

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM
Number of I/O	81
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192К х 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.63V
Data Converters	A/D 28x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsame51n19a-au

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	53.7.	Register Summary	2006
	53.8.	Register Description	
54	Elect	rical Characteristics at 85°C	
	54 1	Disclaimer	2034
		Absolute Maximum Ratings	
		General Operating Ratings	
		Injection Current	
	54.5.	Supply Characteristics	2036
	54.6.	Maximum Clock Frequencies	
	54.7.	Power Consumption	
	54.8.	Wake-Up Time	2042
	54.9.	I/O Pin Characteristics	2043
	54.10	Analog Characteristics	
	54.11.	NVM Characteristics	2058
	54.12	Oscillators Characteristics	2059
	54.13	. Timing Characteristics	2065
	54.14	USB Characteristics	
55	Pack	aging Information	
	55.1.	Package Marking Information	
		Thermal Considerations	
		Package Drawings	
		Soldering Profile	
56	Sche	matic Checklist	
	56 1	Introduction	2100
		Power Supply	
		External Analog Reference Connections	
		External Reset Circuit	
		Unused or Unconnected Pins	
	56.6.	Clocks and Crystal Oscillators	2106
	56.7.	Programming and Debug Ports	2109
	56.8.	QSPI Interface	
	56.9.	USB Interface	
	56.10	SDHC Interface	
57	Con	ventions	2116
	57.1.	Numerical Notation	
		Memory Size and Type	
		Frequency and Time	
		Registers and Bits	
		-	
58	Acro	nyms and Abbreviations	2118
59	Revi	sion History	2121
T 1-		ochip Web Site	2122

GCLK - Generic Clock Controller

Offset	Name	Bit Pos.						
		15:8						
		23:16						
		31:24						
		7:0	WRTLOCK	CHEN		GEN	I [3:0]	
0.0100		15:8						
0x0128	PCHCTRL42	23:16						
		31:24						
		7:0	WRTLOCK	CHEN		GEN	I [3:0]	
0.0400		15:8						
0x012C	PCHCTRL43	23:16						
		31:24						
	PCHCTRL44	7:0	WRTLOCK	CHEN		GEN	I [3:0]	
0.0100		15:8						
0x0130		23:16						
		31:24						
		7:0	WRTLOCK	CHEN		GEN	I [3:0]	
0x0134	PCHCTRL45	15:8						
0x0134	PCHCTRL45	23:16						
		31:24						
		7:0	WRTLOCK	CHEN		GEN	I [3:0]	
0.0120		15:8						
0x0138	PCHCTRL46	23:16						
		31:24						
		7:0	WRTLOCK	CHEN		GEN	I [3:0]	
0.0120		15:8						
0x013C	PCHCTRL47	23:16						
		31:24						

14.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional PAC write-protection is denoted by the "PAC Write-Protection" property in each individual register description. For details, refer to 14.5.8 Register Access Protection.

Some registers are synchronized when read and/or written. Synchronization is denoted by the "Write-Synchronized" or the "Read-Synchronized" property in each individual register description. For details, refer to 14.6.6 Synchronization.

	Name: Offset: Reset: Property:	OFR 0x188 0x00000000 Read-Only						
Bit	31	30	29	28	27	26	25	24
Access Reset								
Bit	23	22	21	20	19	18	17	16
Access Reset								
Bit	15	14	13	12	11	10	9	8
								X[9:8]
Access							R	R
Reset							0	0
Bit	7	6	5	4	3	2	1	0
				OFR	X[7:0]			
Access		R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

24.9.72 GMAC Oversized Frames Received Register

Bits 9:0 - OFRX[9:0] Oversized Frames Received

This pit field counts the number of frames received exceeding 1518 Bytes in length (1536 Bytes if NCFGR.MAXFS is written to '1') but do not have either a CRC error, an alignment error, nor a receive symbol error.

	Name: Offset: Reset: Property:	RLPITR 0x270 0x00000000 Read-Only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access Reset								
Bit	15	14	13	12	11	10	9	8
				RLPITI	R[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Dit	7	C	F	4	2	0	4	0
Bit	7	6	5	4 RLPIT	3	2	1	0
Access	R	R	R	R	R	R	R	R
Reset		0	R 0	К 0	R 0	к 0	0	0
10301	0	Ū	0	0	0	0	0	v

24.9.99 Received LPI Transitions

Bits 15:0 - RLPITR[15:0] Received LPI Transitions

The value of this bit field is a counter of transitions from receiving normal idle to receiving low power idle.

Cleared on read.

25.8.5 Interrupt Enable Set

Name:	INTENSET
Offset:	0x0E
Reset:	0x0000
Property:	PAC Write-Protection

Bit	15	14	13	12	11	10	9	8
						SEEWRC	SEESOVF	SEESFULL
Access						R/W	R/W	R/W
Reset						0	0	0
Bit	7	6	5	4	3	2	1	0
	SUSP	NVME	ECCDE	ECCSE	LOCKE	PROGE	ADDRE	DONE
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 10 – SEEWRC SEE Write Completed Interrupt Enable Writing a zero to this bit has no effect.

Writing a one to this bit sets the SEEWRC interrupt enable.

This bit will read as the current value of the SEEWRC interrupt enable.

Bit 9 – SEESOVF Active SEES Overflow Interrupt Enable Writing a zero to this bit has no effect.

Writing a one to this bit sets the SEESOVF interrupt enable.

This bit will read as the current value of the SEESOVF interrupt enable.

Bit 8 – SEESFULL Active SEES Full Interrupt Enable Writing a zero to this bit has no effect.

Writing a one to this bit sets the SEESFULL interrupt enable.

This bit will read as the current value of the SEESFULL interrupt enable.

Bit 7 – SUSP Suspended Write Or Erase Interrupt Enable Writing a zero to this bit has no effect.

Writing a one to this bit sets the SUSP interrupt enable.

This bit will read as the current value of the SUSP interrupt enable.

Bit 6 – NVME NVM Error Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit sets the NVME interrupt enable.

This bit will read as the current value of the NVME interrupt enable.

Bit 5 – ECCDE ECC Dual Error Interrupt Enable Writing a zero to this bit has no effect.

© 2018 Microchip Technology Inc.

ICM - Integrity Check Monitor

	Name: Offset: Reset: Property:	RCFG 0x04 + n*0x00 0x00000000 Read/Write	C [n=03]					
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
			ALGO[2:0]			PROCDLY	SUIEN	ECIEN
Access						R/W	R/W	R/W
Reset		0	0	0		0	1	1
Bit		6	5	4	3	2	1	0
	WCIEN	BEIEN	DMIEN	RHIEN		EOM	WRAP	CDWBN
Access	R/W	R/W	R/W	R/W		R/W	R/W	R/W
Reset	1	1	1	1		0	0	0

26.6.3.1.2 Region Configuration Structure Member

Bits 14:12 - ALGO[2:0] User SHA Algorithm

Value	Name	Description			
0	SHA1	SHA1 algorithm processed			
1	SHA256	HA256 algorithm processed			
4	SHA224	SHA224 algorithm processed			
Other	-	Reserved			

Bit 10 – PROCDLY Processing Delay

For a given SHA algorithm, the runtime period has two possible lengths:

Table 26-2. SHA Processing Runtime Periods

Algorithm	SHORTEST [number of cycles]	LONGEST [number of cycles]		
SHA1	85	209		
SHA224	72	194		
SHA256	72	194		

Value	Name	Description
0	SHORTEST	SHA processing runtime is the shortest one
1	LONGEST	SHA processing runtime is the longest one

30.8.9 Value

	Name: Offset: Reset: Property:	VALUE 0x10 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
					[23:16]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				VALUE	E[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				VALU	E[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 23:0 - VALUE[23:0] Measurement Value Result from measurement.

SAMD5x/E5x Family Data Sheet SERCOM SPI – SERCOM Serial Peripheral Interface

35.8.8 Status

	Name: Offset: Reset: Property:	STATUS 0x1A 0x0000 -						
Bit	15	14	13	12	11	10	9	8
					LENERR			
Access					R/W			
Reset					0			
Bit	7	6	5	4	3	2	1	0
						BUFOVF		
Access						R/W		
Reset						0		

Bit 11 – LENERR Transaction Length Error

This bit is set in slave mode when the length counter is enabled (LENGTH.LENEN=1) and the transfer length while \overline{SS} is low is not a multiple of LENGTH.LEN.

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear it.

Value	Description
0	No Length Error has occurred.
1	A Length Error has occurred.

Bit 2 – BUFOVF Buffer Overflow

Reading this bit before reading DATA will indicate the error status of the next character to be read.

This bit is cleared by writing '1' to the bit or by disabling the receiver.

This bit is set when a buffer overflow condition is detected. See also CTRLA.IBON for overflow handling.

When set, the corresponding RxDATA will be zero.

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear it.

Value	Description
0	No Buffer Overflow has occurred.
1	A Buffer Overflow has occurred.

SAMD5x/E5x Family Data Sheet USB – Universal Serial Bus

After resuming from the L1 SLEEP state, the bit CTRLB.SOFE is set, allowing Start-of-Frame generation.

38.8.6.6 Host Pipe Interrupt Flag Register

Name:	PINTFLAG
Offset:	0x107 + (n x 0x20)
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
ĺ			STALL	TXSTP	PERR	TRFAIL		TRCPT
Access			R/W	R/W	R/W	R/W		R/W
Reset			0	0	0	0		2

Bit 5 – STALL STALL Received Interrupt Flag This flag is cleared by writing a one to the flag.

This flag is set when a stall occurs and will generate an interrupt if PINTENCLR/SET.STALL is one.

Writing a zero to this bit has no effect.

Writing a one to this bit clears the STALL Interrupt Flag.

Bit 4 – TXSTP Transmitted Setup Interrupt Flag

This flag is cleared by writing a one to the flag.

This flag is set when a Transfer Complete occurs and will generate an interrupt if PINTENCLR/ SET.TXSTP is one.

Writing a zero to this bit has no effect.

Writing a one to this bit clears the TXSTP Interrupt Flag.

Bit 3 – PERR Pipe Error Interrupt Flag

This flag is cleared by writing a one to the flag.

This flag is set when a pipe error occurs and will generate an interrupt if PINTENCLR/SET.PERR is one.

Writing a zero to this bit has no effect.

Writing a one to this bit clears the PERR Interrupt Flag.

Bit 2 – TRFAIL Transfer Fail Interrupt Flag

This flag is cleared by writing a one to the flag.

This flag is set when a Transfer Fail occurs and will generate an interrupt if PINTENCLR/SET.TRFAIL is one.

Writing a zero to this bit has no effect.

Writing a one to this bit clears the TRFAIL Interrupt Flag.

Bit 0 – TRCPT Transfer Complete x interrupt Flag This flag is cleared by writing a one to the flag.

This flag is set when a Transfer complete occurs and will generate an interrupt if PINTENCLR/ SET.TRCPT is one. PINTFLAG.TRCPT is set for a single bank IN/OUT pipe or a double bank IN/OUT pipe when current bank is 0.

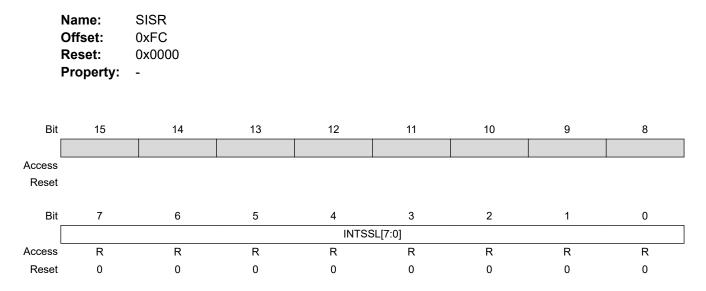
39.8.1 Core Release

Name:	CREL
Offset:	0x00
Reset:	0x32100000
Property:	Read-only

Bit	31	30	29	28	27	26	25	24	
	REL[3:0]				STEP[3:0]				
Access	R	R	R	R	R	R	R	R	
Reset	0	0	1	1	0	0	1	0	
Bit	23	22	21	20	19	18	17	16	
		SUBST	EP[3:0]						
Access	R	R	R	R					
Reset	0	0	0	1					
Bit	15	14	13	12	11	10	9	8	
Access					-				
Reset									
Bit	7	6	5	4	3	2	1	0	
Access									

Reset

Bits 31:28 – REL[3:0] Core Release One digit, BCD-coded.

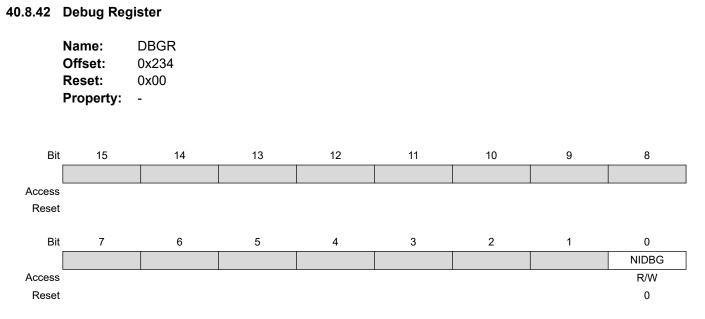

Bits 27:24 – STEP[3:0] Step of Core Release One digit, BCD-coded.

Bits 23:20 – SUBSTEP[3:0] Sub-step of Core Release One digit, BCD-coded.

SD/MMC Host Controller ...

Offset	Name	Bit Pos.								
0x2B	WCR	7:0						WKENCREM	WKENCINS	WKENCINT
0.20	000	7:0	USDCLK	FSEL[1:0]	CLKGSEL			SDCLKEN	INTCLKS	INTCLKEN
0x2C	CCR	15:8				SDCLKF	SEL[7:0]			
0x2E	TCR	7:0						DTCV	AL[3:0]	
0x2F	SRR	7:0						SWRSTDAT	SWRSTCMD	SWRSTALL
0x30	NISTR	7:0	CREM	CINS	BRDRDY	BWRRDY	DMAINT	BLKGE	TRFC	CMDC
0,00	Norre	15:8	ERRINT	BOOTAR						CINT
0x32	EISTR	7:0	CURLIM	DATEND	DATCRC	DATTEO	CMDIDX	CMDEND	CMDCRC	CMDTEO
0.02	LIGHT	15:8				BOOTAE			ADMA	ACMD
0x34	NISTER	7:0	CREM	CINS	BRDRDY	BWRRDY	DMAINT	BLKGE	TRFC	CMDC
0,04	NOTER	15:8		BOOTAR						
0x36	EISTER	7:0	CURLIM	DATEND	DATCRC	DATTEO	CMDIDX	CMDEND	CMDCRC	CMDTEO
0,00	LIGTER	15:8				BOOTAE			ADMA	ACMD
0x38	NISIER	7:0	CREM	CINS	BRDRDY	BWRRDY	DMAINT	BLKGE	TRFC	CMDC
0,00	MOLEN	15:8		BOOTAR						CINT
0x3A	EISIER	7:0	CURLIM	DATEND	DATCRC	DATTEO	CMDIDX	CMDEND	CMDCRC	CMDTEO
	LIGIER	15:8				BOOTAE			ADMA	ACMD
0x3C	ACESR	7:0	CMDNI			ACMDIDX	ACMDEND	ACMDCRC	ACMDTEO	ACMD12NE
	ACCON	15:8								
0x3E	HC2R	7:0								
		15:8	PVALEN							
0x3E	HC2R	7:0								
		15:8	PVALEN	ASINTEN						
		7:0	TEOCLKU TEOCLKF[5:0]							
0x40	CA0R	15:8				BASEC	LKF[7:0]			
0X10	CAUR	23:16	SRSUP	SDMASUP	HSSUP		ADMA2SUP	ED8SUP		MAXBLKL
		31:24	SLTY	PE[1:0]	ASINTSUP	SB64SUP			V30VSUP	V33VSUP
		7:0		DRVDSUP	DRVCSUP	DRVASUP		DDR50SUP	SDR104SUP	SDR50SUP
0x44	CA1R	15:8								
UX II	o, the	23:16			1	CLKMU	JLT[7:0]	1		
		31:24								
		7:0				MAXCU	R33V[7:0]			
0x48	MCCAR	15:8				MAXCU	R30V[7:0]			
UX IO		23:16								
		31:24								
0x4C										
	Reserved									
0x4F										
0x50	FERACES	7:0	CMDNI			ACMDIDX	ACMDEND	ACMDCRC	ACMDTEO	ACMD12NE
		15:8								
0x52	FEREIS	7:0	CURLIM	DATEND	DATCRC	DATTEO	CMDIDX	CMDEND	CMDCRC	CMDTEO
		15:8				BOOTAE			ADMA	ACMD
0x54	AESR	7:0						LMIS	ERRS	T[1:0]
0x55										
	Reserved									
0x57										

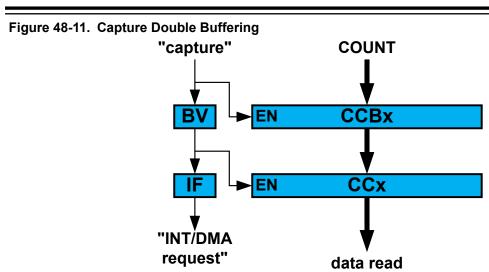
SD/MMC Host Controller ...



40.8.34 Slot Interrupt Status Register

Bits 7:0 - INTSSL[7:0] Interrupt Signal for Each Slot

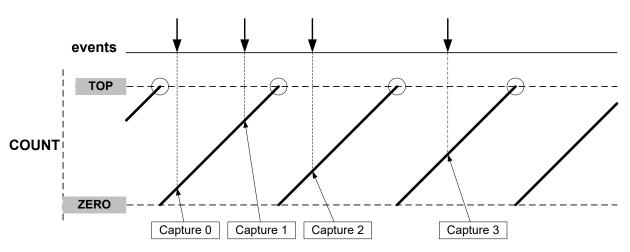
These status bits indicate the logical OR of Interrupt Signals and WakeUp Signal for each peripheral instance in the device. INTSSL[x] corresponds to instance SDHCx. There are 2 instances in this device.


SD/MMC Host Controller ...

Bit 0 - NIDBG Non-Intrusive Debug

Value	Name	Description
0	DISABLED	Reading the BDPR via debugger increments the dual port RAM read pointer.
1	ENABLED	Reading the BDPR via debugger does not increment the dual port RAM read pointer.

TC – Timer/Counter


For input capture, the buffer register and the corresponding CCx act like a FIFO. When CCx is empty or read, any content in CCBUFx is transferred to CCx. The buffer valid flag is passed to set the CCx interrupt flag (IF) and generate the optional interrupt, event or DMA request. The CCBUFx register value can't be read, all captured data must be read from CCx register.

Note:

When up-counting (CTRLBSET.DIR=0), counter values lower than 1 cannot be captured. To capture the full range including value 0, the TC must be in down-counting mode (CTRLBSET.DIR=0).

48.6.2.8.1 Event Capture Action

The compare/capture channels can be used as input capture channels to capture events from the Event System and give them a timestamp. The following figure shows four capture events for one capture channel.

Figure 48-12. Input Capture Timing

The TC can detect capture overflow of the input capture channels: When a new capture event is detected while the Capture Interrupt flag (INTFLAG.MCx) is still set, the new timestamp will not be stored and INTFLAG.ERR will be set.

48.6.2.8.2 Period and Pulse-Width (PPW) Capture Action

The TC can perform two input captures and restart the counter on one of the edges. This enables the TC to measure the pulse width and period and to characterize the frequency f and duty cycle of an input signal:

TC – Timer/Counter

48.7.1.12 Synchronization Busy

	Name: Offset: Reset: Property:	SYNCBUSY 0x10 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	10	11	10	9	8
DIL	15	14	13	12	11	10	9	0
Access								
Reset								
i veset								
Bit	7	6	5	4	3	2	1	0
		CCx		COUNT	STATUS	CTRLB	ENABLE	SWRST
Access		R		R	R	R	R	R
Reset		0		0	0	0	0	0

Bit 6 – CCx Compare/Capture Channel x Synchronization Busy For details on CC channels number, refer to each TC feature list.

This bit is set when the synchronization of CCx between clock domains is started.

This bit is also set when the CCBUFx is written, and cleared on update condition. The bit is automatically cleared when the STATUS.CCBUFx bit is cleared.

Bit 4 – COUNT COUNT Synchronization Busy

This bit is cleared when the synchronization of COUNT between the clock domains is complete.

This bit is set when the synchronization of COUNT between clock domains is started.

Bit 3 – STATUS STATUS Synchronization Busy

This bit is cleared when the synchronization of STATUS between the clock domains is complete.

This bit is set when a '1' is written to the Capture Channel Buffer Valid status flags (STATUS.CCBUFVx) and the synchronization of STATUS between clock domains is started.

Bit 2 - CTRLB CTRLB Synchronization Busy

This bit is cleared when the synchronization of CTRLB between the clock domains is complete.

This bit is set when the synchronization of CTRLB between clock domains is started.

Bit 4 – TCINV TC Inverted Event Input Polarity

This bit inverts the asynchronous input event source.

V	alue	Description
0		Input event source is not inverted.
1		Input event source is inverted.

Bits 2:0 - EVACT[2:0] Event Action

These bits define the event action the TC will perform on an event.

Value	Name	Description				
0x0	OFF	Event action disabled				
0x1	RETRIGGER	RETRIGGER Start, restart or retrigger TC on event				
0x2	COUNT	Count on event				
0x3	START	Start TC on event				
0x4	STAMP	Time stamp capture				
0x5	PPW	Period captured in CC0, pulse width in CC1				
0x6	PWP	Period captured in CC1, pulse width in CC0				
0x7	PW	Pulse width capture				

49. TCC – Timer/Counter for Control Applications

49.1 Overview

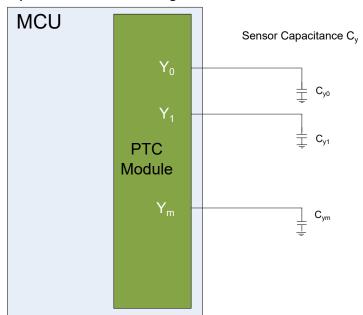
The device provides five instances of the Timer/Counter for Control applications (TCC) peripheral, TCC[4:0].

Each TCC instance consists of a counter, a prescaler, compare/capture channels and control logic. The counter can be set to count events or clock pulses. The counter together with the compare/capture channels can be configured to time stamp input events, allowing capture of frequency and pulse-width. It can also perform waveform generation, such as frequency generation and pulse-width modulation.

Waveform extensions are featured for motor control, ballast, LED, H-bridge, power converters, and other types of power control applications. They allow for low-side and high-side output with optional dead-time insertion. Waveform extensions can also generate a synchronized bit pattern across the waveform output pins. The fault options enable fault protection for safe and deterministic handling, disabling and/or shut down of external drivers.

Note: The TCC configurations, such as channel numbers and features, may be reduced for some of the TCC instances.

Related Links


6.2.7 TCC Configurations

49.2 Features

- Up to six compare/capture channels (CC) with:
 - Double buffered period setting
 - Double buffered compare or capture channel
 - Circular buffer on period and compare channel registers
- Waveform generation:
 - Frequency generation
 - Single-slope pulse-width modulation (PWM)
 - Dual-slope PWM with half-cycle reload capability
- Input capture:
 - Event capture
 - Frequency capture
 - Pulse-width capture
- Waveform extensions:
 - Configurable distribution of compare channels outputs across port pins
 - Low-side and high-side output with programmable dead-time insertion
 - Waveform swap option with double buffer support
 - Pattern generation with double buffer support
 - Dithering support
- Fault protection for safe disabling of drivers:
 - Two recoverable fault sources

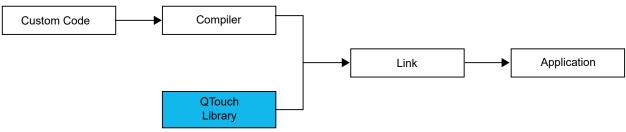
PTC - Peripheral Touch Controller

Figure 50-4. Self-Capacitance Sensor Arrangement

For more information about designing the touch sensor, refer to Buttons, Sliders and Wheels Touch Sensor Design Guide.

50.5.2 Analog-Digital Converter (ADC)

The PTC is using the ADC for signal conversion and acquisition. The ADC must be enabled and configured appropriately to allow correct behavior of the PTC.


Related Links

45. ADC - Analog-to-Digital Converter

50.6 Functional Description

In order to access the PTC, the user must use the Atmel Start QTouch[®] Configurator to configure and link the QTouch Library firmware with the application software. QTouch Library can be used to implement buttons, sliders, and wheels in a variety of combinations on a single interface.

Figure 50-5. QTouch Library Usage

For more information about QTouch Library, refer to the QTouch Library Peripheral Touch Controller User Guide.

PCC - Parallel Capture Controller

52.8.6 Reception Holding Register

Name:	RHR
Offset:	0x14
Reset:	0x00000000
Property:	-

Bit	31	30	29	28	27	26	25	24
	RDATA[31:24]							
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
	RDATA[23:16]							
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	RDATA[15:8]							
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	RDATA[7:0]							
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - RDATA[31:0] Reception Data

ISIZE	SCALE	DSIZE	Description	
8_BITS	-	1_DATA	RDATA[7:0] is useful	
		2_DATA	RDATA[15:0] is useful	
		4_DATA	RDATA[31:0] is useful	
10_BITS	0 (OFF)	1_DATA	RDATA[9:0] is useful	
		2_DATA	RDATA[9:0] and RDATA[25:16] are useful	
	1 (ON)	1_DATA	RDATA[15:0] is useful	
		2_DATA	RDATA[31:0] is useful	
12_BITS	0 (OFF)	1_DATA	RDATA[11:0] is useful	
		2_DATA	RDATA[11:0] and RDATA[27:16] are useful	
	1 (ON)	1_DATA	RDATA[15:0] is useful	
		2_DATA	RDATA[31:0] is useful	