

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM
Number of I/O	51
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.63V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsame51j18a-aut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

AHB-APB Bridge A

Product Memory Mapping Overview

8. **Product Memory Mapping Overview**

Figure 8-1. Product Mapping

Reserved

ROMTable

Reserved

0xE00FF000

0xE0100000

0xFFFFFFFF

AHB-A	PB Bridge B	
0x41000000	T B Blidge B	1
0,11000000	USB	
0x41002000	DSU	
0x41004000	NVMCTRL	
0x41006000	CMCC	
0x41008000	PORT	
0x4100A000	DMAC	
0x4100C000	Reserved	
0x4100E000	EVSYS	
0x41010000	Reserved	
0x41012000	SERCOM2	
0x41014000	SERCOM3	
0x41016000	TCC0	
0x41018000	TCC1	
0x4101A000	TC2	
0x4101C000	ТС3	
0x4101E000	Reserved	
0x41020000		

Reserved

0x40000000	PAC			
0x40000400	PM			
0x40000800	MCLK			
0x40000C00	RSTC			
0x40001000	OSCCTRL			
0x40001400	OSC32KCTRL			
0x40001800	SUPC			
0x40001C00	GCLK			
0x40002000	WDT			
0x40002400	RTC			
0x40002800	EIC			
0x40002C00	FREQM			
0x40003000	SERCOM0			
0x40003400	SERCOM1			
0x40003800	TCO			
0x40003C00	TC1			
0x40004000	Deserved			
0x40FFFFFF	Reserved			

AHB-APB Bridge D				
0x43000000	SERCOM4			
0x43000400	SERCOM5			
0x43000800	SERCOM6			
0x43000C00	SERCOM7			
0x43001000	TCC4			
0x43001400	TC6			
0x43001800	TC7			
0x43001C00	ADC0			
0x43002000	ADC1			
0x43002400	DAC			
0x43002800	12S			
0x43002C00	PCC			
0x43003000	Reserved			
0x43FFFFFF	Reserved			

AHB-APB Bridge C

0x42000000	CAN0
0x42000400	CAN1
0x42000800	GMAC
0x42000C00	TCC2
0x42001000	TCC3
0x42001400	
0x42001800	TO4
0x42001C00	105
0x42002000	PDEC
0x42002400	AC
0x42002800	AES
0x42002C00	TRNG
0x42002000	ICM
0x42003000	PUKCC
0x42003400	QSPI
ux42003800	CCL
0x42003C00	Reserved

AHB-APB

Bridge A

Bridge B

Bridge C

Bridge D

SEEPROM

SDHC0

SDHC1

Backup RAM

0x40000000

0x41000000

0x42000000

0x43000000

0x44000000

0x45000000

0x46000000

0x47000000

0x47FFFFFF

0x41022000

0x41FFFFFF

20.8.1 Control A

Name:	CTRLA
Offset:	0x00
Reset:	X determined from NVM User Row
Property:	PAC Write-Protection, Write-Synchronized

Bit	7	6	5	4	3	2	1	0
	ALWAYSON					WEN	ENABLE	
Access	R/W					R/W	R/W	
Reset	х					х	х	

Bit 7 – ALWAYSON Always-On

This bit allows the WDT to run continuously. After being set, this bit cannot be written to '0', and the WDT will remain enabled until a power-on Reset is received. When this bit is '1', the Control A register (CTRLA), the Configuration register (CONFIG) and the Early Warning Control register (EWCTRL) will be read-only, and any writes to these registers are not allowed.

Writing a '0' to this bit has no effect.

This bit is not Enable-Protected.

This bit is loaded from NVM User Row at start-up.

Value	Description
0	The WDT is enabled and disabled through the ENABLE bit.
1	The WDT is enabled and can only be disabled by a power-on reset (POR).

Bit 2 - WEN Watchdog Timer Window Mode Enable

This bit enables Window mode. It can only be written if the peripheral is disabled unless CTRLA.ALWAYSON=1. The initial value of this bit is loaded from Flash Calibration.

This bit is loaded from NVM User Row at startup.

Value	Description
0	Window mode is disabled (normal operation).
1	Window mode is enabled.

Bit 1 - ENABLE Enable

This bit enables or disables the WDT. It can only be written if CTRLA.ALWAYSON=0.

Due to synchronization, there is delay between writing CTRLA.ENABLE until the peripheral is enabled/ disabled. The value written to CTRLA.ENABLE will read back immediately, and the Enable bit in the Synchronization Busy register (SYNCBUSY.ENABLE) will be set. SYNCBUSY.ENABLE will be cleared when the operation is complete.

This bit is not Enable-Protected.

This bit is loaded from NVM User Row at startup.

Value	Description
0	The WDT is disabled.
1	The WDT is enabled.

22.8.10 Interrupt Status

Name:	INTSTATUS
Offset:	0x24
Reset:	0x00000000
Property:	-

Bit	31	30	29	28	27	26	25	24
Γ	CHINTn[31:24]							
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Dit	00	22	01	20	10	10	17	16
	23	22	21	20	19	10	17	10
				CHINTI	n[23:16]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				CHINT	'n[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CHIN	Tn[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - CHINTn[31:0] Channel n Pending Interrupt [n=31..0]

This bit is set when Channel n has a pending interrupt/the interrupt request is received.

This bit is cleared when the corresponding Channel n interrupts are disabled or the interrupts sources are cleared.

22.8.19 Channel Event Control

Name:	CHEVCTRL
Offset:	0x46 + n*0x10 [n=031]
Reset:	0x00
Property:	PAC Write-Protection, Enable-Protected

Bit	7	6	5	4	3	2	1	0
	EVOE	EVIE	EVOMC	DE[1:0]			EVACT[2:0]	
Access	R/W	R/W	R/W	R/W		R/W	R/W	R/W
Reset	0	0	0	0		0	0	0

Bit 7 – EVOE Channel Event Output Enable

This bit indicates if the Channel event generation is enabled. The event will be generated for every condition defined in the Channel Event Output Selection bits (CHEVCTRL.EVOMODE).

Value	Description
0	Channel event generation is disabled.
1	Channel event generation is enabled.

Bit 6 – EVIE Channel Event Input Enable

Value	Description
0	Channel event action will not be executed on any incoming event.
1	Channel event action will be executed on any incoming event.

Bits 5:4 – EVOMODE[1:0] Channel Event Output Mode

These bits define the channel event output selection. For details on event output generation, refer to 22.6.3.6 Event Output Selection.

Value	Name	Description
0x0	DEFAULT	Block event output selection. Refer to BTCTRL.EVOSEL for available selections.
0x1	TRIGACT	Ongoing trigger action
0x2-0x3		Reserved

Bits 2:0 – EVACT[2:0] Channel Event Input Action

These bits define the event input action. The action is executed only if the corresponding EVIE bit in the CHEVCTRL register of the channel is set. For details on event actions, refer to 22.6.3.5 Event Input Actions. These bits are available only for channels with event input support.

Value	Name	Description
0x0	NOACT	No action
0x1	TRIG	Transfer and periodic transfer trigger
0x2	CTRIG	Conditional transfer trigger
0x3	CBLOCK	Conditional block transfer
0x4	SUSPEND	Channel suspend operation
0x5	RESUME	Channel resume operation
0x6	SSKIP	Skip next block suspend action
0x7	INCPRI	Increase priority

EIC – External Interrupt Controller

In *Synchronous Edge Detection Mode*, the external interrupt (EXTINT) or the non-maskable interrupt (NMI) pins are sampled using the EIC clock as defined by the Clock Selection bit in the Control A register (CTRLA.CKSEL). The External Interrupt flag (INTFLAG.EXTINT[x]) or Non-Maskable Interrupt flag (NMIFLAG.NMI) is set when the last sampled state of the pin differs from the previously sampled state. In this mode, the EIC clock is required.

The Synchronous Edge Detection Mode can be used in Idle and Standby sleep modes.

In *Asynchronous Edge Detection Mode*, the external interrupt (EXTINT) pins or the non-maskable interrupt (NMI) pins set the External Interrupt flag or Non-Maskable Interrupt flag (INTFLAG.EXTINT[x] or NMIFLAG) directly. In this mode, the EIC clock is not requested.

The asynchronous edge detection mode can be used in Idle and Standby sleep modes.

23.6.4.3 Interrupt Pin Debouncing

The external interrupt pin (EXTINT) edge detection can use a debouncer to improve input noise immunity. When selected, the debouncer can work in the synchronous mode or the asynchronous mode, depending on the configuration of the ASYNCH.ASYNCH[x] bit for the pin. The debouncer uses the EIC clock as defined by the bit CTRLA.CKSEL to clock the debouncing circuitry. The debouncing time frame is set with the debouncer prescaler DPRESCALER.DPRESCALERn, which provides the *low frequency clock* tick that is used to reject higher frequency signals.

The debouncing mode for pin EXTINT x can be selected only if the Sense bits in the Configuration y register (CONFIGy.SENSEx) are set to RISE, FALL or BOTH. If the debouncing mode for pin EXTINT x is selected, the filter mode for that pin (CONFIGy.FILTENx) can not be selected.

The debouncer manages an internal "valid pin state" that depends on the external interrupt (EXTINT) pin transitions, the debouncing mode and the debouncer prescaler frequency. The valid pin state reflects the pin value after debouncing. The external interrupt pin (EXTINT) is sampled continously on EIC clock. The sampled value is evaluated on each *low frequency clock* tick to detect a transitional edge when the sampled value is different of the current valid pin state. The sampled value is evaluated on each EIC clock when DPRESCALER.TICKON=0 or on each *low frequency clock* tick when DPRESCALER.TICKON=1, to detect a bounce when the sampled value is equal to the current valid pin state. Transitional edge detection increments the transition counter of the EXTINT pin, while bounce detection resets the transition counter. The transition counter must exceed the transition count threshold as defined by the DPRESCALER.STATESn bitfield. In the synchronous mode the threshold is 4 when DPRESCALER.STATESn=0 or 8 when DPRESCALER.STATESn=1. In the asynchronous mode the threshold is 4.

The valid pin state for the pins can be accessed by reading the register PINSTATE for both synchronous or asynchronous debouncing mode.

Synchronous edge detection In this mode the external interrupt (EXTINT) pin is sampled continously on EIC clock.

- 1. A pin edge transition will be validated when the sampled value is consistently different of the current valid pin state for 4 (or 8 depending on bit DPRESCALER.STATESn) consecutive ticks of the low frequency clock.
- 2. Any pin sample, at the *low frequency clock* tick rate, with a value opposite to the current valid pin state will increment the transition counter.
- 3. Any pin sample, at EIC clock rate (when DPRESCALER.TICKON=0) or the *low frequency clock* tick (when DPRESCALER.TICKON=1), with a value identical to the current valid pin state will return the transition counter to zero.

24.9.49 GMAC 1024 to 1518 Byte Frames Transmitted Register

Name:	TBFT1518
Offset:	0x12C
Reset:	0x00000000
Property:	Read-Only

Bit	31	30	29	28	27	26	25	24
				NFTX	[31:24]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				NFTX	[23:16]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				NFTX	[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				NFT	X [7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 31:0 – NFTX[31:0] 1024 to 1518 Byte Frames Transmitted without Error This register counts the number of 1024 to 1518 byte frames successfully transmitted without error, i.e., no underrun and not too many retries.

SAMD5x/E5x Family Data Sheet

ICM - Integrity Check Monitor

Transfer Type		Main	RCFG			RNEXT	Comments
		List	CDWBN	WRAP	EOM	NEXT	
	Monitoring disabled						contiguous region.
	Contiguous list of blocks Digest comparison enabled Monitoring enabled	1 item	1	1	0	0	When the hash computation is terminated, the digest is compared with the one saved in memory.
Multiple Regions	Contiguous list of blocks Digest written to memory Monitoring disabled	More than one item	0	0	1 for the last, 0 otherwise	0	ICM passes through the list once.
	Contiguous list of blocks Digest comparison is enabled Monitoring is enabled	More than one item	1	1 for the last, 0 otherwise	0	0	ICM performs active monitoring of the regions. If a mismatch occurs, an interrupt is raised.
	Non-contiguous list of blocks Digest is written to memory Monitoring is disabled	More than one item	0	0	1	Secondary List address	ICM performs hashing and saves digests to the Hash area.
	Non-contiguous list of blocks Digest comparison is enabled Monitoring is enabled	More than one item	1	1	0	Secondary List address	ICM performs data gathering on a per region basis.

Bit 3 – CTS Clear to Send

This bit indicates the current level of the CTS pin when flow control is enabled (CTRLA.TXPO).

Writing '0' to this bit has no effect.

Writing '1' to this bit has no effect.

Bit 2 – BUFOVF Buffer Overflow

Reading this bit before reading the Data register will indicate the error status of the next character to be read.

This bit is cleared by writing '1' to the bit or by disabling the receiver.

This bit is set when a buffer overflow condition is detected. A buffer overflow occurs when the receive buffer is full, there is a new character waiting in the receive shift register and a new start bit is detected.

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear it.

Bit 1 – FERR Frame Error

Reading this bit before reading the Data register will indicate the error status of the next character to be read.

This bit is cleared by writing '1' to the bit or by disabling the receiver.

This bit is set if the received character had a frame error, i.e., when the first stop bit is zero.

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear it.

Bit 0 – PERR Parity Error

Reading this bit before reading the Data register will indicate the error status of the next character to be read.

This bit is cleared by writing '1' to the bit or by disabling the receiver.

This bit is set if parity checking is enabled (CTRLA.FORM is 0x1, 0x5, or 0x7) and a parity error is detected.

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear it.

38.7 Register Summary

The register mapping depends on the Operating Mode field in the Control A register (CTRLA.MODE). The register summary is detailed below.

38.7.1 Common Device Summary

Offset	Name	Bit Pos.								
0x00	CTRLA	7:0	MODE					RUNSTBY	ENABLE	SWRST
0x01	Reserved									
0x02	SYNCBUSY	7:0							ENABLE	SWRST
0x03	QOSCTRL	7:0		DQOS[1:0] CQOS[1:0]				S[1:0]		
0x0D	FSMSTATUS	7:0					FSMSTATE[6:0]		
0x24		7:0				DESCA	DD[7:0]			
0x25	DESCADD	15:8				DESCA	DD[15:8]			
0x26	DESCADD	23:16				DESCAD	DD[23:16]			
0x27		31:24	DESCADD[31:24]							
0x28	PADCAL	7:0	TRANSN[1:0] TRANSP[4:0]							
0x29	FADUAL	15:8		TRIM[2:0] TRANSN[4:2]						

38.7.2 Device Summary

Table 38-1. General Device Registers

Offset	Name	Bit Pos.								
0x04	Reserved									
0x05	Reserved									
0x06	Reserved									
0x07	Reserved									
0x08		7:0				NREPLY	SPDCC	DNF[1:0]	UPRSM	DETACH
0x09	CITED	15:8					LPMHD	OSK[1:0]	GNAK	
0x0A	DADD		ADDEN				DADD[6:0]			
0x0B	Reserved									
0x0C	STATUS	7:0	LINEST	ATE[1:0]			SPEE	:D[1:0]		
0x0E	Reserved									
0x0F	Reserved									
0x10		7:0			FNUM[4:0]					
0x11	TNOM	15:8	FNCERR				FNUM	1[10:5]		
0x12	Reserved									
0x14		7:0	RAMACER	UPRSM	EORSM	WAKEUP	EORST	SOF		SUSPEND
0x15	INTENCEIX	15:8							LPMSUSP	LPMNYET
0x16	Reserved									
0x17	Reserved									
0x18	INTENSET	7:0	RAMACER	UPRSM	EORSM	WAKEUP	EORST	SOF		SUSPEND
0x19	INTENSET	15:8							LPMSUSP	LPMNYET
0x1A	Reserved									
0x1B	Reserved									
0x1C	INTFLAG	7:0	RAMACER	UPRSM	EORSM	WAKEUP	EORST	SOF		SUSPEND

Writing a one to this bit will set the Upstream Resume Enable bit and enable the corresponding interrupt request.

Value	Description
0	The Upstream Resume interrupt is disabled.
1	The Upstream Resume interrupt is enabled.

Bit 5 – EORSM End Of Resume Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will set the End Of Resume interrupt Enable bit and enable the corresponding interrupt request.

Value	Description
0	The End Of Resume interrupt is disabled.
1	The End Of Resume interrupt is enabled.

Bit 4 – WAKEUP Wake-Up Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will set the Wake Up interrupt Enable bit and enable the corresponding interrupt request.

Value	Description
0	The Wake Up interrupt is disabled.
1	The Wake Up interrupt is enabled.

Bit 3 – EORST End of Reset Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will set the End of Reset interrupt Enable bit and enable the corresponding interrupt request.

Value	Description
0	The End of Reset interrupt is disabled.
1	The End of Reset interrupt is enabled.

Bit 2 – SOF Start-of-Frame Interrupt Enable Writing a zero to this bit has no effect.

Writing a one to this bit will set the Start-of-Frame interrupt Enable bit and enable the corresponding interrupt request.

Value	Description
0	The Start-of-Frame interrupt is disabled.
1	The Start-of-Frame interrupt is enabled.

Bit 0 – SUSPEND Suspend Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will set the Suspend interrupt Enable bit and enable the corresponding interrupt request.

SAMD5x/E5x Family Data Sheet

SD/MMC Host Controller ...

ACMDCRC	ACMDTEO	Types of error
0	0	No error
0	1	Response Timeout error
1	0	Response CRC error
1	1	CMD line conflict

Bit 0 – ACMD12NE Auto CMD12 Not Executed

If a memory multiple block data transfer is not started due to a command error, this bit is not set to 1 because it is not necessary to issue Auto CMD12. Setting this bit to 1 means the peripheral cannot issue Auto CMD12 to stop a memory multiple block data transfer due to some error. If this bit is set to 1, other error status bits (ACESR[4:1]) are meaningless.

This bit is set to 0 when an Auto CMD error is generated by Auto CMD23.

Value	Description
0	No error
1	Error

AC – Analog Comparators

46.8.13 Synchronization Busy

	Name: Offset: Reset: Property:	SYNCBUSY 0x20 0x00000000 Read-Only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Dit	15	14	10	10	11	10	0	0
BIL	15	14	13	12	11	10	9	8
A								
Ponot								
Reset								
Bit	7	6	5	4	3	2	1	0
				COMPCTRLx	COMPCTRLx	WINCTRL	ENABLE	SWRST
Access				R	R	R	R	R
Reset				0	0	0	0	0

Bits 4,3 – COMPCTRLx COMPCTRLx Synchronization Busy

This bit is cleared when the synchronization of the COMPCTRLx register between the clock domains is complete.

This bit is set when the synchronization of the COMPCTRLx register between clock domains is started.

Bit 2 – WINCTRL WINCTRL Synchronization Busy

This bit is cleared when the synchronization of the WINCTRL register between the clock domains is complete.

This bit is set when the synchronization of the WINCTRL register between clock domains is started.

Bit 1 – ENABLE Enable Synchronization Busy

This bit is cleared when the synchronization of the CTRLA.ENABLE bit between the clock domains is complete.

This bit is set when the synchronization of the CTRLA.ENABLE bit between clock domains is started.

Bit 0 – SWRST Software Reset Synchronization Busy

This bit is cleared when the synchronization of the CTRLA.SWRST bit between the clock domains is complete.

This bit is set when the synchronization of the CTRLA.SWRST bit between clock domains is started.

48.5.5 Interrupts

The interrupt request line is connected to the Interrupt Controller. In order to use interrupt requests of this peripheral, the Interrupt Controller (NVIC) must be configured first. Refer to *Nested Vector Interrupt Controller* for details.

Related Links

10.2 Nested Vector Interrupt Controller

48.5.6 Events

The events of this peripheral are connected to the Event System.

Related Links

31. EVSYS – Event System

48.5.7 Debug Operation

When the CPU is halted in debug mode, this peripheral will halt normal operation. This peripheral can be forced to continue operation during debugging - refer to the Debug Control (DBGCTRL) register for details.

Related Links

48.7.1.11 DBGCTRL

48.5.8 Register Access Protection

Registers with write-access can be optionally write-protected by the Peripheral Access Controller (PAC), except for the following:

- Interrupt Flag Status and Clear register (INTFLAG)
- Status register (STATUS)
- Count register (COUNT)
- Period and Period Buffer registers (PER, PERBUF)
- Compare/Capture Value registers and Compare/Capture Value Buffer registers (CCx, CCBUFx)

Note: Optional write-protection is indicated by the "PAC Write-Protection" property in the register description.

Write-protection does not apply for accesses through an external debugger.

48.5.9 Analog Connections

Not applicable.

48.6 Functional Description

48.6.1 Principle of Operation

The following definitions are used throughout the documentation:

Table 48-3. Timer/Counter Definitions

Name	Description
ТОР	The counter reaches TOP when it becomes equal to the highest value in the count sequence. The TOP value can be the same as Period (PER)

48.7.1.11 Debug Control

Name: Offset: Reset: Property:		DBGCTRL 0x0F 0x00 PAC Write-Pr	otection					
Bit	7	6	5	4	3	2	1	0
								DBGRUN
Access								R/W
Reset								0

Bit 0 – DBGRUN Run in Debug Mode

This bit is not affected by a software Reset, and should not be changed by software while the TC is enabled.

Value	Description
0	The TC is halted when the device is halted in debug mode.
1	The TC continues normal operation when the device is halted in debug mode.

Software Halt Action This is configured by writing 0x2 to the Fault n Halt mode bits in the Recoverable Fault n configuration register (FCTRLn.HALT). Software halt action is similar to hardware halt action, but in order to restart the timer/counter, the corresponding fault condition must not be present anymore, and the corresponding FAULT n bit in the STATUS register must be cleared by software.

Figure 49-32. Waveform Generation with Software Halt, Fault Qualification, Keep and Restart Actions

49.6.3.6 Non-Recoverable Faults

The non-recoverable fault action will force all the compare outputs to a pre-defined level programmed into the Driver Control register (DRVCTRL.NRE and DRVCTRL.NRV). The non-recoverable fault input (EV0 and EV1) actions are enabled in Event Control register (EVCTRL.EVACT0 and EVCTRL.EVACT1).

To avoid false fault detection on external events (e.g. a glitch on an I/O port) a digital filter can be enabled using Non-Recoverable Fault Input x Filter Value bits in the Driver Control register

49.8.2 Control B Clear

Name:CTRLBCLROffset:0x04Reset:0x00Property:PAC Write-Protection, Write-Synchronized, Read-Synchronized

This register allows the user to change this register without doing a read-modify-write operation. Changes in this register will also be reflected in the Control B Set (CTRLBSET) register.

Bit	7	6	5	4	3	2	1	0
Γ	CMD[2:0]			IDXCMD[1:0]		ONESHOT	LUPD	DIR
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:5 – CMD[2:0] TCC Command

These bits can be used for software control of re-triggering and stop commands of the TCC. When a command has been executed, the CMD bit field will read back zero. The commands are executed on the next prescaled GCLK_TCC clock cycle.

Writing zero to this bit group has no effect.

Writing a '1' to any of these bits will clear the pending command.

Value	Name	Description
0x0	NONE	No action
0x1	RETRIGGER	Clear start, restart or retrigger
0x2	STOP	Force stop
0x3	UPDATE	Force update of double buffered registers
0x4	READSYNC	Force COUNT read synchronization
0x5	DMAOS	One-shot DMA trigger

Bits 4:3 – IDXCMD[1:0] Ramp Index Command

These bits can be used to force cycle A and cycle B changes in RAMP2 and RAMP2A operation. On timer/counter update condition, the command is executed, the IDX flag in STATUS register is updated and the IDXCMD command is cleared.

Writing zero to these bits has no effect.

Writing a '1' to any of these bits will clear the pending command.

Value	Name	Description
0x0	DISABLE	DISABLE Command disabled: IDX toggles between cycles A and B
0x1	SET	Set IDX: cycle B will be forced in the next cycle
0x2	CLEAR	Clear IDX: cycle A will be forced in next cycle
0x3	HOLD	Hold IDX: the next cycle will be the same as the current cycle.

Bit 2 - ONESHOT One-Shot

This bit controls one-shot operation of the TCC. When one-shot operation is enabled, the TCC will stop counting on the next overflow/underflow condition or on a stop command.

Writing a '0' to this bit has no effect

Bit 0 – STOP Stop

This bit is set when the TCC is disabled either on a STOP command or on an UPDATE condition when One-Shot operation mode is enabled (CTRLBSET.ONESHOT=1).

This bit is clear on the next incoming counter increment or decrement.

Value	Description
0	Counter is running.
1	Counter is stopped.

SAMD5x/E5x Family Data Sheet

I2S - Inter-IC Sound Controller

I²S supports multiple data formats such as:

- 32-, 24-, 20-, 18-, 16-, and 8-bit mono or stereo format
- 16- and 8-bit compact stereo format, with left and right samples packed in the same word to reduce data transfers

In mono format, Transmit mode, data written to the left channel is duplicated to the right output channel. In mono format, Receiver mode, data received from the right channel is ignored and data received from the left channel is duplicated in to the right channel.

In mono format, TDM Transmit mode with more than two slots, data written to the even-numbered slots is duplicated in to the following odd-numbered slot.

In mono format, TDM Receiver mode with more than two slots, data received from the even-numbered slots is duplicated in to the following odd-numbered slot.

Mono format can be enabled by writing a '1' to the MONO bit in the Serializer m Control register (SERCTRLm.MONO).

I²S support different data frame formats:

- 2-channel I²S with Word Select
- 1- to 8-slot Time Division Multiplexed (TDM) with Frame Sync and individually enabled slots
- 1- or 2-channel Pulse Density Modulation (PDM) reception for MEMS microphones
- 1-channel burst transfer with non-periodic Frame Sync

In 2 channel I²S mode, number of slots configured is one or two and successive data words corresponds to left and right channel. Left and right channel are identified by polarity of Word Select signal (FSn signal). Each frame consists of one or two data word(s). In the case of compact stereo format, the number of slots can be one. When 32-bit slot size is used, the number of slots can be two.

I2S - Inter-IC Sound Controller

51.8 Register Summary

Offset	Name	Bit Pos.								
0x00	CTRLA	7:0			RXEN	TXEN	CKENx	CKENx	ENABLE	SWRST
0x01										
	Reserved									
0x03										
0x04		7:0	BITDELAY	FSWID	DTH[1:0]	NBSLOTS[2:0] SLOTSIZE[1				IZE[1:0]
	CI KCTRI 0	15:8	MCKOUTINV	MCKEN	MCKSEL	SCKOUTINV	SCKSEL	FSOUTINV	FSINV	FSSEL
	OLINO ITALO	23:16			MCKDIV[5:0]					
		31:24				MCKOUTDIV[5:0]				
		7:0	BITDELAY	FSWID	DTH[1:0]	H[1:0] NBSLOTS[2:0] SLOTSIZE[1:				IZE[1:0]
0x08	CLKCTRI 1	15:8	MCKOUTINV	MCKEN	MCKSEL	SCKOUTINV	SCKSEL	FSOUTINV	FSINV	FSSEL
		23:16			MCKDIV[5:0]					
		31:24				MCKOUTDIV[5:0]				
0x0C	INTENCI R	7:0			RXORx	RXORx			RXRDYx	RXRDYx
	INTEROER	15:8			TXURx	TXURx			TXRDYx	TXRDYx
0x0E										
	Reserved									
0x0F										
0x10	INTENSET	7:0			RXORx	RXORx			RXRDYx	RXRDYx
		15:8			TXURx	TXURx			TXRDYx	TXRDYx
0x12										
	Reserved									
0x13										
0x14	INTFLAG	7:0			RXORx	RXORx			RXRDYx	RXRDYx
		15:8			TXURx	TXURx			TXRDYx	TXRDYx
0x16										
	Reserved									
0x17										
0x18	SYNCBUSY	7:0			RXEN	IXEN	CKENX	CKENX	ENABLE	SWRST
		15:8							RXDATA	TXDATA
0x1A										
	Reserved									
UXIF		7.0	CLOTADI			TYCANE	TYDEEA		05040	
		7:0	SLOTADJ			CLRSEL TXSAME TXDEFAULT[1:0]		SERMO	SERMODE[1:0]	
0x20	TXCTRL	15:8	BITREV	EXTER		WORDADJ	OL OTDIO:			
		23:16	SLOTDISX	SLOTDISX	SLOTDISX	SLOTDISX	SLOTDISX	SLOTDISX	SLOTDISX	SLOTDISX
		31:24							DMA	
		1:0	SLUIADJ					SERMODE[1:0]		שיבעי[1:0]
0x24	RXCTRL	15:8	BITKEV							
		23:16	SLUTDISX	SLUTDISX	SLUTDISX	SLUTDISX	SLUTDISX	SLUTDISX	SLUTDISX	SLUTDISX
0.00		31:24						RXLOOP	DMA	MONO
0x28	Descrived									
 0x2E	Reserved									
0x2F	TYDATA	7.0				D 47	17.01			
0x30	INDAIA	1:0				DAIA	λ[<i>I</i> :0]			

Electrical Characteristics at 85°C

54.13.2 SERCOM in SPI Mode Timing

Table 54-52. SPI Timing Characteristics and Requirements⁽¹⁾

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units	
t _{SCK⁽¹⁰⁾}	SCK period	Master	Reception	2*(t _{MIS} +t _{SLAVE_OUT}) ⁽³⁾	-	-	ns	
		Master	Transmission	$\underset{(4)}{2^{*}(t_{\text{MOV}}+t_{\text{SLAVE_IN}})}$	-	-		
t _{SCKW}	SCK high/low width	Master		-	0.5*t _{SCK}	-		
t _{SCKR}	SCK rise time ⁽²⁾	Master		-	0.25*t _{SCK}	-		
t _{SCKF}	SCK fall time ⁽²⁾	Master		-	0.25*t _{SCK}	-		
t _{MIS}	MISO setup to SCK	Master,	VDD>2.70V	18	-	-		
		Master,	VDD>1.71V	19	-	-		
t _{MIH}	MISO hold after	Master,	VDD>2.70V	0	-	-		
	SCK	Master,	VDD>1.71V	0	-	-		
t _{MOV}	MOSI output valid SCK	Master,	VDD>2.70V	-	-	9		
		Master,	VDD>1.71V	-	-	14		
t _{MOH}	MOSI hold after SCK	Master,	VDD>2.70V	-	-	-3		
		Master,	VDD>1.71V	-	-	-3		
t _{SSCK}	Slave SCK Period	Slave	Reception	2*(t _{SIS} +t _{MASTER_OUT}) ⁽⁵⁾	-	-	ns	
		Slave	Transmission	2*(t _{SOV} +t _{MASTER_IN}) ⁽⁶⁾	-	-		
t _{SSCKW}	SCK high/low width	Slave		-	0.5*t _{SSCK}	-		
t _{SSCKR}	SCK rise time ⁽²⁾	Slave		-	0.25*t _{SSCK}	-		
t _{SSCKF}	SCK fall time ⁽²⁾	Slave		-	0.25*t _{SSCK}	-		
t _{SIS}	MOSI setup to SCK	Slave, V	/DD>2.70V	7.5	-	-		
		Slave, V	/DD>1.71V	8.5	-	-		
t _{SIH}	MOSI hold after	Slave, V	/DD>2.70V	4	-	-		
	SCK	Slave, V	/DD>1.71V	4	-	-		
t _{SSS}	SS setup to SCK	Slave	PRELOADEN=1	t _{SOSS} +t _{EXT_MIS} +2*t _{APBC} ⁽⁸⁾⁽⁹⁾	-	-		
			PRELOADEN=0	t_{SOSS} + t_{EXT_MIS} ⁽⁸⁾	-	-		
t _{SSH}	SS hold after SCK	Slave		0.5*t _{SSCK}	-	-		
t _{SOV}	MISO output valid	Slave, V	/DD>2.70V	15	-	-		
	SCK	Slave, V	/DD>1.71V	24	-	-		