

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM
Number of I/O	51
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.63V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsame51j20a-mut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CMCC - Cortex M Cache Controller

11.3 Block Diagram

Figure 11-1. CMCC Block Diagram

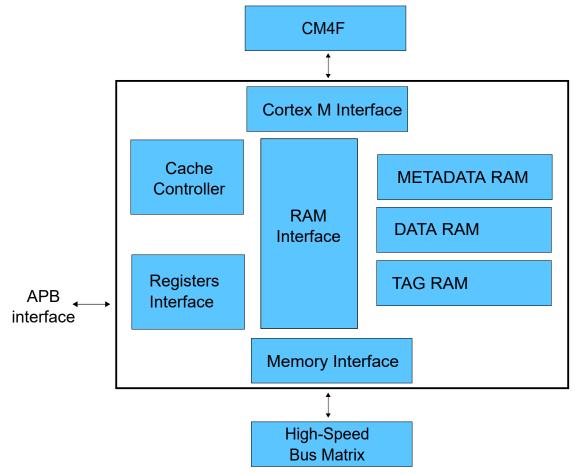
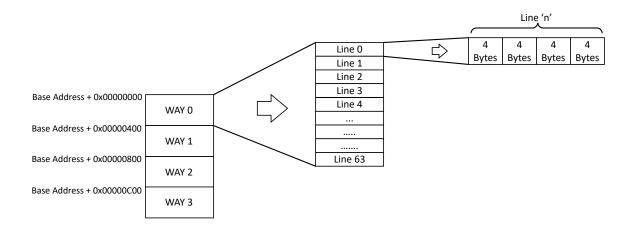



Figure 11-2. CMCC Organization

12.13.7 Debug Communication Channel x

Name:	DCC
Offset:	0x10 + n*0x04 [n=01]
Reset:	0x0000000
Property:	-

Bit	31	30	29	28	27	26	25	24
	DATA[31:24]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				DATA[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				DATA	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				DATA	\ [7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:0 – DATA[31:0] Data Data register.

GCLK - Generic Clock Controller

Value	Description
0	The Generator is stopped in Standby and the GCLK_IO pin state (one or zero) will be
	dependent on the setting in GENCTRL.OOV.
1	The Generator is kept running and output to its dedicated GCLK_IO pin during Standby
	mode.

Bit 12 – DIVSEL Divide Selection

This bit determines how the division factor of the clock source of the Generator will be calculated from DIV. If the clock source should not be divided, DIVSEL must be 0 and the GENCTRLn.DIV value must be either 0 or 1.

Value	Description
0	The Generator clock frequency equals the clock source frequency divided by
	GENCTRLn.DIV.
1	The Generator clock frequency equals the clock source frequency divided by 2 [^] (N+1), where
	N is the Division Factor Bits for the selected generator (refer to GENCTRLn.DIV).

Bit 11 – OE Output Enable

This bit is used to output the Generator clock output to the corresponding pin (GCLK_IO), as long as GCLK_IO is not defined as the Generator source in the GENCTRLn.SRC bit field.

Value	Description
0	No Generator clock signal on pin GCLK_IO.
1	The Generator clock signal is output on the corresponding GCLK_IO, unless GCLK_IO is selected as a generator source in the GENCTRLn.SRC bit field.

Bit 10 - OOV Output Off Value

This bit is used to control the clock output value on pin (GCLK_IO) when the Generator is turned off or the OE bit is zero, as long as GCLK_IO is not defined as the Generator source in the GENCTRLn.SRC bit field.

V	/alue	Description
0)	The GCLK_IO will be LOW when generator is turned off or when the OE bit is zero.
1		The GCLK_IO will be HIGH when generator is turned off or when the OE bit is zero.

Bit 9 – IDC Improve Duty Cycle

This bit is used to improve the duty cycle of the Generator output to 50/50 for odd division factors.

Value	Description
0	Generator output clock duty cycle is not balanced to 50/50 for odd division factors.
1	Generator output clock duty cycle is 50/50.

Bit 8 – GENEN Generator Enable

This bit is used to enable and disable the Generator.

Value	Description
0	Generator is disabled.
1	Generator is enabled.

Bits 4:0 – SRC[4:0] Generator Clock Source Selection

These bits select the Generator clock source, as shown in this table.

RTC – Real-Time Counter

Value	Description	
0	Tamper DMA request is disabled. Reading TIMESTAMP has no effect on	
	INTFLAG.TAMPER.	
1	Tamper DMA request is enabled. Reading TIMESTAMP will clear INTFLAG.TAMPER.	

Bit 6 – RTCOUT RTC Out Enable

Value	Description
0	The RTC active layer output is disabled.
1	The RTC active layer output is enabled.

Bit 5 – DEBASYNC Debouncer Asynchronous Enable

Value	Description
0	The tamper input debouncers operate synchronously.
1	The tamper input debouncers operate asynchronously.

Bit 4 – DEBMAJ Debouncer Majority Enable

Value	Description
0	The tamper input debouncers match three equal values.
1	The tamper input debouncers match majority two of three values.

Bit 1 – GP2EN General Purpose 2 Enable

Value	Description
0	COMP1 compare function enabled. GP2/GP3 disabled.
1	COMP1 compare function disabled. GP2/GP3 enabled.

Bit 0 – GP0EN General Purpose 0 Enable

Value	Description
0	COMP0 compare function enabled. GP0 disabled.
1	COMP0 compare function disabled. GP0 enabled.

	Name: Offset: Reset: Property:	TIDM 0xA8 + n*0x0 0x00000000 -	4 [n=03]					
Bit	31	30	29	28	27	26	25	24
	ENIDn							
Access	R/W							
Reset	0							
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
				TID[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TID	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

24.9.24 GMAC Type ID Match n Register

Bit 31 – ENIDn Enable Copying of TID Matched Frames

Value	Description
0	TID n is not part of the comparison match.
1	TID n is processed for the comparison match.

Bits 15:0 - TID[15:0] Type ID Match n

For use in comparisons with received frames type ID/length frames.

Name: Offset: Reset: Property:		WOL 0x0B8 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
					MTI	SA1	ARP	MAG
Access		-			R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	15	14	13	12	11	10	9	8
				IP[1	5:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
					7:0]			
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

24.9.25 GMAC Wake on LAN Register

Bit 19 - MTI Multicast Hash Event Enable

Value	Description
0	Wake on LAN multicast hash Event disabled
1	Wake on LAN multicast hash Event enabled

Bit 18 – SA1 Specific Address Register 1 Event Enable

Value	Description
0	Wake on Specific Address Register 1 Event disabled
1	Wake on Specific Address Register 1 Event enabled

Bit 17 - ARP ARP Request Event Enable

Value	Description
0	Wake on LAN ARP request Event disabled
1	Wake on LAN ARP request Event enabled

Bit 16 – MAG Magic Packet Event Enable

PAC - Peripheral Access Controller

27.7.10 Peripheral Write Protection Status A

Name:	STATUSA
Offset:	0x34
Reset:	0x00010000
Property:	PAC Write-Protection

Writing to this register has no effect.

Reading STATUS register returns peripheral write protection status:

	Value	Descr	iption							
	0	Periph	Peripheral is not write protected.							
	1	Periph	Peripheral is write protected.							
Bit	31	30	29	28	27	26	25	24		
DIL	51	50	29	20	21	20	23	24		
Access										
Reset										
Bit	23	22	21	20	19	18	17	16		
Access										
Reset										
Bit	15	14	13	12	11	10	9	8		
	TC1	TC0	SERCOM1	SERCOM0	FREQM	EIC		WDT		
Access	R	R	R	R	R	R		R		
Reset	0	0	0	0	0	0		0		
Bit	7	6	5	4	3	2	1	0		
ы	GCLK	SUPC	osc32kctrl	4 OSCCTRL	RSTC	MCLK	PM	PAC		
•										
Access	R	R	R	R	R	R	R	R		
Reset	0	0	0	0	0	0	0	0		

Value	Description
0	TC1 is not write protected
1	TC1 is write protected

Bit 14 – TC0 TC0 APB Protect Enable

Value	Description
0	TC0 is not write protected
1	TC0 is write protected

Bit 13 – SERCOM1 SERCOM1 APB Protect Enable

© 2018 Microchip Technology Inc.

SERCOM I2C – Inter-Integrated Circuit

36.8.10 Address

Name:ADDROffset:0x24Reset:0x0000000Property:PAC Write-Protection, Enable-Protected

Bit	31	30	29	28	27	26	25	24
							ADDRMASK[9:7]
Access						R/W	R/W	R/W
Reset						0	0	0
Bit	23	22	21	20	19	18	17	16
				ADDRMASK[6:0]]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8
	TENBITEN						ADDR[9:7]	
Access	R/W					R/W	R/W	R/W
Reset	0					0	0	0
Bit	7	6	5	4	3	2	1	0
				ADDR[6:0]				GENCEN
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 26:17 – ADDRMASK[9:0] Address Mask

These bits act as a second address match register, an address mask register or the lower limit of an address range, depending on the CTRLB.AMODE setting.

Bit 15 – TENBITEN Ten Bit Addressing Enable

Value	Description
0	10-bit address recognition disabled.
1	10-bit address recognition enabled.

Bits 10:1 - ADDR[9:0] Address

These bits contain the I²C slave address used by the slave address match logic to determine if a master has addressed the slave.

When using 7-bit addressing, the slave address is represented by ADDR[6:0].

When using 10-bit addressing (ADDR.TENBITEN=1), the slave address is represented by ADDR[9:0]

When the address match logic detects a match, INTFLAG.AMATCH is set and STATUS.DIR is updated to indicate whether it is a read or a write transaction.

Bit 0 – GENCEN General Call Address Enable

A general call address is an address consisting of all-zeroes, including the direction bit (master write).

© 2018 Microchip Technology Inc.

QSPI - Quad Serial Peripheral Interface

Value	Description
0	The ERROR interrupt is disabled.
1	The ERROR interrupt is enabled.

Bit 2 – TXC Transmission Complete Interrupt Disable Writing a '0' to this bit has no effect.

Writing a '1' will clear the corresponding interrupt request.

Value	Description
0	The TXC interrupt is disabled.
1	The TXC interrupt is enabled.

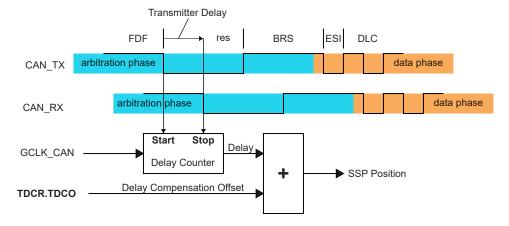
Bit 1 – DRE Transmit Data Register Empty Interrupt Disable Writing a '0' to this bit has no effect.

Writing a '1' will clear the corresponding interrupt request.

Value	Description
0	The DRE interrupt is disabled.
1	The DRE interrupt is enabled.

Bit 0 – RXC Receive Data Register Full Interrupt Disable Writing a '0' to this bit has no effect.

Writing a '1' will clear the corresponding interrupt request.


Value	Description
0	The RXC interrupt is disabled.
1	The RXC interrupt is enabled.

- The sum of the measured delay from CAN_TX to CAN_RX and the configured transceiver delay compensation offset FBTP.TDCO has to be less than 6 bit times in the data phase.
- The sum of the measured delay from CAN_TX to CAN_RX and the configured transceiver delay compensation offset FBTP.TDCO has to be less or equal to 127 mtq. In case this sum exceeds 127 mtq, the maximum value of 127 mtq is used for transceiver delay compensation.
- The data phase ends at the sample point of the CRC delimiter, that stops checking of receive bits at the SSPs.

Transmitter Delay Compensation Measurement

If transmitter delay compensation is enabled by programming DBTP.TDC = '1', the measurement is started within each transmitted CAN FD frame at the falling edge of bit FDF to bit res. The measurement is stopped when this edge is seen at the receive input CAN_TX of the transmitter. The resolution of this measurement is one mtq.

To avoid that a dominant glitch inside the received FDF bit ends the delay compensation measurement before the falling edge of the received res bit, resulting in a too early SSP position, the use of a transmitter delay compensation filter window can be enabled by programming TDCR.TDCF. This defines a minimum value for the SSP position. Dominant edges of CAN_RX, that would result in an earlier SSP position are ignored for transmitter delay measurement. The measurement is stopped when the SSP position is at least TDCR.TDCF AND CAN_RX is low.

39.6.2.5 Restricted Operation Mode

In Restricted Operation Mode the node is able to receive data and remote frames and to give acknowledge to valid frames, but it does not send data frames, remote frames, active error frames, or overload frames. In case of an error condition or overload condition, it does not send dominant bits, instead it waits for the occurrence of bus idle condition to resynchronize itself to the CAN communication. The error counters (ECR.REC, ECR.TEC) are frozen while Error Logging (ECR.CEL) is still incremented. The CPU can set the CAN into Restricted Operation mode by setting bit CCCR.ASM. The bit can only be set by the CPU when both CCCR.CCE and CCCR.INIT are set to '1'. The bit can be reset by the CPU at any time.

Restricted Operation Mode is automatically entered when the Tx Handler was not able to read data from the Message RAM in time. To leave Restricted Operation Mode, the CPU has to reset CCCR.ASM.

The Restricted Operation Mode can be used in applications that adapt themselves to different CAN bit rates. In this case the application tests different bit rates and leaves the Restricted Operation Mode after it has received a valid frame.

© 2018 Microchip Technology Inc.

CAN - Control Area Network

Value	Description
0	No Message RAM Watchdog event occurred.
1	Message RAM Watchdog event due to missing READY.

Bit 25 – BO Bus_Off Status

Value	Description
0	Bus_Off status unchanged.
1	Bus_Off status changed.

Bit 24 – EW Error Warning Status

Value	Description
0	Error_Warning status unchanged.
1	Error_Warning status changed.

Bit 23 – EP Error Passive

Value	Description		
0	Error_Passive status unchanged.		
1	Error_Passive status changed.		

Bit 22 – ELO Error Logging Overflow

Value	Description
0	CAN Error Logging Counter did not overflow.
1	Overflow of CAN Error Logging Counter occurred.

Bit 21 – BEU Bit Error Uncorrected

Message RAM bit error detected, uncorrected. Generated by an optional external parity / ECC logic attached to the Message RAM. An uncorrected Message RAM bit sets CCCR.INIT to 1. This is done to avoid transmission of corrupted data.

Value	Description
0	Not bit error detected when reading from Message RAM.
1	Bit error detected, uncorrected (e.g. parity logic).

Bit 20 - BEC Bit Error Corrected

Message RAM bit error detected and corrected. Generated by an optional external parity / ECC logic attached to the Message RAM.

Value	e Description
0	Not bit error detected when reading from Message RAM.
1	Bit error detected and corrected (e.g. ECC).

Bit 19 – DRX Message stored to Dedicated Rx Buffer

The flag is set whenever a received message has been stored into a dedicated Rx Buffer.

Value	Description
0	No Rx Buffer updated.
1	At least one received message stored into a Rx Buffer.

SD/MMC Host Controller ...

Value	Description
0	Work
1	Reset

43.3.4.5.6 Constraints

The parameter placements that are not allowed are are as follows.

If nu1XBase equals zero, no checks are made on nu1XBase (fixed) and u2XLength (unused).

The following conditions must be avoided to ensure that the service works correctly:

- nu1XBase or nu1RBase are not aligned on 32-bit boundaries
- u2XLength or u2RLength is either: <4, >0xffc or not a 32-bit length or u2XLength >u2RLength
- {nu1XBase, u2XLength} or {nu1RBase, u2RLength} do not entirely lie in Crypto RAM
- {nu1XBase, u2XLength} overlaps {nu1RBase,u2RLength}

43.3.4.5.7 Status Returned Values

Table 43-14. FastCopy Service Return Codes

Returned status	Importance	Meaning		
PUKCL_OK	_	Service functioned correctly		

43.3.4.6 Conditional Copy/Clear

43.3.4.6.1 Purpose

This service conditionally performs a copy from a memory area to another or a memory area clear.

43.3.4.6.2 How to Use the Service

43.3.4.6.3 Description

This service copies a number X into another number R, padding with zero on the MSB side up to the length specified for R. This copy operation is performed under the conditions specified in the options.

If the condition is verified, R = X.

The copy or clear action is made under condition.

The four possible options for the condition are described in the following table. Two of the conditions check the Specific.CarryIn bit (see 43.3.3.2 Accessing Different Library Services).

The processing is done as follows:

- If the condition is not verified, nothing is processed.
- If the condition is verified the copy or clear follows the rules:
 - If the lengths of R and X are equal, a complete fast copy is processed
 - If the length of R is strictly greater than the length of X, X is first copied in the Low Significant Bytes side of R, and R is padded with zeros on the Most Significant Bytes side.
 - If the pointer on the X area equals zero, R is filled with zeros.

The service name for this operation is CondCopy.

43.3.6.8.6 Constraints

. . .

No overlapping between either input and output are allowed. The following conditions must be avoided to ensure that the service works correctly:

- nu1ModBase, nu1CnsBase, nu1PointABase, nu1Workspace are not aligned on 32-bit boundaries
- {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase, 3*u2ModLength+ 12}, {nu1Workspace, <WorkspaceLength>} are not in Crypto RAM
- u2ModLength is either: < 12, > 0xffc or not a 32-bit length
- All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength +8}, {nu1PointABase, 3*u2ModLength + 12}, and {nu1Workspace, 2*u2ModLength + 16}

43.3.6.8.7 Status Returned Values

Table 43-80. ZpEccConvAffineToProjective Service Return Codes

Returned Status	Importance	Meaning
PUKCL_OK	-	The computation passed without problem.

43.3.6.9 Randomize a Coordinate

43.3.6.9.1 Purpose

This service is used to convert the projective representation of a point to another projective representation.

43.3.6.9.2 How to Use the Service

43.3.6.9.3 Description

The operation performed is:

 $Projective(X_1, Y_1, Z_1) \rightarrow Projective(X_2, Y_2, Z_2)$

In this computation, the following parameters need to be provided:

- The input point is filled in projective coordinates (X,Y,Z) (pointed by {nu1PointBase,3*u2ModLength + 12}). This Point must not be the point at infinity.
- Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength +8})
- P the modulus filled (pointed by {nu1ModBase,u2ModLength +4})
- The workspace not initialized (pointed by {nu1WorkSpace, 3*u2ModLength +28}
- The random number (pointed by {nu1RandomBase, u2ModLength +4}).

The result is the point nu1PointBase with its (X,Y,Z) coordinates randomized.

The service for this operation is ZpEcRandomiseCoordinate.

Public Key Cryptography Controller (PUKCC)

else // Manage the error

43.3.7.5.6 Constraints

No overlapping between either input and output are allowed. The following conditions must be avoided to ensure the service works correctly:

- nu1ModBase, nu1CnsBase, nu1PointABase, nu1Workspace are not aligned on 32-bit boundaries
- {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8},{nu1PointABase, 3*u2ModLength + 12}, {nu1Workspace, <WorkspaceLength>} are not in Crypto RAM
- u2ModLength is either: < 12, > 0xffc or not a 32-bit length
- All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase, 3*u2ModLength + 12} and {nu1Workspace, 4*u2ModLength + 48}

43.3.7.5.7 Status Returned Values

Table 43-101. GF2NEcConvProjToAffine Service Return Codes

Returned Status	Importance	Meaning
PUKCL_OK	-	The computation passed without problem.
PUKCL_POINT_AT_INFINITY	Warning	The input point has its Z equal to zero, so it is a representation of the infinite point.

43.3.7.6 Affine to Projective Coordinates Conversion

43.3.7.6.1 Purpose

This service is used to perform a point coordinates conversion from an affine point representation to projective.

43.3.7.6.2 How to Use the Service

43.3.7.6.3 Description

The operation performed is:

```
affine(Xa, Ya) \rightarrow projective(Xp, Yp, Zp)
```

In this computation, the following parameters need to be provided:

- A the input point is filled in affine coordinates for X and Y, and setting Z to 1 (pointed by {nu1PointABase,3*u2ModLength + 4}).
- Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength + 8})
- P the modulus filled (pointed by {nu1ModBase,u2ModLength + 4})
- The workspace not initialized (pointed by {nu1WorkSpace, 2*u2ModLength +16} The result is the point A with its (X,Y,Z) projective coordinates.

The service name for this operation is GF2NEcConvAffineToProjective.

Important: Before using this service, ensure that the constant Cns has been calculated with the setup of the Fast Modular Reductions service.

ADC – Analog-to-Digital Converter

45.8.19 DSEQDATA

Name:	DSEQDATA				
Offset:	0x34				
Reset:	0x0000000				
Property:	PAC Write-Protection				

Bit	31	30	29	28	27	26	25	24	
		DATA[31:24]							
Access	W	W	W	W	W	W	W	W	
Reset	0	0	0	0	0	0	0	0	
Bit	23	22	21	20	19	18	17	16	
				DATA	[23:16]				
Access	W	W	W	W	W	W	W	W	
Reset	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	
		DATA[15:8]							
Access	W	W	W	W	W	W	W	W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
				DATA	4[7:0]				
Access	W	W	W	W	W	W	W	W	
Reset	0	0	0	0	0	0	0	0	

Bits 31:0 - DATA[31:0] DMA Sequential Data

This register stores data written by the DMA and re-directed to the first enabled ADC registers in the DSEQSTAT register.

46.5.1 I/O Lines

Using the AC's I/O lines requires the I/O pins to be configured. Refer to *PORT - I/O Pin Controller* for details.

Table 46-1. I/O Lines

Instance	Signal	I/O Line	Peripheral Function
AC0	AIN0	PAxx	A
AC0	AIN1	PAxx	A
AC0	AIN2	PAxx	A
AC0	AIN3	PAxx	A
AC0	CMP0	PAxx	A
AC0	CMP1	PAxx	A

Related Links

32. PORT - I/O Pin Controller

46.5.2 Power Management

The AC will continue to operate in any sleep mode where the selected source clock is running. The AC's interrupts can be used to wake up the device from sleep modes. Events connected to the event system can trigger other operations in the system without exiting sleep modes.

46.5.3 Clocks

The AC bus clock (CLK_AC_APB) can be enabled and disabled in the Main Clock module, MCLK (see *MCLK - Main Clock*, and the default state of CLK_AC_APB can be found in *Peripheral Clock Masking*.

A generic clock (GCLK_AC) is required to clock the AC. This clock must be configured and enabled in the generic clock controller before using the AC. Refer to the Generic Clock Controller chapter for details.

This generic clock is asynchronous to the bus clock (CLK_AC_APB). Due to this asynchronicity, writes to certain registers will require synchronization between the clock domains. Refer to Synchronization for further details.

Related Links

15.6.2.6 Peripheral Clock Masking15. MCLK – Main Clock

46.5.4 DMA

Not applicable.

46.5.5 Interrupts

The interrupt request lines are connected to the interrupt controller. Using the AC interrupts requires the interrupt controller to be configured first. Refer to *Nested Vector Interrupt Controller* for details.

Related Links

10.2 Nested Vector Interrupt Controller

46.5.6 Events

The events are connected to the Event System. Refer to *EVSYS – Event System* for details on how to configure the Event System.

DAC – Digital-to-Analog Converter

47.8.8	Synchronization Busy							
	Name: Offset: Reset: Property:	SYNCBUSY 0x08 0x00000000 -						
Bit	t 31	30	29	28	27	26	25	24
Access								
Reset	t							
Bit	t23	22	21	20	19	18	17	16
Access Reset								
Bi	t 15	14	13	12	11	10	9	8
Access Reset								
Bit	t 7	6	5	4	3	2	1	0
			DATABUF1	DATABUF0	DATA1	DATA0	ENABLE	SWRST
Access	;		R	R	R	R	R	R
Reset	t		0	0	0	0	0	0

Bit 5 - DATABUF1 Data Buffer DAC1

This bit is set when DATABUF1 register is written.

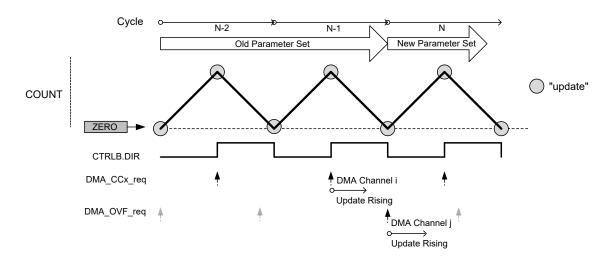
This bit is cleared when DATABUF1 synchronization is completed.

Value	Description
0	No ongoing synchronized access.
1	Synchronized access is ongoing.

Bit 4 – DATABUF0 Data Buffer DAC0

This bit is set when DATABUF0 register is written.

This bit is cleared when DATABUF0 synchronization is completed.


Value	Description
0	No ongoing synchronized access.
1	Synchronized access is ongoing.

Bit 3 – DATA1 Data DAC1

This bit is set when DATA1 register is written.

This bit is cleared when DATA1 synchronization is completed.

TCC – Timer/Counter for Control Applications

Figure 49-39. DMA Triggers in DSBOTH Operation Mode and Circular Buffer Enabled

49.6.5.2 Interrupts

The TCC has the following interrupt sources:

- Overflow/Underflow (OVF)
- Retrigger (TRG)
- Count (CNT) refer also to description of EVCTRL.CNTSEL.
- Capture Overflow Error (ERR)
- Debug Fault State (DFS)
- Recoverable Faults (FAULTn)
- Non-recoverable Faults (FAULTx)
- Compare Match or Capture Channels (MCx)

These interrupts are asynchronous wake-up sources. See Sleep Mode Entry and Exit Table in PM/Sleep Mode Controller section for details.

Each interrupt source has an interrupt flag associated with it. The interrupt flag in the Interrupt Flag Status and Clear (INTFLAG) register is set when the interrupt condition occurs. Each interrupt can be individually enabled by writing a '1' to the corresponding bit in the Interrupt Enable Set (INTENSET) register, and disabled by writing a '1' to the corresponding bit in the Interrupt Enable Clear (INTENCLR) register. An interrupt request is generated when the interrupt flag is set and the corresponding interrupt is enabled. The interrupt request remains active until the interrupt flag is cleared, the interrupt is disabled, or the TCC is reset. See 49.8.12 INTFLAG for details on how to clear interrupt flags. The TCC has one common interrupt request line for all the interrupt sources. The user must read the INTFLAG register to determine which interrupt condition is present.

Note: Interrupts must be globally enabled for interrupt requests to be generated. Refer to *Nested Vector Interrupt Controller* for details.

Related Links

10.2 Nested Vector Interrupt Controller

49.6.5.3 Events

The TCC can generate the following output events:

• Overflow/Underflow (OVF)

Electrical Characteristics at 85°C

54.13.2 SERCOM in SPI Mode Timing

Table 54-52. SPI Timing Characteristics and Requirements⁽¹⁾

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
t _{SCK} (10)	SCK period	Master	Reception	2*(t _{MIS} +t _{SLAVE_OUT}) ⁽³⁾	-	-	ns
		Master	Transmission	$2^{*}(t_{MOV}+t_{SLAVE_IN})$	-	-	
t _{SCKW}	SCK high/low width	Master	Master - 0.5*t _{SCF}		0.5*t _{SCK}	-	
t _{SCKR}	SCK rise time ⁽²⁾	Master		-	0.25*t _{SCK}	-	
t _{SCKF}	SCK fall time ⁽²⁾	Master		-	0.25*t _{SCK}	-	
t _{MIS}	MISO setup to SCK	Master, VDD>2.70V		18	-	-	
		Master,	VDD>1.71V	19	-	-	
t _{MIH}	MISO hold after SCK	Master,	VDD>2.70V	0	-	-	
		Master,	VDD>1.71V	0	-	-	
t _{MOV}	MOSI output valid SCK	Master,	VDD>2.70V	-	-	9	
		Master,	VDD>1.71V	-	-	14	
t _{MOH}	MOSI hold after SCK	Master, VDD>2.70V		-	-	-3	
		Master,	VDD>1.71V	-	-	-3	
t _{SSCK}	Slave SCK Period	Slave	Reception	2*(t _{SIS} +t _{MASTER_OUT}) ⁽⁵⁾	-	-	ns
		Slave	Transmission	2*(t _{SOV} +t _{MASTER_IN}) ⁽⁶⁾	-	-	
t _{ssckw}	SCK high/low width	Slave		-	0.5*t _{SSCK}	-	
t _{SSCKR}	SCK rise time ⁽²⁾	Slave		-	0.25*t _{SSCK}	-	
t _{SSCKF}	SCK fall time ⁽²⁾	Slave		-	0.25*t _{SSCK}	-	
t _{SIS}	MOSI setup to SCK	Slave, VDD>2.70V		7.5	-	-	
		Slave, VDD>1.71V		8.5	-	-	
t _{SIH}	MOSI hold after SCK	Slave, VDD>2.70V		4	-	-	
		Slave, VDD>1.71V		4	-	-	
t _{SSS}	SS setup to SCK	Slave	PRELOADEN=1	t_{SOSS} + t_{EXT_MIS} +2* t_{APBC} ⁽⁸⁾⁽⁹⁾	-	-	
			PRELOADEN=0	t_{SOSS} + $t_{\text{EXT}_{MIS}}^{(8)}$	-	-	
t _{SSH}	SS hold after SCK	Slave		0.5*t _{SSCK}	-	-	
t _{SOV}	MISO output valid SCK	Slave, VDD>2.70V		15	-	-	
		Slave, VDD>1.71V		24	-	-	

© 2018 Microchip Technology Inc.