

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM
Number of I/O	51
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.63V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsame51j20a-au

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

38.7.	Register Summary	1167
38.8.	Register Description	1171
20 044	L. Construct Annual Materia	1011
	I - Control Area Network	
	Overview	
	Features	
	Block Diagram	
	Signal Description	
	Product Dependencies	
	Functional Description	
	Register Summary	
	Register Description	
39.9.	Message RAM	1343
40. SD/I	MMC Host Controller (SDHC)	1353
	Overview	
	Features	
	Block Diagrams	
	Signal Description	
	Product Dependencies	
	Functional Description	
	Register Summary	
	Register Description	
10.01		
41. CCL	. – Configurable Custom Logic	
41.1.	Overview	1432
41.2.	Features	1432
41.3.	Block Diagram	1433
41.4.	Signal Description	1433
41.5.	Product Dependencies	1433
41.6.	Functional Description	1435
41.7.	Register Summary	1446
41.8.	Register Description	1446
10 AES	Advanced Eneruntian Standard	1151
	Advanced Encryption Standard	
	Overview	
	Features	
	Block Diagram	
	Signal Description	
	Product Dependencies	
	Functional Description	
	Register Summary	
42.8.	Register Description	1465
	lic Key Cryptography Controller (PUKCC)	
43.1.	Overview	1482
43.2.	Product Dependencies	
43.3.	Functional Description	1483

This bit is never cleared.

One-hot priority encoding enforced automatically on register writes as follows. 'x' represents don't care.

Value	Name	Description
0	-	Reserved
1	SINGLE	00001: Always use SINGLE AHB bursts
2	-	Reserved
4	INCR4	001xx: Attempt to use INCR4 AHB bursts (Default)
8	INCR8	01xxx: Attempt to use INCR8 AHB bursts
16	INCR16	1xxxx: Attempt to use INCR16 AHB bursts

NVMCTRL – Nonvolatile Memory Controller

25.8.14 SmartEEPROM Status

	Name: Offset: Reset: Property:	SEESTAT 0x2C 0x00000000 Read-Only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
							PSZ[2:0]	
Access						R	R	R
Reset						0	0	x
Bit	15	14	13	12	11	10	9	8
						SBLK[3:0]		
Access					R	R	R	R
Reset					0	0	0	x
Bit	7	6	5	4	3	2	1	0
				RLOCK	LOCK	BUSY	LOAD	ASEES
Access				R	R	R	R	R
Reset				0	x	0	0	x

Bits 18:16 - PSZ[2:0] SmartEEPROM Page Size

This bit field is automatically loaded from the user page during startup.

Indicates the page size. Not all device families will provide all the page sizes indicated in the table.

Bits 11:8 - SBLK[3:0] Blocks Number In a Sector

This bit field is automatically loaded from the user page during startup.

Indicates the number of blocks allocated to a SEES.

Bit 4 – RLOCK RLOCK

SmartEEPROM Write Access To Register Address Space Is Locked

Bit 3 – LOCK SmartEEPROM Section Locked

This bit field is automatically loaded from the user page during startup.

Access to the SmartEEPROM data is locked. Writes to AHB2 throws hardfault exceptions.

- 0: SmartEEPROM access is not locked
- 1: SmartEEPROM access is locked

Bit 2 – BUSY Busy

0: SmartEEPROM is ready.

© 2018 Microchip Technology Inc.

OSCCTRL – Oscillators Controller

This flag is set on a zero-to-one transition of the XOSC0 Ready bit in the Status register (STATUS.XOSCRDYn) and will generate an interrupt request if INTENSET.XOSCRDYn is '1'.

Writing a zero to this bit has no effect.

Writing a '1' to this bit clears the XOSCn Ready interrupt flag.

31.7.8 Channel n Control

Name:	CHANNEL
Offset:	0x20 + n*0x08 [n=031]
Reset:	0x00008000
Property:	PAC Write-Protection

This register allows the user to configure channel n. To write to this register, do a single, 32-bit write of all the configuration data.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
	ONDEMAND	RUNSTDBY			EDGS	EL[1:0]	PATH	I[1:0]
Access	RW	RW			RW	RW	RW	RW
Reset	1	0			0	0	0	0
Bit	_	_			•	•	4	0
	7	6	5	4	3	2	1	0
	7	6	5		3 N[7:0]	2	1	0
Access	7 RW	6 RW	5 RW			RW	RW	RW

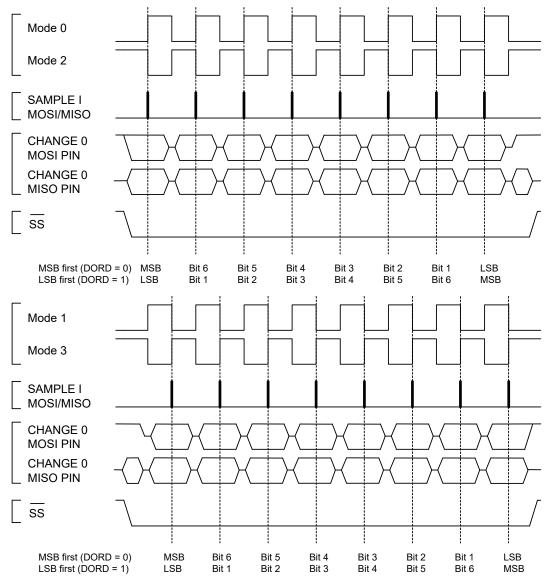
Bit 15 - ONDEMAND Generic Clock On Demand

Value	Description
0	Generic clock for a channel is always on, if the channel is configured and generic clock
	source is enabled.
1	Generic clock is requested on demand while an event is handled

Bit 14 - RUNSTDBY Run in Standby

This bit is used to define the behavior during standby sleep mode.

Value	Description
0	The channel is disabled in standby sleep mode.
1	The channel is not stopped in standby sleep mode and depends on the
	CHANNEL.ONDEMAND bit.


Bits 11:10 – EDGSEL[1:0] Edge Detection Selection

These bits set the type of edge detection to be used on the channel.

These bits must be written to zero when using the asynchronous path.

SAMD5x/E5x Family Data Sheet SERCOM SPI – SERCOM Serial Peripheral Interface

Figure 35-3. SPI Transfer Modes

35.6.2.6 Transferring Data

35.6.2.6.1 Master

In master mode (CTRLA.MODE=0x3), when Master Slave Enable Select (CTRLB.MSSEN) is '1', hardware will control the \overline{SS} line.

When Master Slave Select Enable (CTRLB.MSSEN) is '0', the \overline{SS} line must be configured as an output. \overline{SS} can be assigned to any general purpose I/O pin. When the SPI is ready for a data transaction, software must pull the \overline{SS} line low.

When writing a character to the Data register (DATA), the character will be transferred to the shift register. Once the content of TxDATA has been transferred to the shift register, the Data Register Empty flag in the Interrupt Flag Status and Clear register (INTFLAG.DRE) will be set. And a new character can be written to DATA.

Each time one character is shifted out from the master, another character will be shifted in from the slave simultaneously. If the receiver is enabled (CTRLA.RXEN=1), the contents of the shift register will be

© 2018 Microchip Technology Inc.

Enable-protection is denoted by the "Enable-Protection" property in the register description.

Before the I²C is enabled it must be configured as outlined by the following steps:

- 1. Select I²C Master or Slave mode by writing 0x4 (Slave mode) or 0x5 (Master mode) to the Operating Mode bits in the CTRLA register (CTRLA.MODE).
- 2. If desired, select the SDA Hold Time value in the CTRLA register (CTRLA.SDAHOLD).
- 3. In Slave mode, the minimum slave setup time for the SDA can be selected in the SDA Setup Time bit group in the Control C register (CTRLC.SDASETUP).
- 4. If desired, enable smart operation by setting the Smart Mode Enable bit in the CTRLB register (CTRLB.SMEN).
- 5. If desired, enable SCL low time-out by setting the SCL Low Time-Out bit in the Control A register (CTRLA.LOWTOUT).
- 6. In Master mode:
 - 6.1. Select the inactive bus time-out in the Inactive Time-Out bit group in the CTRLA register (CTRLA.INACTOUT).
 - 6.2. Write the Baud Rate register (BAUD) to generate the desired baud rate.

In Slave mode:

- 6.1. Configure the address match configuration by writing the Address Mode value in the CTRLB register (CTRLB.AMODE).
- 6.2. Set the Address and Address Mask value in the Address register (ADDR.ADDR and ADDR.ADDRMASK) according to the address configuration.

36.6.2.2 Enabling, Disabling, and Resetting

This peripheral is enabled by writing '1' to the Enable bit in the Control A register (CTRLA.ENABLE), and disabled by writing '0' to it.

Writing '1' to the Software Reset bit in the Control A register (CTRLA.SWRST) will reset all registers of this peripheral to their initial states, except the DBGCTRL register, and the peripheral is disabled.

36.6.2.3 I²C Bus State Logic

The bus state logic includes several logic blocks that continuously monitor the activity on the I²C bus lines in all sleep modes with running GCLK_SERCOM_x clocks. The start and stop detectors and the bit counter are all essential in the process of determining the current bus state. The bus state is determined according to Bus State Diagram. Software can get the current bus state by reading the Master Bus State bits in the Status register (STATUS.BUSSTATE). The value of STATUS.BUSSTATE in the figure is shown in binary.

USB – Universal Serial Bus

Writing a zero to this bit has no effect.

Writing a one to this bit clears the TRCPT Interrupt Flag.

USB – Universal Serial Bus

SIZE[2:0]	Description
0x4	128 Byte ⁽¹⁾
0x5	256 Byte ⁽¹⁾
0x6	512 Byte ⁽¹⁾
0x7	1024 Byte in HS mode ⁽¹⁾ 1023 Byte in FS mode ⁽¹⁾

1. For Isochronous pipe only.

Bits 27:14 – MULTI_PACKET_SIZE[13:0] Multi Packet IN or OUT size

These bits define the 14-bit value that is used for multi-packet transfers.

For IN pipes, MULTI_PACKET_SIZE holds the total number of bytes sent. MULTI_PACKET_SIZE should be written to zero when setting up a new transfer.

For OUT pipes, MULTI_PACKET_SIZE holds the total data size for the complete transfer. This value must be a multiple of the maximum packet size.

Bits 13:8 - BYTE_COUNT[5:0] Byte Count

These bits define the 14-bit value that contains number of bytes sent in the last OUT or SETUP transaction for an OUT pipe, or of the number of bytes to be received in the next IN transaction for an input pipe.

38.8.7.5 Host Status Bank

Name:	STATUS_BK
Offset:	0x0A & 0x1A
Reset:	0xxxxxxx
Property:	NA

Bit	7	6	5	4	3	2	1	0
							ERRORFLOW	CRCERR
Access							R/W	R/W
Reset							x	х

Bit 1 – ERRORFLOW Error Flow Status

This bit defines the Error Flow Status.

This bit is set when a Error Flow has been detected during transfer from/towards this bank.

For IN transfer, a NAK handshake has been received. For OUT transfer, a NAK handshake has been received. For Isochronous IN transfer, an overrun condition has occurred. For Isochronous OUT transfer, an underflow condition has occurred.

Value	Description
0	No Error Flow detected.
1	A Error Flow has been detected.

Bit 0 - CRCERR CRC Error

This bit defines the CRC Error Status.

This bit is set when a CRC error has been detected in an isochronous IN endpoint bank.

Value	Description
0	No CRC Error.
1	CRC Error detected.

Public Key Cryptography Controller (PUKCC)

Table 43-28. Fmult Service Carry Settings

Option AND CARRYOPTIONS	CarryOperand	Resulting Operation
SET_CARRYOPTION(ADD_CARRY)	CarryIn	R = X*Y + CarryIn
SET_CARRYOPTION(SUB_CARRY)	- CarryIn	R = X*Y - CarryIn
SET_CARRYOPTION(ADD_1_PLUS_CARRY)	1 + CarryIn	R = X*Y + 1 + CarryIn
SET_CARRYOPTION(ADD_1_MINUS_CARRY)	1 - CarryIn	R = X*Y + 1 - CarryIn
SET_CARRYOPTION(CARRY_NONE)	0	R = X*Y
SET_CARRYOPTION(ADD_1)	1	R = X*Y + 1
SET_CARRYOPTION(SUB_1)	- 1	R = X*Y - 1
SET_CARRYOPTION(ADD_2)	2	R = X*Y + 2

43.3.4.9.9 Status Returned Values

Table 43-29. Fmult Service Return Codes

Returned Status	Importance	Meaning
PUKCL_OK	-	Service functioned correctly

43.3.4.10 Square

43.3.4.10.1 Purpose

The purpose of this service is to compute the square of a big number and optionally accumulate/subtract from a second big number.

Please note that this service uses an optimized implementation of the squaring. It also means that when the GF(2ⁿ) flag is set, the execution time will be smaller than when not set (in that case, the squaring execution time will still be smaller than for a standard multiplication).

The available options are as follows:

- Work in the GF(2ⁿ) or in the standard integer arithmetic field
- Add of a supplemental CarryOperand
- Overlapping of the operands is possible, taking into account some constraints
- Modular Reduction of the computation result

43.3.4.10.2 How to Use the Service

43.3.4.10.3 Description

This service provides the following (if not computing a modular reduction of the result):

$R = [Z] \pm (X^2 + CarryOperand)$

Or (if computing a modular reduction of the result):

$R = ([Z] \pm (X^2 + CarryOperand))mod N$

The service name for this operation is Square.

In these computations, the following data has to be provided:

• R the result (pointed by {nu1RBase,2 *u2Xlength})

- P the modulus filled (pointed by {nu1ModBase,u2ModLength + 4})
- The workspace not initialized (pointed by {nu1WorkSpace, 8*u2ModLength + 44}
- The a and b parameters relative to the elliptic curve (pointed by {nu1ABBase,2*u2ModLength + 8})
- K the scalar number (pointed by {nu1ScalarNumber,u2ScalarLength + 4})

The resulting C point is represented in projective coordinates (X,Y,Z) and is stored at the very same place than the input point A. This point can be the Infinite Point.

The service name for this operation is GF2NEccMulFast. This service uses Fast mode and Fast Modular Reduction for computation.

Important: Before using this service, ensure that the constant Cns has been calculated with the setup of the Fast Modular Reductions service.

43.3.7.4.4 Parameters Definition

Table 43-98. GF2NEccMulFast Service Parameters

Parameter	Туре	Direction	Location	Data Length	Before Executing the Service	After Executing the Service
nu1ModBase	nu1	I	Crypto RAM	u2ModLength + 4	Base of modulus P	Base of modulus P
nu1CnsBase	nu1	I	Crypto RAM	u2ModLength + 12	Base of Cns	Base of Cns
u2ModLength	u2	I	-	-	Length of modulus P	Length of modulus P
nu1KBase	nu1	1	Crypto RAM	u2KLength	Scalar number used to multiply the point A	Unchanged
u2KLength	u2	I	-	-	Length of scalar K	Length of scalar K
nu1PointBase	nu1	I/O	Crypto RAM	3*u2ModLength + 12	Input point A (projective coordinates)	Resulting point C (projective coordinates)
nu1ABase	nu1	1	Crypto RAM	2*u2ModLength + 8	Parameters a and b of the elliptic curve	Unchanged
nu1Workspace	nu1	1	Crypto RAM	8*u2ModLength + 44	_	Corrupted workspace

43.3.7.4.5 Code Example

```
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;
```

```
PUKCL (u2Option) = 0;
```

46.8.5 Interrupt Enable Set

Name:INTENSETOffset:0x05Reset:0x00Property:PAC Write-Protection

This register allows the user to enable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Clear register (INTENCLR).

Bit	7	6	5	4	3	2	1	0
				WIN0			COMPx	COMPx
Access				R/W			R/W	R/W
Reset				0			0	0

Bit 4 – WIN0 Window 0 Interrupt Enable

Reading this bit returns the state of the Window 0 interrupt enable.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit enables the Window 0 interrupt.

Value	Description
0	The Window 0 interrupt is disabled.
1	The Window 0 interrupt is enabled.

Bits 1,0 – COMPx Comparator x Interrupt Enable

Reading this bit returns the state of the Comparator x interrupt enable.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the Ready interrupt bit and enable the Ready interrupt.

	Value	Description
[0	The Comparator x interrupt is disabled.
	1	The Comparator x interrupt is enabled.

DAC – Digital-to-Analog Converter

47.8.8	Synchroni	zation Busy						
	Name: Offset: Reset: Property:	SYNCBUSY 0x08 0x00000000 -						
Bit	t 31	30	29	28	27	26	25	24
Access								
Reset	t							
Bit	t23	22	21	20	19	18	17	16
Access Reset								
Bi	t 15	14	13	12	11	10	9	8
Access Rese								
Bit	t 7	6	5	4	3	2	1	0
			DATABUF1	DATABUF0	DATA1	DATA0	ENABLE	SWRST
Access	;		R	R	R	R	R	R
Reset	t		0	0	0	0	0	0

Bit 5 - DATABUF1 Data Buffer DAC1

This bit is set when DATABUF1 register is written.

This bit is cleared when DATABUF1 synchronization is completed.

Value	Description
0	No ongoing synchronized access.
1	Synchronized access is ongoing.

Bit 4 – DATABUF0 Data Buffer DAC0

This bit is set when DATABUF0 register is written.

This bit is cleared when DATABUF0 synchronization is completed.

Value	Description
0	No ongoing synchronized access.
1	Synchronized access is ongoing.

Bit 3 – DATA1 Data DAC1

This bit is set when DATA1 register is written.

This bit is cleared when DATA1 synchronization is completed.

48.7.1.3 Control B Set

Name:CTRLBSETOffset:0x05Reset:0x00Property:PAC Write-Protection, Read-synchronized, Write-Synchronized

This register allows the user to set bits in the CTRLB register without doing a read-modify-write operation. Changes in this register will also be reflected in the Control B Clear register (CTRLBCLR).

Bit	7	6	5	4	3	2	1	0
		CMD[2:0]				ONESHOT	LUPD	DIR
Access	R/W	R/W	R/W			R/W	R/W	R/W
Reset	0	0	0			0	0	0

Bits 7:5 – CMD[2:0] Command

These bits are used for software control of the TC. The commands are executed on the next prescaled GCLK_TC clock cycle. When a command has been executed, the CMD bit group will be read back as zero.

Writing 0x0 to these bits has no effect.

Writing a value different from 0x0 to these bits will issue a command for execution.

Value	Name	Description
0x0	NONE	No action
0x1	RETRIGGER	Force a start, restart or retrigger
0x2	STOP	Force a stop
0x3	UPDATE	Force update of double buffered registers
0x4	READSYNC	Force a read synchronization of COUNT

Bit 2 - ONESHOT One-Shot on Counter

This bit controls one-shot operation of the TC.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will enable one-shot operation.

Value	Description
0	The TC will wrap around and continue counting on an overflow/underflow condition.
1	The TC will wrap around and stop on the next underflow/overflow condition.

Bit 1 – LUPD Lock Update

This bit controls the update operation of the TC buffered registers.

When CTRLB.LUPD is set, no any update of the registers with value of its buffered register is performed on hardware UPDATE condition. Locking the update ensures that all buffer registers are valid before an hardware update is performed. After all the buffer registers are loaded correctly, the buffered registers can be unlocked.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the LUPD bit.

48.7.3.8 Status

Name:	STATUS
Offset:	0x0B
Reset:	0x01
Property:	Read-Synchronized

Bit	7	6	5	4	3	2	1	0
				CCBUFVx	PERBUFV		SLAVE	STOP
Access				R/W	R/W		R	R
Reset				0	0		0	1

Bit 4 – CCBUFVx Channel x Compare or Capture Buffer Valid

For a compare channel x, the bit x is set when a new value is written to the corresponding CCBUFx register.

The bit x is cleared by writing a '1' to it when CTRLB.LUPD is set, or it is cleared automatically by hardware on UPDATE condition.

For a capture channel x, the bit x is set when a valid capture value is stored in the CCBUFx register. The bit x is cleared automatically when the CCx register is read.

Bit 3 – PERBUFV Period Buffer Valid

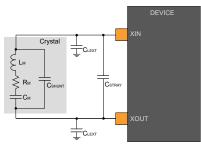
This bit is set when a new value is written to the PERBUF register. The bit is cleared by writing '1' to the corresponding location when CTRLB.LUPD is set, or automatically cleared by hardware on UPDATE condition. This bit is available only in 8-bit mode and will always read zero in 16- and 32-bit modes.

Bit 1 – SLAVE Slave Status Flag

This bit is only available in 32-bit mode on the slave TC (i.e., TC1 and/or TC3). The bit is set when the associated master TC (TC0 and TC2, respectively) is set to run in 32-bit mode.

Bit 0 – STOP Stop Status Flag

This bit is set when the TC is disabled, on a Stop command, or on an overflow/underflow condition when the One-Shot bit in the Control B Set register (CTRLBSET.ONESHOT) is '1'.


Value	Description
0	Counter is running.
1	Counter is stopped.

PCC - Parallel Capture Controller

Value	Description
0	No new data is ready to be read since the last read of RHR.
1	New data is ready to be read since the last read of RHR.

Electrical Characteristics at 85°C

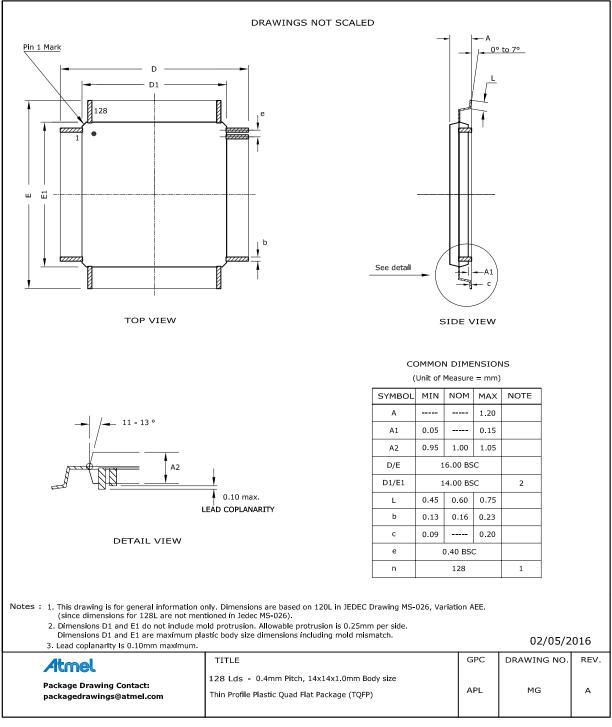
Figure 54-6. Oscillator Connection

The user must choose a crystal oscillator where the crystal load capacitance C_L is within the range given in the Table. The exact value of C_L can be found in the crystal datasheet. The capacitance of the external capacitors (C_{LEXT}) can then be computed as follows:

 $C_{\text{LEXT}} = 2(C_{\text{L}} - C_{\text{STRAY}} - _{\text{SHUNT}})$,

where C_{SHUNT} is the shunt capacity of the crystal, and C_{STRAY} is the capacitance of the pins and the PCB:

 $C_{\text{STRAY}} = C_{\text{StrayDevice}} + C_{\text{StrayPCB}}$, and $1/C_{\text{StrayDevice}} = 1/C_{\text{XIN}} + 1/C_{\text{XOUT}}$.


Table 54-40. Multi-Crystal Oscillator Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
FOUT	Crystal oscillator frequency		8	-	48	MHz
CL	Crystal Load	F = 8 MHz	-	-	20	pF
		F = 16 MHz	-	-	20	
		F = 32 MHz	-	-	13	
		F = 48 MHz	-	-	13	
ESR	Crystal Equivalent Series Resistance -	F = 8 MHz, CL=20 pF - IMULT = 0x3	-	-	181	Ω
SF=3	SF=3	F = 16 MHz, CL = 20 pF - IMULT = 0x4	-	-	180	_
		F= 24 MHz, C _L = 20 pF - IMULT = 0x5	-	-	70	
	F = 48 MHz, CL = 13 pF - IMULT = 0x6	-	-	70		
C _{XIN}	Parasitic load capacitor	-	-	6.3	-	pF
CXOUT		-	-	5.9	-	
DL	Drive Level (see Note 1)	ENALC = ON	-	-	100	μW
TSTART	Startup time	F = 8 MHz, C_L = 20 pF, C_{SHUNT} = 2 pF - IMULT = 0x3	-	39700	72200	Cycles
		F = 16 MHz, C_{L} = 20 pF, C_{SHUNT} = 1.5 pF - IMULT = 0x4	-	37550	62000	
		F = 24 MHz, C_L = 20 pF, C_SHUNT = 2.5 pF - IMULT = 0x5	-	32700	68500	
		F = 48 MHz, CL = 13 pF, CSHUNT = 5 pF - IMULT = 0x6	-	18400	38500	

Note: To ensure that the crystal is not overdriven, the automatic loop control is recommended to be turned ON (ENALC = 1).

Packaging Information

55.3.7 128 pin TQFP

520	mg
-----	----

Table 55-15. Package Characteristics

Moisture Sensitivity Level	MSL3
----------------------------	------