
0	The Overflow interrupt is disabled.
1	The Overflow interrupt is enabled.

49.8.9 Event Control

Name:	EVCTRL
Offset:	0x20
Reset:	0x0000000
Property:	PAC Write-Protection, Enable-Protected

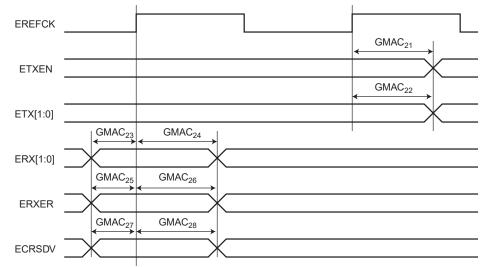
Bit	31	30	29	28	27	26	25	24
			MCEOx	MCEOx	MCEOx	MCEOx	MCEOx	MCEOx
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
			MCEIx	MCEIx	MCEIx	MCEIx	MCEIx	MCEIx
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	TCEIx	TCEIx	TCINVx	TCINVx		CNTEO	TRGEO	OVFEO
Access	R/W	R/W	R/W	R/W		R/W	R/W	R/W
Reset	0	0	0	0		0		0
Bit	7	6	5	4	3	2	1	0
	CNTS	EL[1:0]		EVACT1[2:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 29,28,27,26,25,24 – MCEOx Match or Capture Channel x Event Output Enable These bits control if the Match/capture event on channel x is enabled and will be generated for every match or capture.

Value	Description
0	Match/capture x event is disabled and will not be generated.
1	Match/capture x event is enabled and will be generated for every compare/capture on channel x.

Bits 21,20,19,18,17,16 – MCEIx Match or Capture Channel x Event Input Enable These bits indicate if the Match/capture x incoming event is enabled

These bits are used to enable match or capture input events to the CCx channel of TCC.


Value	Description
0	Incoming events are disabled.
1	Incoming events are enabled.

Bits 15,14 – TCEIx Timer/Counter Event Input x Enable This bit is used to enable input event x to the TCC.

Electrical Characteristics at 85°C

Symbol	Parameter	Min.	Max.	Units
GMAC ₂₅	Setup for ERXER from EREFCK rising	4	-	
GMAC ₂₆	Hold for ERXER from EREFCK rising	2	-	
GMAC ₂₇	Setup for ECRSDV from EREFCK rising	4	-	
GMAC ₂₈	Hold for ECRSDV from EREFCK rising	2	-	

Figure 54-19. GMAC RMII Mode Signals

54.13.5 I²S Characteristics

Table 54-59. I²S Timing Characteristics and Requirements (see Note 1)

Name	Description	Mode	VDD = 1.8V			VDD = 3.3V			Units
			Min.	Тур.	Max.	Min.	Тур.	Max.	
t _{M_MCKOR}	I2S MCK rise time ⁽²⁾	Master mode / Capacitive load CL = 20 pF	-	-	5.41	-	-	2.68	ns
t _{M_MCKOF}	I2S MCK fall time ⁽²⁾	Master mode / Capacitive load CL = 20 pF	-	-	5.84	-	-	2.81	ns
d _{M_MCKO}	I2S MCK duty cycle	Master mode	-	50.0	-	-	50.0	-	%

© 2018 Microchip Technology Inc.