

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.63V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsame53j18a-mu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

44. TRN	IG – True Random Number Generator	1613
44.1.	Overview	1613
44.2.	Features	1613
44.3.	Block Diagram	
44.4.	Signal Description	
44.5.	Product Dependencies	
44.6.	Functional Description	1615
44.7.	Register Summary	1617
44.8.	Register Description	
	C – Analog-to-Digital Converter	
45.1.	Overview	
45.2.	Features	
45.3.	Block Diagram	
45.4.	Signal Description	
45.5.	Product Dependencies	
	Functional Description	
	Register Summary	
45.8.	Register Description	
46. AC -	- Analog Comparators	1679
46.1.	Overview	1679
46.2.	Features	1679
46.3.	Block Diagram	
46.4.	Signal Description	1680
46.5.	Product Dependencies	
46.6.	Functional Description	1682
46.7.	Register Summary	1692
46.8.	Register Description	
47. DAC	C – Digital-to-Analog Converter	
47.1.	Overview	
	Features	
47.3.	Block Diagram	
47.4.	Signal Description	1712
47.5.	Product Dependencies	
47.6.	Functional Description	1714
47.7.	Register Summary	1724
47.8.	Register Description	1724
48. TC -	- Timer/Counter	
48.1.	Overview	1750
48.2.	Features	
48.3.	Block Diagram	
	Signal Description	
48.5.	Product Dependencies	
48.6.	Functional Description	1753

18.8.3 Interrupt Enable Clear

Name:INTENCLROffset:0x04Reset:0x00Property:PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Set (INTENSET) register.

Bit	7	6	5	4	3	2	1	0
								SLEEPRDY
Access								W
Reset								0

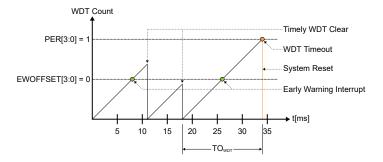
Bit 0 – SLEEPRDY Sleep Mode Entry Ready Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Sleep Mode Entry Ready Interrupt Enable bit and the corresponding interrupt request.

Value	Description
0	The Sleep Mode Entry Ready interrupt is disabled.
1	The Sleep Mode Entry Ready interrupt is enabled and will generate an interrupt request
	when the Sleep Mode Entry Ready Interrupt Flag is set.

WDT will issue a system reset if a time-out occurs. This can be prevented by clearing the WDT at any time during the time-out period.


The WDT is cleared and a new WDT time-out period is started by writing 0xA5 to the Clear register (CLEAR). Writing any other value than 0xA5 to CLEAR will issue an immediate system reset.

There are 12 possible WDT time-out (TO_{WDT}) periods, selectable from 8ms to 16s.

By default, the early warning interrupt is disabled. If it is desired, the Early Warning Interrupt Enable bit in the Interrupt Enable register (INTENSET.EW) must be written to '1'. The Early Warning Interrupt is disabled again by writing a '1' to the Early Warning Interrupt bit in the Interrupt Enable Clear register (INTENCLR.EW).

If the Early Warning Interrupt is enabled, an interrupt is generated prior to a WDT time-out condition. In Normal mode, the Early Warning Offset bits in the Early Warning Interrupt Control register, EWCTRL.EWOFFSET, define the time when the early warning interrupt occurs. The Normal mode operation is illustrated in the figure Normal-Mode Operation.

Figure 20-2. Normal-Mode Operation

20.6.2.5 Window Mode

In Window mode operation, the WDT uses two different time specifications: the WDT can only be cleared by writing 0xA5 to the CLEAR register *after* the closed window time-out period (TO_{WDTW}), during the subsequent Normal time-out period (TO_{WDT}). If the WDT is cleared before the time window opens (before TO_{WDTW} is over), the WDT will issue a system reset.

Both parameters TO_{WDTW} and TO_{WDT} are periods in a range from 8ms to 16s, so the total duration of the WDT time-out period is the sum of the two parameters.

The closed window period is defined by the Window Period bits in the Configuration register (CONFIG.WINDOW), and the open window period is defined by the Period bits in the Configuration register (CONFIG.PER).

By default, the Early Warning interrupt is disabled. If it is desired, the Early Warning Interrupt Enable bit in the Interrupt Enable register (INTENSET.EW) must be written to '1'. The Early Warning Interrupt is disabled again by writing a '1' to the Early Warning Interrupt bit in the Interrupt Enable Clear (INTENCLR.EW) register.

If the Early Warning interrupt is enabled in Window mode, the interrupt is generated at the start of the open window period, i.e. after TO_{WDTW}. The Window mode operation is illustrated in figure Window-Mode Operation.

21.10.15 Timestamp

	Name: Offset: Reset: Property:	TIMESTAMP 0x64 0x0000 Read-Only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Dit	23		21	20	19	10	17	10
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
				COUN	T[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
					IT[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 15:0 – COUNT[15:0] Count Timestamp Value

The 16-bit value of COUNT is captured by the TIMESTAMP when a tamper condition occurs.

DMAC – Direct Memory Access Controller

	Offset: Property:	0x08 -						
	The DSTAD	DR register of	fset is relative	to (BASEAD	DR or WRBA	.DDR) + Char	nel Number	* 0x10
Bit	31	30	29	28	27	26	25	24
				DSTADE	DR[31:24]			
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				DSTADE	DR[23:16]			
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
				DSTADI	DR[15:8]			
Access								
Reset								
	_		_					
Bit	7	6	5	4	3	2	1	0
				DSTAD	DR[7:0]			
Access								
Reset								

22.10.4 Block Transfer Destination Address

DSTADDR

Name:

Bits 31:0 – DSTADDR[31:0] Transfer Destination Address

This bit group holds the destination address corresponding to the last beat transfer address in the block transfer.

	Name: Offset: Reset: Property:	NSC 0x0DC 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
					NANOSE	C[21:16]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				NANOS	EC[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				NANOS	EC[7:0]		<u>.</u>	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

24.9.31 GMAC 1588 Timer Nanosecond Comparison Register

Bits 21:0 – NANOSEC[21:0] 1588 Timer Nanosecond Comparison Value

Value is compared to the bits [45:24] of the TSU timer count value (upper 22 bits of nanosecond value).

25.8.4 Interrupt Enable Clear

Name:	INTENCLR
Offset:	0x0C
Reset:	0x0000
Property:	PAC Write-Protection

Bit	15	14	13	12	11	10	9	8
						SEEWRC	SEESOVF	SEESFULL
Access						R/W	R/W	R/W
Reset						0	0	0
Bit	7	6	5	4	3	2	1	0
	SUSP	NVME	ECCDE	ECCSE	LOCKE	PROGE	ADDRE	DONE
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 10 – SEEWRC SEE Write Completed Interrupt Clear Writing a zero to this bit has no effect.

Writing a '1' to this bit clears the SEEWRC interrupt enable.

This bit will read as the current value of the SEEWRC interrupt enable.

Bit 9 – SEESOVF Active SEES Overflow Interrupt Clear Writing a zero to this bit has no effect.

Writing a '1' to this bit clears the SEESOVF interrupt enable.

This bit will read as the current value of the SEESOVF interrupt enable.

Bit 8 – SEESFULL Active SEES Full Interrupt Clear Writing a zero to this bit has no effect.

Writing a '1' to this bit clears the SEESFULL interrupt enable.

This bit will read as the current value of the SEESFULL interrupt enable.

Bit 7 – SUSP Suspended Write Or Erase Interrupt Clear Writing a zero to this bit has no effect.

Writing a '1' to this bit clears the SUSP interrupt enable.

This bit will read as the current value of the SUSP interrupt enable.

Bit 6 – NVME NVM Error Interrupt Clear

Writing a zero to this bit has no effect.

Writing a '1' to this bit clears the NVME interrupt enable.

This bit will read as the current value of the NVME interrupt enable.

Bit 5 – ECCDE ECC Dual Error Interrupt Clear Writing a zero to this bit has no effect.

© 2018 Microchip Technology Inc.

OSC32KCTRL – 32KHz Oscillators Controller

	Name: Offset: Reset: Property:	INTFLAG 0x08 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
Access		-						
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
			10	10		10		
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
Dit	•	-	-		-	XOSC32KFAIL	•	XOSC32KRDY
Access						R/W		R/W
Reset						0		0

29.8.3 Interrupt Flag Status and Clear

Bit 2 – XOSC32KFAIL XOSC32K Clock Failure Detector

This flag is cleared by writing a '1' to it.

This flag is set on a zero-to-one transition of the XOSC32K Clock Failure Detection bit in the Status register (STATUS.XOSC32KFAIL) and will generate an interrupt request if INTENSET.XOSC32KFAIL is '1'.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the XOSC32K Clock Failure Detection flag.

Bit 0 – XOSC32KRDY XOSC32K Ready

This flag is cleared by writing a '1' to it.

This flag is set by a zero-to-one transition of the XOSC32K Ready bit in the Status register (STATUS.XOSC32KRDY), and will generate an interrupt request if INTENSET.XOSC32KRDY=1.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit clears the XOSC32K Ready interrupt flag.

EVSYS – Event System

Value	Name	Description		
0x62	PDEC_ERR	PDEC Error		
0x63	PDEC_DIR	PDEC Direction		
0x64	PDEC_VLC	PDEC VLC		
0x65 - 0x66	PDEC_MCx	PDEC MCx x=01		
0x67	ADC0_RESRDY	ADC0 RESRDY		
0x68	ADC0_WINMON	ADC0 Window Monitor		
0x69	ADC1_RESRDY	ADC1 RESRDY		
0x6A	ADC1_WINMON	ADC1 Window Monitor		
0x6B - 0x6C	AC_COMPx	AC Comparator, x=01		
0x6D	AC_WIN	AC0 Window		
0x6E - 0x6F	DAC_EMPTYx	DAC empty, x=01		
0x70 - 0x71	DAC_RESRDYx	DAC RSRDY, x=01		
0x72	GMAC_TSU_CMP	GMAC Timestamp CMP		
0x73	TRNG_READY	TRNG ready		
0x74 - 0x77	CCL_LUTOUT	CCL LUTOUT		

- External clocking, CTRLA.RUNSTDBY=1: The Receive Complete interrupt(s) can wake up the device.
- Internal clocking, CTRLA.RUNSTDBY=0: Internal clock will be disabled, after any ongoing transfer was completed. The Receive Complete interrupt(s) can wake up the device.
- External clocking, CTRLA.RUNSTDBY=0: External clock will be disconnected, after any ongoing transfer was completed. All reception will be dropped.

34.6.6 Synchronization

Due to asynchronicity between the main clock domain and the peripheral clock domains, some registers need to be synchronized when written or read.

The following bits are synchronized when written:

- Software Reset bit in the CTRLA register (CTRLA.SWRST)
- Enable bit in the CTRLA register (CTRLA.ENABLE)
- Receiver Enable bit in the CTRLB register (CTRLB.RXEN)
- Transmitter Enable bit in the Control B register (CTRLB.TXEN)

Note: CTRLB.RXEN is write-synchronized somewhat differently. See also 34.8.2 CTRLB for details.

Required write-synchronization is denoted by the "Write-Synchronized" property in the register description.

SAMD5x/E5x Family Data Sheet SERCOM SPI – SERCOM Serial Peripheral Interface

This bit is not synchronized.

Mode	CPOL	СРНА	Leading Edge	Trailing Edge
0x0	0	0	Rising, sample	Falling, change
0x1	0	1	Rising, change	Falling, sample
0x2	1	0	Falling, sample	Rising, change
0x3	1	1	Falling, change	Rising, sample

Value	Description
0	The data is sampled on a leading SCK edge and changed on a trailing SCK edge.
1	The data is sampled on a trailing SCK edge and changed on a leading SCK edge.

Bits 27:24 - FORM[3:0] Frame Format

This bit field selects the various frame formats supported by the SPI in slave mode. When the 'SPI frame with address' format is selected, the first byte received is checked against the ADDR register.

FORM[3:0]	Name	Description
0x0	SPI	SPI frame
0x1	-	Reserved
0x2	SPI_ADDR	SPI frame with address
0x3-0xF	-	Reserved

Bits 21:20 - DIPO[1:0] Data In Pinout

These bits define the data in (DI) pad configurations.

In master operation, DI is MISO.

In slave operation, DI is MOSI.

These bits are not synchronized.

DIPO[1:0]	Name	Description
0x0	PAD[0]	SERCOM PAD[0] is used as data input
0x1	PAD[1]	SERCOM PAD[1] is used as data input
0x2	PAD[2]	SERCOM PAD[2] is used as data input
0x3	PAD[3]	SERCOM PAD[3] is used as data input

Bits 17:16 - DOPO[1:0] Data Out Pinout

This bit defines the available pad configurations for data out (DO) and the serial clock (SCK). In slave operation, the slave select line (\overline{SS}) is controlled by DOPO, while in master operation the \overline{SS} line is controlled by the port configuration.

In master operation, DO is MOSI.

In slave operation, DO is MISO.

These bits are not synchronized.

37. QSPI - Quad Serial Peripheral Interface

37.1 Overview

The Quad SPI Interface (QSPI) circuit is a synchronous serial data link that provides communication with external devices in Master mode.

The QSPI can be used in "SPI mode" to interface serial peripherals, such as ADCs, DACs, LCD controllers and sensors, or in "Serial Memory Mode" to interface serial Flash memories.

The QSPI allows the system to execute code directly from a serial Flash memory (XIP) without code shadowing to SRAM. The serial Flash memory mapping is seen in the system as other memories (ROM, SRAM, DRAM, embedded Flash memories, etc.,).

With the support of the quad-SPI protocol, the QSPI allows the system to use high performance serial Flash memories which are small and inexpensive, in place of larger and more expensive parallel Flash memories.

37.2 Features

- Master SPI Interface:
 - Programmable Clock Phase and Clock Polarity
 - Programmable transfer delays between consecutive transfers, between clock and data, between deactivation and activation of chip select (CS)
- SPI Mode:
 - To use serial peripherals, such as ADCs, DACs, LCD controllers, CAN controllers, and sensors
 - 8-bit, 16-bit, or 32-bit programmable data length
- Serial Memory Mode:
 - To use serial Flash memories operating in single-bit SPI, Dual SPI and Quad SPI
 - Supports "execute in place" (XIP). The system can execute code directly from a Serial Flash memory.
 - Flexible Instruction register, to be compatible with all Serial Flash memories
 - 32-bit Address mode (default is 24-bit address) to support Serial Flash memories larger than 128 Mbit
 - Continuous Read mode
 - Scrambling/Unscrambling "On-the-Fly"
 - Double data rate support
- Connection to DMA Channel Capabilities Optimizes Data Transfers
 - One channel for the receiver and one channel for the transmitter
- Register Write Protection

38.7 Register Summary

The register mapping depends on the Operating Mode field in the Control A register (CTRLA.MODE). The register summary is detailed below.

38.7.1 Common Device Summary

Offset	Name	Bit Pos.								
0x00	CTRLA	7:0	MODE					RUNSTBY	ENABLE	SWRST
0x01	Reserved									
0x02	SYNCBUSY	7:0							ENABLE	SWRST
0x03	QOSCTRL	7:0					DQO	S[1:0]	CQO	S[1:0]
0x0D	FSMSTATUS	7:0					FSMSTATE[6:0)]		
0x24		7:0				DESCA	ADD[7:0]			
0x25	DESCADD	15:8		DESCADD[15:8]						
0x26	DESCADD	23:16		DESCADD[23:16]						
0x27		31:24	DESCADD[31:24]							
0x28	PADCAL	7:0	TRANSN[1:0] TRANSP[4:0]							
0x29	FADCAL	15:8	TRIM[2:0] TRANSN[4:2]							

38.7.2 Device Summary

Table 38-1. General Device Registers

Offset	Name	Bit Pos.								
0x04	Reserved									
0x05	Reserved									
0x06	Reserved									
0x07	Reserved									
0x08	CTRLB	7:0				NREPLY	SPDCC	DNF[1:0]	UPRSM	DETACH
0x09	CIREB	15:8					LPMHD	SK[1:0]	GNAK	
0x0A	DADD		ADDEN				DADD[6:0]			
0x0B	Reserved									
0x0C	STATUS	7:0	LINESTA	ATE[1:0]			SPEE	D[1:0]		
0x0E	Reserved									
0x0F	Reserved									
0x10	FNUM	7:0		FNUM[4:0]						
0x11	FNUM	15:8	FNCERR				FNUM	JM[10:5]		
0x12	Reserved									
0x14	INTENCLR	7:0	RAMACER	UPRSM	EORSM	WAKEUP	EORST	SOF		SUSPEND
0x15	INTENCLR	15:8							LPMSUSP	LPMNYET
0x16	Reserved									
0x17	Reserved									
0x18		7:0	RAMACER	UPRSM	EORSM	WAKEUP	EORST	SOF		SUSPEND
0x19	x19	15:8							LPMSUSP	LPMNYET
0x1A	Reserved									
0x1B	Reserved									
0x1C	INTFLAG	7:0	RAMACER	UPRSM	EORSM	WAKEUP	EORST	SOF		SUSPEND

38.8.3.4 EndPoint Status n

Name:	EPSTATUSn
Offset:	0x106 + (n x 0x20)
Reset:	0x00
Property:	PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
Γ	BK1RDY	BK0RDY		STALLRQ		CURBK	DTGLIN	DTGLOUT
Access	R	R		R		R	R	R
Reset	0	0		2		0	0	0

Bit 7 – BK1RDY Bank 1 is ready

For Control/OUT direction Endpoints, the bank is empty.

Writing a one to the bit EPSTATUSCLR.BK1RDY will clear this bit.

Writing a one to the bit EPSTATUSSET.BK1RDY will set this bit.

Value	Description
0	The bank number 1 is not ready : For IN direction Endpoints, the bank is not yet filled in.
1	The bank number 1 is ready: For IN direction Endpoints, the bank is filled in. For
	Control/OUT direction Endpoints, the bank is full.

Bit 6 – BK0RDY Bank 0 is ready

Writing a one to the bit EPSTATUSCLR.BK0RDY will clear this bit.

Writing a one to the bit EPSTATUSSET.BK0RDY will set this bit.

Value	Description
0	The bank number 0 is not ready : For IN direction Endpoints, the bank is not yet filled in. For
	Control/OUT direction Endpoints, the bank is empty.
1	The bank number 0 is ready: For IN direction Endpoints, the bank is filled in. For
	Control/OUT direction Endpoints, the bank is full.

Bit 4 – STALLRQ STALL bank x request

Writing a zero to the bit EPSTATUSCLR.STALLRQ will clear this bit.

Writing a one to the bit EPSTATUSSET.STALLRQ will set this bit.

This bit is cleared by hardware when receiving a SETUP packet.

Value	Description
0	Disable STALLRQx feature.
1	Enable STALLRQx feature: a STALL handshake will be sent to the host in regards to bank x.

Bit 2 – CURBK Current Bank

Writing a zero to the bit EPSTATUSCLR.CURBK will clear this bit.

Writing a one to the bit EPSTATUSSET.CURBK will set this bit.

CAN - Control Area Network

Vá	alue	Description
		0 to 31. The actual interpretation by the hardware of this value is such that one more than
		the value programmed here is used.

Bits 12:8 – DTSEG1[4:0] Fast time segment before sample point

Value	Description
0x00 -	Valid values are 0 to 31. The actual interpretation by the hardware of this value is such that
0x1F	one more than the programmed value is used. DTSEG1 is the sum of Prop_Seg and
	Phase_Seg1.

Bits 7:4 – DTSEG2[3:0] Data time segment after sample point

Value	Description
0x0 -	Valid values are 0 to 15. The actual interpretation by the hardware of this value is such that
0xF	one more than the programmed value is used. DTSEG2 is Phase_Seg2.

Bits 3:0 – DSJW[3:0] Data (Re)Syncronization Jump Width

Value	Description
0x0 -	Valid values are 0 to 15. The actual interpretation by the hardware of this value is such that
0xF	one more than the programmed value is used.

CAN - Control Area Network

39.8.22 Extended ID Filter Configuration

Name:	XIDFC
Offset:	0x88
Reset:	0x00000000
Property:	Write-restricted

Bit	31	30	29	28	27	26	25	24
Access Reset								
Bit	23	22	21	20	19	18	17	16
					LSE[6:0]			
Access	L	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				FLES	A[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
					A[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 22:16 - LSE[6:0] List Size Extended

Value	Description				
0	No extended Message ID filter.				
1 - 64	Number of Extended Message ID filter elements.				
> 64	Values greater than 64 are interpreted as 64.				

Bits 15:0 - FLESA[15:0] Filter List Extended Start Address

Start address of extended Message ID filter list. When the CAN module addresses the Message RAM it addresses 32-bit words, not single bytes. The configurable start addresses are 32-bit word addresses, i.e. only bits 15 to 2 are evaluated, the two least significant bits are ignored. Bits 1 to 0 will always be read back as "00".

43.3.7.2.2 How to Use the Service

43.3.7.2.3 Description

The operation performed is:

 $Pt_C = Pt_A + Pt_B$

In this computation, the following parameters need to be provided:

- Point A the input point is filled in projective coordinates (X,Y,Z) (pointed by {nu1PointABase, 3*u2ModLength + 12}). This point can be the Infinite Point.
- Point B the input point is filled in projective coordinates (X,Y,Z) (pointed by {nu1PointBBase, 3*u2ModLength + 12}). This point can be the Infinite Point.
- Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength + 12})
- P the modulus filled (pointed by {nu1ModBase,u2ModLength + 4})
- The a parameter relative to the elliptic curve equation (pointed by {nu1ABase,u2ModLength + 4})
- The workspace not initialized (pointed by {nu1WorkSpace, 7*u2ModLength + 40}

The resulting C point is represented in projective coordinates (X,Y,Z) and is stored at the same place than the input point A. This Point can be the Infinite Point.

The services for this operation are:

• Service GF2NEccAddFast: The fast mode is used, the fast modular reduction is used in the computations.

Important: Before using this service, ensure that the constant Cns has been calculated with the setup of the Modular Reductions service.

43.3.7.2.4 Parameters Definition

Table 43-94. GF2NEccAddFast Service Parameters

Parameter	Туре	Direction	Location	Data Length	Before Executing the Service	After Executing the Service
nu1ModBase	nu1	I	Crypto RAM	u2ModLength + 4	Base of Modulus P	Base of Modulus P
nu1CnsBase	nu1	I	Crypto RAM	u2ModLength + 12	Base of Cns	Base of Cns
u2ModLength	u2	I	-	_	Length of modulo	Length of modulo
nu1PointABase	nu1	I/O	Crypto RAM	3*u2ModLength + 12	Input point A (projective coordinates)	Resulting point C (projective coordinates)
nu1PointBBase	nu1	I	Crypto RAM	3*u2ModLength + 12	Input point B (projective coordinates)	Input point B

Public Key Cryptography Controller (PUKCC)

Parameter	Туре	Direction	Location	Data Length	Before Executing the Service	After Executing the Service
nu1PointBase	nu1	I	Crypto RAM	3*u2ModLength + 12	Input point	Resulting point
nu1RandomBase	nu1	I	Crypto RAM	u2ModLength + 4	Random	Corrupted
nu1Workspace	nu1	I	Crypto RAM	3*u2ModLength + 28	-	Workspace

43.3.7.7.5 Code Example

```
PUKCL PARAM PUKCLParam;
PPUKCL PARAM pvPUKCLParam = & PUKCLParam;
// ! The Random Number Generator must be initialized and started
\ensuremath{//} ! following the directives given for the RNG on the chip
PUKCL (u2Option) = 0;
// Depending on the option specified, not all fields should be filled
PUKCL _GF2NEcRandomiseCoordinate(nulModBase) = <Base of the ram location of P>;
PUKCL _GF2NEcRandomiseCoordinate(u2ModLength) = <Byte length of P>;
PUKCL _GF2NEcRandomiseCoordinate(nu1CnsBase) = <Base of the ram location of Cns>;
PUKCL GF2NEcRandomiseCoordinate(nulRandomBase) = <Base of the ram location where the the rng
is stored>;
PUKCL _GF2NEcRandomiseCoordinate(nulPointBase) = <Base of the ram location of the point>;
PUKCL GF2NEcRandomiseCoordinate(nu1Workspace) =
<Base of the ram location of the workspace>;
// vPUKCL Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL Process (GF2NEcRandomiseCoordinate, & PUKCLParam);
if (PUKCL (u2Status) == PUKCL OK)
             {
             }
else // Manage the error
```

43.3.7.7.6 Constraints

No overlapping between either input and output are allowed. The following conditions must be avoided to ensure that the service works correctly:

- nu1ModBase, nu1CnsBase, nu1PointABase, nu1RandomBase, nu1Workspace are not aligned on 32-bit boundaries
- {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase, 3*u2ModLength + 12}, {nu1RandomBase, u2ModLength + 4}, {nu1Workspace, <WorkspaceLength>} are not in Crypto RAM
- u2ModLength is either: < 12, > 0xffc or not a 32-bit length
- All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase, 3*u2ModLength + 12}, {nu1RandomBase, u2ModLength + 4} and {nu1Workspace, 3*u2ModLength + 28}

43.3.7.7.7 Status Returned Values

Table 43-105. GF2NEcRandomiseCoordinate Service Return Codes

Returned Status	Importance	Meaning
PUKCL_OK	-	The computation passed without problem.

TCC – Timer/Counter for Control Applications

Offset	Name	Bit Pos.					
		7:0	CC[1:0]	DITHER[5:0]			
		15:8		CC[9:2]			
0x54	CC4	23:16		CC[17:10]			
		31:24					
		7:0	CC[1:0]	DITHER[5:0]			
		15:8		CC[9:2]			
0x58	CC5	23:16		CC[17:10]			
		31:24					
0x5C							
	Reserved						
0x63							
		7:0		PGEB0[7:0]			
0x64	PATTBUF	15:8		PGVB0[7:0]			
0x66							
	Reserved						
0x6B							
		7:0	PERBUF[1:0]	DITHERBUF[5:0]			
		15:8		PERBUF[9:2]			
0x6C	PERBUF	23:16		PERBUF[17:10]			
		31:24					
		7:0	CCBUF[1:0]	DITHERBUF[5:0]			
		15:8	CCBUF[9:2]				
0x70	CCBUF0	23:16		CCBUF[17:10]			
		31:24					
		7:0	CCBUF[1:0]	DITHERBUF[5:0]			
		15:8		CCBUF[9:2]			
0x74	CCBUF1	23:16		CCBUF[17:10]			
		31:24					
		7:0	CCBUF[1:0]	DITHERBUF[5:0]			
		15:8		CCBUF[9:2]			
0x78	CCBUF2	23:16		CCBUF[17:10]			
		31:24					
		7:0	CCBUF[1:0]	DITHERBUF[5:0]			
		15:8	-	CCBUF[9:2]			
0x7C	CCBUF3	23:16		CCBUF[17:10]			
		31:24					
		7:0	CCBUF[1:0]	DITHERBUF[5:0]			
		15:8	- •	CCBUF[9:2]			
0x80	CCBUF4	23:16		CCBUF[17:10]			
		31:24					
		7:0	CCBUF[1:0]	DITHERBUF[5:0]			
		15:8		CCBUF[9:2]			
0x84	CCBUF5	23:16		CCBUF[17:10]			
		31:24					
		01.27					

TCC – Timer/Counter for Control Applications

Value	Description			
0	The Recoverable Fault B interrupt is disabled.			
1	The Recoverable Fault B interrupt is enabled.			

Bit 12 – FAULTA Recoverable Fault A Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the Recoverable Fault A Interrupt Disable/Enable bit, which enables the Recoverable Fault A interrupt.

Value	Description				
0	The Recoverable Fault A interrupt is disabled.				
1	The Recoverable Fault A interrupt is enabled.				

Bit 11 – DFS Non-Recoverable Debug Fault Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the Debug Fault State Interrupt Disable/Enable bit, which enables the Debug Fault State interrupt.

Value	Description			
0	The Debug Fault State interrupt is disabled.			
1	The Debug Fault State interrupt is enabled.			

Bit 3 – ERR Error Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the Error Interrupt Disable/Enable bit, which enables the Compare interrupt.

Value	Description
0	The Error interrupt is disabled.
1	The Error interrupt is enabled.

Bit 2 – CNT Counter Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the Retrigger Interrupt Disable/Enable bit, which enables the Counter interrupt.

Value	Description
0	The Counter interrupt is disabled.
1	The Counter interrupt is enabled.

Bit 1 – TRG Retrigger Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the Retrigger Interrupt Disable/Enable bit, which enables the Retrigger interrupt.

Value	Description
0	The Retrigger interrupt is disabled.
1	The Retrigger interrupt is enabled.