

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM
Number of I/O	99
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192К х 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.63V
Data Converters	A/D 32x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	128-TQFP
Supplier Device Package	128-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamd51p19a-aut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

44. TRN	IG – True Random Number Generator	1613
44.1.	Overview	1613
44.2.	Features	1613
44.3.	Block Diagram	
44.4.	Signal Description	
44.5.	Product Dependencies	
44.6.	Functional Description	1615
44.7.	Register Summary	1617
44.8.	Register Description	
	C – Analog-to-Digital Converter	
45.1.	Overview	
45.2.	Features	
45.3.	Block Diagram	
45.4.	Signal Description	
45.5.	Product Dependencies	
	Functional Description	
	Register Summary	
45.8.	Register Description	
46. AC -	- Analog Comparators	1679
46.1.	Overview	1679
46.2.	Features	1679
46.3.	Block Diagram	
46.4.	Signal Description	1680
46.5.	Product Dependencies	
46.6.	Functional Description	1682
46.7.	Register Summary	1692
46.8.	Register Description	
47. DAC	C – Digital-to-Analog Converter	
47.1.	Overview	
	Features	
47.3.	Block Diagram	
47.4.	Signal Description	1712
47.5.	Product Dependencies	
47.6.	Functional Description	1714
47.7.	Register Summary	1724
47.8.	Register Description	1724
48. TC -	- Timer/Counter	
48.1.	Overview	1750
48.2.	Features	
48.3.	Block Diagram	
	Signal Description	
48.5.	Product Dependencies	
48.6.	Functional Description	1753

19.8.5 3.3V Brown-Out Detector (BOD33) Control

Name:	BOD33
Offset:	0x10
Reset:	Determined from NVM User Row
Property:	Write-Synchronized, PAC Write-Protection

Bit	31	30	29	28	27	26	25	24
		VBATLEVEL[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				LEVE	L[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	x	х	х	x	x	x
Bit	15	14	13	12	11	10	9	8
			PSEL[2:0]		HYST[3:0]			
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	x	х	х	x
Bit	7	6	5	4	3	2	1	0
	RUNBKUP	RUNHIB	RUNSTDBY	STDBYCFG	ACTION[1:0]		ENABLE	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	У	У	Z	

Bits 31:24 - VBATLEVEL[7:0] BOD33 Threshold Level on VBAT

This field sets the triggering voltage threshold for the BOD33 when the BOD33 monitors VBAT in battery backup sleep mode.

This field is not synchronized.

Bits 23:16 – LEVEL[7:0] BOD33 Threshold Level on VDD

This field sets the triggering voltage threshold for the BOD33 when the BOD33 monitors VDD. If an hysteresis value is programmed (BOD33.HYST), this field corresponds to the lower threshold (V_{BOD}).

These bits are loaded from NVM User Row at start-up.

This field is not synchronized.

The VBOD- input voltage can be calculated as follows: VBOD- = 1.5 + LEVEL[7:0) x Level_Step

And the upper threshold (VBOD+) is then: VBOD+ = VBOD- + N x HYST_STEP, With N=0 to 15 according to HYST[3:0] value and HYST_STEP = Level_Step, (refer to Bits 11:8 – HYST[3:0]: BOD33 Hysteresis voltage value on VDD).

At the upper side of Level[7:0] values depending on the Hysteresis value chosen with HYST[3:0], the VBOD+ level reaches an overflow, e.g., for HYST[3:0] = 0d2 the hysteresis is $2 \times \text{Level}$ to position 253 and position 254 to 255 above must not be used.

© 2018 Microchip Technology Inc.

21.10.14 Tamper Control

Name:	TAMPCTRL
Offset:	0x60
Reset:	0x0000000
Property:	PAC Write-Protection, Enable-Protected

Bit	31	30	29	28	27	26	25	24
				DEBNC4	DEBNC3	DEBNC2	DEBNC1	DEBNC0
Access								
Reset				0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				TAMLVL4	TAMLVL3	TAMLVL2	TAMLVL1	TAMLVL0
Access					-			
Reset				0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
							IN4ACT[1:0]	
Access								
Reset							0	0
Bit	7	6	5	4	3	2	1	0
	IN3ACT[1:0]		IN2ACT[1:0]		IN1ACT[1:0]		IN0ACT[1:0]	
Access								
Reset	0	0	0	0	0	0	0	0

Bits 24, 25, 26, 27, 28 – DEBNC Debounce Enable of Tamper Input INn

	/alue	Description
C)	Debouncing is disabled for Tamper input INn
1	-	Debouncing is enabled for Tamper input INn

Bits 16, 17, 18, 19, 20 - TAMLVL Tamper Level Select of Tamper Input INn

Value	Description
0	A falling edge condition will be detected on Tamper input INn.
1	A rising edge condition will be detected on Tamper input INn.

Bits 0:1, 2:3, 4:5, 6:7, 8:9 – INACT Tamper Channel n Action These bits determine the action taken by Tamper Channel n.

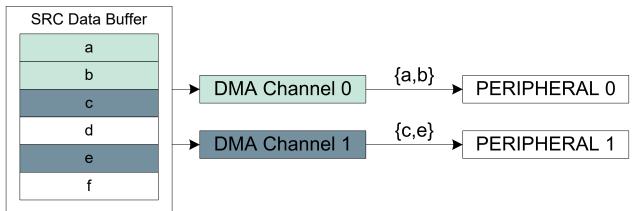
Value	Name	Description
0x0	OFF	Off (Disabled)
0x1	WAKE	Wake and set Tamper flag
0x2	CAPTURE	Capture timestamp and set Tamper flag
0x3	ACTL	Compare RTC signal routed between INn and OUT pins . When a mismatch
		occurs, capture timestamp and set Tamper flag

Incrementation for the source address of a block transfer is enabled by writing the Source Address Incrementation Enable bit in the Block Transfer Control register (BTCTRL.SRCINC=1). The step size of the incrementation is configurable and can be chosen by writing the Step Selection bit in the Block Transfer Control register (BTCTRL.STEPSEL=1) and writing the desired step size in the Address Increment Step Size bit group in the Block Transfer Control register (BTCTRL.STEPSIZE). If BTCTRL.STEPSEL=0, the step size for the source incrementation will be the size of one beat.

When source address incrementation is configured (BTCTRL.SRCINC=1), SRCADDR is calculated as follows:

If BTCTRL.STEPSEL=1:

 $SRCADDR = SRCADDR_{START} + BTCNT \cdot (BEATSIZE + 1) \cdot 2^{STEPSIZE}$


If **BTCTRL**.STEPSEL=0:

 $SRCADDR = SRCADDR_{START} + BTCNT \cdot (BEATSIZE + 1)$

- SRCADDR_{START} is the source address of the first beat transfer in the block transfer
- BTCNT is the initial number of beats remaining in the block transfer
- BEATSIZE is the configured number of bytes in a beat
- STEPSIZE is the configured number of beats for each incrementation

The following figure shows an example where DMA channel 0 is configured to increment the source address by one beat after each beat transfer (BTCTRL.SRCINC=1), and DMA channel 1 is configured to increment the source address by two beats (BTCTRL.SRCINC=1, BTCTRL.STEPSEL=1, and BTCTRL.STEPSIZE=0x1). As the destination address for both channels are peripherals, destination incrementation is disabled (BTCTRL.DSTINC=0).

Figure 22-8. Source Address Increment

Incrementation for the destination address of a block transfer is enabled by setting the Destination Address Incrementation Enable bit in the Block Transfer Control register (BTCTRL.DSTINC=1). The step size of the incrementation is configurable by clearing BTCTRL.STEPSEL=0 and writing BTCTRL.STEPSIZE to the desired step size. If BTCTRL.STEPSEL=1, the step size for the destination incrementation will be the size of one beat.

When the destination address incrementation is configured (BTCTRL.DSTINC=1), DSTADDR must be set and calculated as follows:

EIC – External Interrupt Controller

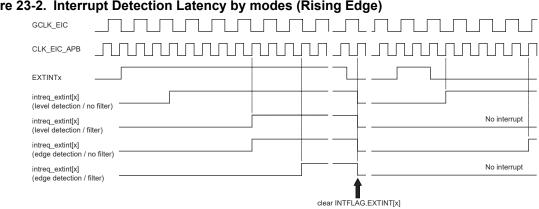


Figure 23-2. Interrupt Detection Latency by modes (Rising Edge)

The detection latency depends on the detection mode.

Detection mode	Latency (worst case)	
Level without filter	Five CLK_EIC_APB periods	
Level with filter	Four GCLK_EIC/CLK_ULP32K periods + five CLK_EIC_APB periods	
Edge without filter	Four GCLK_EIC/CLK_ULP32K periods + five CLK_EIC_APB periods	
Edge with filter	Six GCLK_EIC/CLK_ULP32K periods + five CLK_EIC_APB periods	

Related Links

14. GCLK - Generic Clock Controller 23.8.10 CONFIG

23.6.4 **Additional Features**

23.6.4.1 Non-Maskable Interrupt (NMI)

The non-maskable interrupt pin can also generate an interrupt on edge or level detection, but it is configured with the dedicated NMI Control register (NMICTRL). To select the sense for NMI, write to the NMISENSE bit group in the NMI Control register (NMICTRL.NMISENSE). NMI filtering is enabled by writing a '1' to the NMI Filter Enable bit (NMICTRL.NMIFILTEN).

If edge detection or filtering is required, enable GCLK EIC or CLK ULP32K.

NMI detection is enabled only by the NMICTRL.NMISENSE value, and the EIC is not required to be enabled.

When an NMI is detected, the non-maskable interrupt flag in the NMI Flag Status and Clear register is set (NMIFLAG.NMI). NMI interrupt generation is always enabled, and NMIFLAG.NMI generates an interrupt request when set.

23.6.4.2 Asynchronous Edge Detection Mode (No Debouncing)

The EXTINT edge detection can be operated synchronously or asynchronously, selected by the Asynchronous Control Mode bit for external pin x in the External Interrupt Asynchronous Mode register (ASYNCH.ASYNCH[x]). The EIC edge detection is operated synchronously when the Asynchronous Control Mode bit (ASYNCH.ASYNCH[x]) is '0' (default value). It is operated asynchronously when ASYNCH.ASYNCH[x] is written to '1'.

GMAC - Ethernet MAC

Frame Segment	Value
UDP (Octet 20)	11
IP stuff (Octets 21–37)	
IP DA (Octets 38–53)	FF020000000006B
Source IP port (Octets 54–55)	
Dest IP port (Octets 56–57)	013F
Other stuff (Octets 58–61)	
Message type (Octet 62)	03
Other stuff (Octets 63–93)	-
Version PTP (Octet 94)	02

For the multicast address 011B19000000 sync and delay request frames are recognized depending on the message type field, 00 for sync and 01 for delay request.

Frame Segment	Value
Preamble/SFD	55555555555555555555555555555555555555
DA (Octets 0–5)	011B19000000
SA (Octets 6–11)	
Type (Octets 12–13)	88F7
Message type (Octet 14)	00
Version PTP (Octet 15)	02

Pdelay request frames need a special multicast address so they can pass through ports blocked by the spanning tree protocol. For the multicast address 0180C200000E sync, Pdelay_Req and Pdelay_Resp frames are recognized depending on the message type field, 00 for sync, 02 for pdelay request and 03 for pdelay response.

Frame Segment	Value
Preamble/SFD	55555555555555555555555555555555555555
DA (Octets 0–5)	0180C200000E
SA (Octets 6–11)	
Type (Octets 12–13)	88F7
Message type (Octet 14)	00
Version PTP (Octet 15)	02

24.9.10 GMAC Interrupt Status Register

Name:	ISR
Offset:	0x024
Reset:	0x00000000
Property:	-

This register indicates the source of the interrupt. An interrupt source must be enabled in the mask register first so the corresponding bits of this register will be set and the GMAC interrupt signal will be asserted in the system.

Bit	31	30	29	28	27	26	25	24
				WOL		SRI	PDRSFT	PDRQFT
Access				R		R	R	R
Reset				0		0	0	0
Bit	23	22	21	20	19	18	17	16
	PDRSFR	PDRQFR	SFT	DRQFT	SFR	DRQFR		
Access	R	R	R	R	R	R		
Reset	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8
		PFTR	PTZ	PFNZ	HRESP	ROVR		
Access		R	R	R	R	R		
Reset		0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0
	TCOMP	TFC	RLEX	TUR	TXUBR	RXUBR	RCOMP	MFS
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bit 28 – WOL Wake On LAN

WOL interrupt. Indicates a WOL message has been received.

Bit 26 – SRI TSU Seconds Register Increment Indicates the register has incremented.

Cleared on read.

Bit 25 – PDRSFT PDelay Response Frame Transmitted Indicates a PTP pdelay_resp frame has been transmitted.

Cleared on read.

Bit 24 – PDRQFT PDelay Request Frame Transmitted Indicates a PTP pdelay_req frame has been transmitted.

Cleared on read.

Bit 23 – PDRSFR PDelay Response Frame Received Indicates a PTP pdelay_resp frame has been received.

© 2018 Microchip Technology Inc.

	Name: Offset: Reset: Property:	TCE 0x1AC 0x00000000 Read-Only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
					R[7:0]			
Access		R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

24.9.81 GMAC TCP Checksum Errors Register

Bits 7:0 – TCKER[7:0] TCP Checksum Errors

This register counts the number of frames discarded due to an incorrect TCP checksum, but are between 64 and 1518 Bytes (1536 Bytes if NCFGR.MAXFS=1) and do not have a CRC error, an alignment error, nor a symbol error.

25.6.7 Safe Flash Update Using Dual Banks

This feature enables a firmware to execute from the NVM and at the same time program the Flash with a new version of itself.

The new firmware has to be programmed in BANKB if STATUS.AFIRST=1, or BANKA otherwise.

After programming is completed one can issue the BKSWRST command to swap the banks and to reset the device. The information of which BANK is mapped to the NVM main address space base address is self contained in the NVM using a special fuse that can be programmed or erased individually. This fuse is managed by the BKSWRST command. STATUS.AFIRST reflects the status of this fuse after Reset. The BKSWRST command is atomic meaning that no fetch in the NVM can occur while executing this command. This command executes with the following steps:

- 1. Stall AHB interfaces.
- 2. If PARAM.SEE is '1' and 0<SEESTAT.SBLK<11, the NVMCTRL starts to reallocate the SmartEEPROM data to the first bank. Active SEES remains the same at the end of the reallocation.
- 3. Is STATUS.AFIRST=1: program the AFIRST fuse (new value=0) otherwise erase it (new value=1)
- 4. Resets the device, After reset, RSTC RCAUSE indicates that the reset was triggered by the NVMCTRL.

After Reset the new firmware is executed from the last programmed bank.

If the SmartEEPROM is configured, the size of the the reserved space in flash must not exceed the bank size. In other words 2*SEESTAT.SBLK.8192 must be lower than half the NVM size in Bytes. In situations where both the banks contain separate applications (or an application in one bank and a bootloader in the other bank), both the banks must have Flash area reserved for SmartEEPROM. This means that the usable area for code in each bank is "Size of the Bank", that is, the size of the Flash configured for the SmartEEPROM using SBLK Fuse.

25.6.8 SmartEEPROM

25.6.8.1 Principle of Operation

The SmartEEPROM feature is provided through the AHB2 interface and makes a portion of the NVM appear like a RAM. 8-bit, 16-bit, 32-bit access is supported.

The SmartEEPROM concept relies on the following NVM physical property: It is always possible to write a '0' in a NVM word, even if this word has been previously programmed - but it is not possible to write a '1' to a bit already programmed (holding a '0').

The algorithm consists of virtually mapping physical portions of the NVM to logical addresses with an indirection mechanism. A physical page is assigned to a virtual page address and is kept as long as no bit has to be flipped from '0' to '1', as this operation requires a full block erase. In case such a transition is required, a new physical page is assigned to the modified virtual page (placed in the Flash area reserved for the SmartEEPROM). Writing the virtual page affects the cycling endurance of the SmartEEPROM.

A region can overlap the SmartEEPROM region (depending on the allocated space for the SmartEEPROM), but SmartEEPROM is independent of the Region Lock Bits.

If NVMCTRL.STATUS.AFIRST contains '1', BANKA is mapped to the NVM main address space base address (0x0000). In this case, SmartEEPROM will be in BANKB. Conversely, when BANKB is mapped to the NVM main address space base address, SmartEEPROM will be in BANKA. Thus, the CPU is not halted when accessing the SmartEEPROM.

25.6.8.2 Address Spaces

The SmartEEPROM address space is divided in two distinct areas:

OSCCTRL – Oscillators Controller

Bit 2 – XTALEN Crystal Oscillator Enable

This bit controls the connections between the I/O pads and the external clock or crystal oscillator XOSCn:

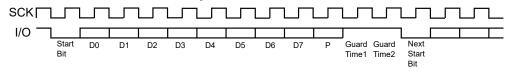
0: External clock connected on XIN. XOUT can be used as general-purpose I/O.

1: Crystal connected to XIN/XOUT.

Bit 1 – ENABLE Oscillator Enable

- 0: The oscillator XOSCn is disabled.
- 1: The oscillator XOSCn is enabled.

Protocol T=0


In T=0 protocol, a character is made up of:

- one start bit,
- eight data bits,
- one parity bit
- and one guard time, which lasts two bit times.

The transfer is synchronous (CTRLA.CMODE=1). The transmitter shifts out the bits and does not drive the I/O line during the guard time. Additional guard time can be added by programming the Guard Time (CTRLC.GTIME).

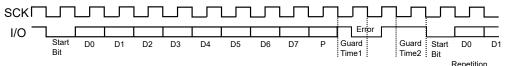

If no parity error is detected, the I/O line remains during the guard time and the transmitter can continue with the transmission of the next character, as shown in the figure below.

Figure 34-18. T=0 Protocol without Parity Error

If a parity error is detected by the receiver, it drives the I/O line to 0 during the guard time, as shown in the next figure. This error bit is also named NACK, for Non Acknowledge. In this case, the character lasts 1 bit time more, as the guard time length is the same and is added to the error bit time, which lasts 1 bit time.

Figure 34-19. T=0 Protocol with Parity Error

When the USART is the receiver and it detects a parity error, the parity error bit in the Status Register (STATUS.PERR) is set and the character is not written to the receive FIFO.

Receive Error Counter

The receiver also records the total number of errors (receiver parity errors and NACKs from the remote transmitter) up to a maximum of 255. This can be read in the Receive Error Count (RXERRCNT) register. RXERRCNT is automatically cleared on read.

Receive NACK Inhibit

The receiver can also be configured to inhibit error generation. This can be achieved by setting the Inhibit Not Acknowledge (CTRLC.INACK) bit. If CTRLC.INACK is 1, no error signal is driven on the I/O line even if a parity error is detected. Moreover, if CTRLC.INACK is set, the erroneous received character is stored in the receive FIFO, and the STATUS.PERR bit is set. Inhibit not acknowledge (CTRLC.INACK) takes priority over disable successive receive NACK (CTRLC.DSNACK).

Transmit Character Repetition

When the USART is transmitting a character and gets a NACK, it can automatically repeat the character before moving on to the next character. Repetition is enabled by writing the Maximum Iterations register (CTRLC.MAXITER) to a non-zero value. The USART repeats the character the number of times specified in CTRLC.MAXITER.

39.8.40 Tx Buffer Cancellation Request

Name:	TXBCR
Offset:	0xD4
Reset:	0x00000000
Property:	-

Bit	31	30	29	28	27	26	25	24		
	CRn[31:24]									
Access	s R/W R/W R/W R/W R/W R/W R/W									
Reset	0	0	0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
				CRn[2	23:16]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8		
				CRn	15:8]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	CRn[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 31:0 – CRn[31:0] Cancellation Request

Each Tx Buffer has its own Cancellation Request bit.

Writing a '1' will set the corresponding Cancellation Request bit; writing a '0' has no impact. This enables the Host to set cancellation requests for multiple Tx Buffers with one write to TXBCR. TXBCR bits are set only for those Tx Buffers configured via TXBC. The bits remain set until the corresponding bit of TXBRP is reset.

Value	Description
0	No cancellation pending.
1	Cancellation pending.

40.8.27 Capabilities 1 Register

Name:	CA1R
Offset:	0x44
Reset:	0x00000070
Property:	-

Note: The Capabilities 1 Register is not supposed to be written by the user.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				CLKMU	JLT[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access			•				•	
Reset								
Bit	7	6	5	4	3	2	1	0
		DRVDSUP	DRVCSUP	DRVASUP		DDR50SUP	SDR104SUP	SDR50SUP
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		0	0	0		0	0	0

Bits 23:16 – CLKMULT[7:0] Clock Multiplier

This field indicates the multiplier factor between the Base Clock (BASECLK) used for the Divided Clock Mode and the Multiplied Clock (MULTCLK) used for the Programmable Clock mode (refer to CCR).

Reading this field to 0 means that the Programmable Clock mode is not supported.

 $F_{\text{MULTCLK}} = F_{\text{BASECLK}} \times (\text{CLKMULT}+1)$

Bit 6 – DRVDSUP Driver Type D Support

Value	Description
0	Driver type D is not supported.

Bit 5 – DRVCSUP Driver Type C Support

Value	Description
0	Driver type C is not supported.

Bit 4 – DRVASUP Driver Type A Support

Value	Description
0	Driver type A is not supported.

AES – Advanced Encryption Standard

Offset	Name	Bit Pos.	
		23:16	GHASH[23:16]
		31:24	GHASH[31:24]
		7:0	GHASH[7:0]
0x70	GHASH1	15:8	GHASH[15:8]
0270	GRASHI	23:16	GHASH[23:16]
		31:24	GHASH[31:24]
		7:0	GHASH[7:0]
0x74	GHASH2	15:8	GHASH[15:8]
UX74	GHASHZ	23:16	GHASH[23:16]
		31:24	GHASH[31:24]
		7:0	GHASH[7:0]
0x78	CLIASU2	15:8	GHASH[15:8]
0276	GHASH3	23:16	GHASH[23:16]
		31:24	GHASH[31:24]
0x7C 0x7F	Reserved		
		7:0	CIPLEN[7:0]
80		15:8	CIPLEN[15:8]
80	CIPLEN	23:16	CIPLEN[23:16]
		31:24	CIPLEN[31:24]
	RANDSEED	7:0	RANDSEED[7:0]
0x84		15:8	RANDSEED[15:8]
0X04		23:16	RANDSEED[23:16]
		31:24	RANDSEED[31:24]

42.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional PAC write-protection is denoted by the "PAC Write-Protection" property in each individual register description. For details, refer to 42.5.8 Register Access Protection.

Some registers are enable-protected, meaning they can only be written when the peripheral is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

Public Key Cryptography Controller (PUKCC)

Parameter	Туре	Direction	Location	Data Length	Before Executing the Service	After Executing the Service
nu1HashBase (see Note 1)	nu1	1	Crypto RAM	u2ScalarLength + 4	Base of the hash value resulting from the previous SHA	Corrupted
u2ScalarLength	u2	1	-	-	Length of scalar	Length of scalar
nu1PointABase	nu1	I/O	Crypto RAM	3*u2ModLength + 12	Generator point	Corrupted
nu1PointPublicKeyGen	nu1	I/O	Crypto RAM	3*u2ModLength + 12	Public point	Corrupted
nu1ABase	nu1	I	Crypto RAM	2*u2ModLength + 8	Parameter a and b of the elliptic curve	Unchanged
nu1Workspace	nu1	1	Crypto RAM	8*u2ModLength + 44	-	Corrupted workspace

Note:

1. Whatever the chosen SHA, the resulting hash value may have a length inferior or equal to the modulo length and be padded with zeros until its total length is u2ModLength + 4.

43.3.7.10.5 Code Example

```
PUKCL PARAM PUKCLParam;
PPUKCL PARAM pvPUKCLParam = & PUKCLParam;
// ! The Random Number Generator must be initialized and started
// ! following the directives given for the RNG on the chip
PUKCL (u2Option) = 0;
// Depending on the option specified, not all fields should be filled PUKCL
 GF2NEcDsaVerify(nulModBase) = <Base of the ram location of P>;
PUKCL _GF2NEcDsaVerify(u2ModLength) = <Byte length of P>;
PUKCL _GF2NEcDsaVerify(nu1CnsBase) = <Base of the ram location of Cns>;
PUKCL GF2NEcDsaVerify(nulPointABase) = <Base of the A point>;
PUKCL GF2NEcDsaVerify(nulPrivateKey) = <Base of the Private Key>;
PUKCL
PUKCL GF2NEcDsaVerify(nulScalarNumber) = <Base of the ScalarNumber>;
PUKCL _GF2NEcDsaVerify(nulOrderPointBase) = <Base of the order of A point>;
PUKCL _GF2NEcDsaVerify(nulABase) = <Base of the a parameter of the curve>; PUKCL _GF2NEcDsaVerify(nulWorkspace) = <Base of the workspace>;
PUKCL GF2NEcDsaVerify(nulHashBase) = <Base of the SHA resulting hash>;
. . .
// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL Process(GF2NEcDsaVerifyFast, &PUKCLParam);
if (PUKCL (u2Status) == PUKCL OK)
               {
               }
else
               if (PUKCL (u2Status) == PUKCL WRONG SIGNATURE)
               {
```

48.7.3.14 Channel x Compare/Capture Value, 32-bit Mode

Name:	CCx
Offset:	0x1C + x*0x04 [x=01]
Reset:	0x0000000
Property:	Write-Synchronized

31	30	29	28	27	26	25	24		
CC[31:24]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		
23	22	21	20	19	18	17	16		
			CC[2	3:16]					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		
15	14	13	12	11	10	9	8		
			CC[15:8]					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		
7	6	5	4	3	2	1	0		
CC[7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		
	R/W 0 23 R/W 0 15 R/W 0 7	R/W R/W 0 0 23 22 R/W R/W 0 0 15 14 R/W R/W 0 0 7 6 R/W R/W	R/W R/W R/W 0 0 0 23 22 21 R/W R/W R/W 0 0 0 15 14 13 R/W R/W R/W 0 0 0 7 6 5 R/W R/W R/W	R/W R/W R/W R/W R/W 0 23 22 21 20 20 CC[2 R/W R/W Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 113 12 CC[1 R/W Q 0 <t< td=""><td>R/W R/W R/W R/W R/W 0 0 0 0 0 0 23 22 21 20 19 CC[23:16] CC[23:16] R/W R/W R/W R/W 0 0 0 0 0 15 14 13 12 11 CC[15:8] CC[15:8] R/W R/W R/W R/W 0 0 0 0 0 7 6 5 4 3 CC[7:0] R/W R/W R/W R/W</td><td>R/W R/W R/W R/W R/W 0 0 0 0 0 0 23 22 21 20 19 18 CC[23:16] R/W R/W R/W R/W 0 0 0 0 0 15 14 13 12 11 10 CC[15:8] R/W R/W R/W R/W Q 0 0 0 0 0 0 7 6 5 4 3 2 CC[7:0] R/W R/W R/W R/W R/W</td><td>CC[31:24] R/W R/W R/W R/W R/W R/W R/W R/W R/W Q</td></t<>	R/W R/W R/W R/W R/W 0 0 0 0 0 0 23 22 21 20 19 CC[23:16] CC[23:16] R/W R/W R/W R/W 0 0 0 0 0 15 14 13 12 11 CC[15:8] CC[15:8] R/W R/W R/W R/W 0 0 0 0 0 7 6 5 4 3 CC[7:0] R/W R/W R/W R/W	R/W R/W R/W R/W R/W 0 0 0 0 0 0 23 22 21 20 19 18 CC[23:16] R/W R/W R/W R/W 0 0 0 0 0 15 14 13 12 11 10 CC[15:8] R/W R/W R/W R/W Q 0 0 0 0 0 0 7 6 5 4 3 2 CC[7:0] R/W R/W R/W R/W R/W	CC[31:24] R/W R/W R/W R/W R/W R/W R/W R/W R/W Q		

Bits 31:0 – CC[31:0] Channel x Compare/Capture Value

These bits contain the compare/capture value in 32-bit TC mode. In Match frequency (MFRQ) or Match PWM (MPWM) waveform operation (WAVE.WAVEGEN), the CC0 register is used as a period register.

TCC – Timer/Counter for Control Applications

Writing a '1' to this bit will disable the one-shot operation.

Value	Description
0	The TCC will update the counter value on overflow/underflow condition and continue
	operation.
1	The TCC will stop counting on the next underflow/overflow condition.

Bit 1 – LUPD Lock Update

This bit controls the update operation of the TCC buffered registers.

When CTRLB.LUPD is cleared, the hardware UPDATE registers with value from their buffered registers is enabled.

This bit has no effect when input capture operation is enabled.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will enable the registers updates on hardware UPDATE condition.

Value	Description
0	The CCBx, PERB, PGVB, PGOB, and SWAPBx buffer registers values are copied into the
	corresponding CCx, PER, PGV, PGO and SWAPx registers on hardware update condition.
1	The CCBx, PERB, PGVB, PGOB, and SWAPBx buffer registers values are not copied into
	the corresponding CCx, PER, PGV, PGO and SWAPx registers on hardware update
	condition.

Bit 0 – DIR Counter Direction

This bit is used to change the direction of the counter.

Writing a '0' to this bit has no effect

Writing a '1' to this bit will clear the bit and make the counter count up.

Value	Description
0	The timer/counter is counting up (incrementing).
1	The timer/counter is counting down (decrementing).

PDEC – Position Decoder

Value	Description
0	PDEC/HALL decoding is running.
1	PDEC/HALL decoding is stopped.

Bit 5 – HERR Hall Error Flag

This flag is set when an invalid HALL code is detected.

The flag is cleared by writing a '1' to this bit location.

Outside of HALL mode, this bits is always read '0'.

Bit 4 - WINERR Window Error Flag

This flag is set when the counter is outside the window monitor.

The flag is cleared by writing a '1' to this bit location.

Outside of HALL mode, this bits is always read '0'.

Bit 2 – MPERR Missing Pulse Error flag

This flag is set when a missing pulse error condition is detected.

The flag is cleared by writing a '1' to this bit location.

Outside of QDEC mode, this bits is always read '0'.

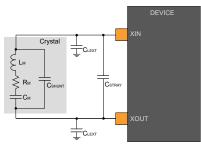
Bit 1 – IDXERR Index Error Flag

This flag is set when an index error condition is detected.

The flag is cleared by writing a '1' to this bit location.

Outside of QDEC mode, this bits is always read '0'.

Bit 0 – QERR Quadrature Error Flag


This flag is set when an invalid QDEC transition is detected.

The flag is cleared by writing a '1' to this bit location.

Outside of QDEC mode, this bits is always read '0'.

Electrical Characteristics at 85°C

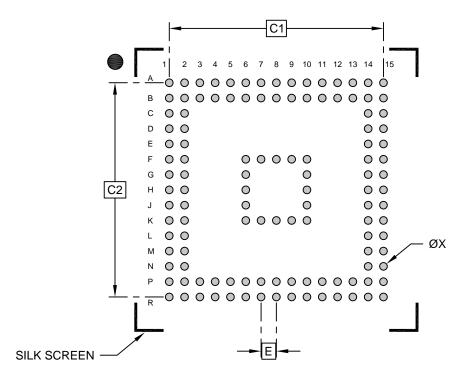
Figure 54-6. Oscillator Connection

The user must choose a crystal oscillator where the crystal load capacitance C_L is within the range given in the Table. The exact value of C_L can be found in the crystal datasheet. The capacitance of the external capacitors (C_{LEXT}) can then be computed as follows:

 $C_{LEXT} = 2(C_L - C_{STRAY} - _{SHUNT})$,

where C_{SHUNT} is the shunt capacity of the crystal, and C_{STRAY} is the capacitance of the pins and the PCB:

 $C_{\text{STRAY}} = C_{\text{StrayDevice}} + C_{\text{StrayPCB}}$, and $1/C_{\text{StrayDevice}} = 1/C_{\text{XIN}} + 1/C_{\text{XOUT}}$.


Table 54-40. Multi-Crystal Oscillator Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
FOUT	Crystal oscillator frequency		8	-	48	MHz
CL	Crystal Load	F = 8 MHz	-	-	20	pF
		F = 16 MHz	-	-	20	
		F = 32 MHz	-	-	13	
		F = 48 MHz	-	-	13	
ESR	Crystal Equivalent Series Resistance - SF=3	F = 8 MHz, CL=20 pF - IMULT = 0x3	-	-	181	Ω
		F = 16 MHz, CL = 20 pF - IMULT = 0x4	-	-	180	
		F= 24 MHz, C _L = 20 pF - IMULT = 0x5	-	-	70	
		F = 48 MHz, CL = 13 pF - IMULT = 0x6	-	-	70	
C _{XIN}	Parasitic load capacitor	-	-	6.3	-	pF
CXOUT		-	-	5.9	-	
DL	Drive Level (see Note 1)	ENALC = ON	-	-	100	μW
TSTART	Startup time	F = 8 MHz, C _L = 20 pF, C _{SHUNT} = 2 pF - IMULT = 0x3	-	39700	72200	Cycles
		F = 16 MHz, C_L = 20 pF, C_{SHUNT} = 1.5 pF - IMULT = 0x4	-	37550	62000	
		F = 24 MHz, C_L = 20 pF, C_SHUNT = 2.5 pF - IMULT = 0x5	-	32700	68500	
		F = 48 MHz, CL = 13 pF, CSHUNT = 5 pF - IMULT = 0x6	-	18400	38500	

Note: To ensure that the crystal is not overdriven, the automatic loop control is recommended to be turned ON (ENALC = 1).

120-Ball Thin Fine Pitch Ball Grid Array Package (DGB) - 4x4 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC			
Contact Pad Spacing	C1	7.00 BSC			
Contact Pad Spacing	C2	7.00 BSC			
Contact Pad Width (X20)	Х		0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-23465 Rev A