

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.63V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsame53j18a-mut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Processor and Architecture

Module	Source	Line	
	MC 1	87	
	MC 2	88	
	MC 3	89	
	MC 4	90	
	MC 5	91	
TCC1 - Timer Counter Control 1	CNT A	92	
	DFS A		
	ERR A		
	FAULTA A		
	FAULTB A		
	FAULT0 A		
	FAULT1 A		
	OVF		
	TRG		
	UFS A		
	MC 0	93	
	MC 1	94	
	MC 2	95	
	MC 3	96	
TCC2 - Timer Counter Control 2	CNT A	97	
	DFS A		
	ERR A		
	FAULTA A		
	FAULTB A		
	FAULT0 A		
	FAULT1 A		
	OVF		
	TRG		
	UFS A		
	MC 0	98	
	MC 1	99	
	MC 2	100	

12.13.7 Debug Communication Channel x

Name:	DCC
Offset:	0x10 + n*0x04 [n=01]
Reset:	0x0000000
Property:	-

Bit	31	30	29	28	27	26	25	24		
	DATA[31:24]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
				DATA[23:16]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8		
				DATA	[15:8]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				DATA	\ [7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 31:0 – DATA[31:0] Data Data register.

bits. PDBKUPRAM power domain can be either fully or partially retained or be fully off according to HIBCFG.BRAMCFG bits. If partial option is selected, only the lowest 4KBytes section is retained

- Backup mode: When entering backup mode, the PDCORESW and PDSYSRAM power domains are off. PDBACKUP is still active. As in hibernate mode, PDBKUPRAM power domain can be either fully or partially retained or be fully off according to BKUPCFG.BRAMCFG bits.
- OFF mode:

When entering OFF mode, all the power domains are off.

The table below illustrates the PDRAM state:

			Power Domain State				
Sleep Mode	STDBYCFG .RAMCFG	HIBCFG.RA MCFG	PDCORESW	PDBACKUP	PDSYSRAM		
Active	N/A	N/A	active	active	active		
Idle	N/A	N/A	active	active	active		
Standby with sleepwalking	N/A	N/A	active	active	active		
Standby - case 1	RET	N/A	active	active	retained		
Standby - case 2	PARTIAL	N/A	active	active	32K retained		
Standby - case 3	OFF	N/A	active	active	off		
Hibernate - case 1	N/A	RET	off	active	retained		
Hibernate - case 2	N/A	PARTIAL	off	active	32K retained		
Hibernate - case 3	N/A	OFF	off	active	off		
Backup	N/A	N/A	off	active	off		
Off	N/A	N/A	off	off	off		

Table 18-3. Sleep Mode versus PDSYSRAM Power Domain State Overview	Table 18-3.
--	-------------

The table below illustrates the PDBKUPRAM state:

 Table 18-4.
 Sleep Mode versus PDBKUPRAM Power Domain State Overview

			Power Domain State				
Sleep Mode	HIBCFG.BR AMCFG	BKUPCFG. BRAMCFG	PDCORESW	PDBACKUP	PDBKUPRAM		
Active	N/A	N/A	active	active	active		
Idle	N/A	N/A	active	active	active		
Standby	N/A	N/A	active	active	retained		

21.10.11 Counter Period in COUNT16 mode (CTRLA.MODE=1)

Name:	PER
Offset:	0x1C
Reset:	0x0000
Property:	PAC Write-Protection, Write-Synchronized

Bit	15	14	13	12	11	10	9	8		
		PER[15:8]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	PER[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - PER[15:0] Counter Period

These bits define the value of the 16-bit RTC period in COUNT16 mode (CTRLA.MODE=1).

EIC – External Interrupt Controller

Each interrupt source has an associated interrupt flag. The interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG) is set when an interrupt condition occurs (NMIFLAG for NMI). Each interrupt, except NMI, can be individually enabled by setting the corresponding bit in the Interrupt Enable Set register (INTENSET=1), and disabled by setting the corresponding bit in the Interrupt Enable Clear register (INTENCLR=1).

An interrupt request is generated when the interrupt flag is set and the corresponding interrupt is enabled. The interrupt request remains active until the interrupt flag is cleared, the interrupt is disabled, or the EIC is reset. See the INTFLAG register for details on how to clear interrupt flags. The EIC has one interrupt request line for each external interrupt (EXTINTx) and one line for NMI. The user must read the INTFLAG (or NMIFLAG) register to determine which interrupt condition is present.

Note:

- 1. Interrupts must be globally enabled for interrupt requests to be generated.
- 2. If an external interrupts (EXTINT) is common on two or more I/O pins, only one will be active (the first one programmed).

Related Links

10. Processor and Architecture

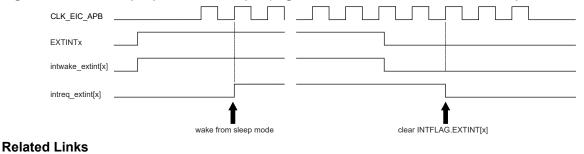
23.6.7 Events

The EIC can generate the following output events:

• External event from pin (EXTINTx).

Setting an Event Output Control register (EVCTRL.EXTINTEO) enables the corresponding output event. Clearing this bit disables the corresponding output event. Refer to *Event System* for details on configuring the Event System.

When the condition on pin EXTINTx matches the configuration in the CONFIGn register, the corresponding event is generated, if enabled.


Related Links

31. EVSYS - Event System

23.6.8 Sleep Mode Operation

In sleep modes, an EXTINTx pin can wake up the device if the corresponding condition matches the configuration in the CONFIG register, and the corresponding bit in the Interrupt Enable Set register (23.8.7 INTENSET) is written to '1'.

Figure 23-5. Wake-up Operation Example (High-Level Detection, No Filter, Interrupt Enable Set)

23.8.10 CONFIG

	Name: Offset: Reset: Property:	TPSF 0x040 0x00000FFF -						
Bit	31	30	29	28	27	26	25	24
	ENTXP							
Access	R/W							
Reset	0							
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Dit	45		10	10	44	10	0	0
Bit	15	14	13	12	11	10	9	8
							DR[11:8]	
Access					R/W	R/W	R/W	R/W
Reset					1	1	1	1
Bit	7	6	5	4	3	2	1	0
				TPB1A				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

24.9.17 GMAC TX Partial Store and Forward Register

Bit 31 – ENTXP Enable TX Partial Store and Forward Operation

Bits 11:0 – TPB1ADR[11:0] Transmit Partial Store and Forward Address Watermark value.

PAC - Peripheral Access Controller

27.7.8 Peripheral Interrupt Flag Status - Bridge C

Name:	INTFLAGC
Offset:	0x1C
Reset:	0x00000000
Property:	-

These flags are set when a Peripheral Access Error occurs while accessing the peripheral associated with the respective INTFLAGx bit, and will generate an interrupt request if INTENCLR/SET.ERR is '1'.

Writing a '0' to these bits has no effect.

Writing a '1' to these bits will clear the corresponding INTFLAGx interrupt flag.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
		CCL	QSPI	PUKCC	ICM	TRNG	AES	
Access		RW	RW	RW	RW	RW	RW	
Reset		0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0
	PDEC	TC5	TC4	TCC3	TCC2	GMAC	CAN1	CAN0
Access	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0

Bit 14 – CCL Interrupt Flag for CCL

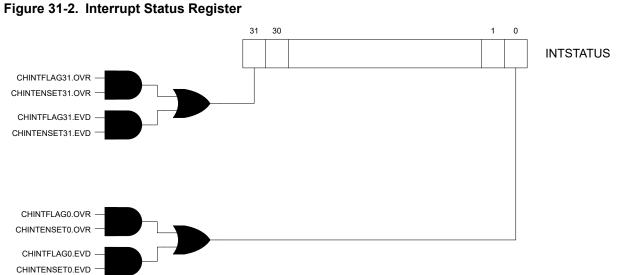
This flags is set when a Peripheral Access Error occurs while accessing the peripheral associated with the CCL, and will generate an interrupt request if INTENCLR/SET.ERR is '1'.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the CCL interrupt flag.

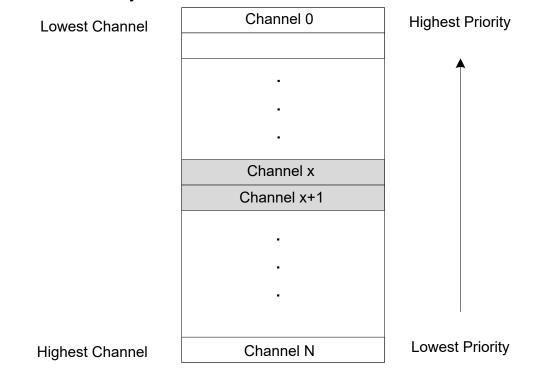
Bit 13 – QSPI Interrupt Flag for QSPI

This flags is set when a Peripheral Access Error occurs while accessing the peripheral associated with the QSPI, and will generate an interrupt request if INTENCLR/SET.ERR is '1'.


Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the QSPI interrupt flag.

Bit 12 – PUKCC Interrupt Flag for PUKCC


This flags is set when a Peripheral Access Error occurs while accessing the peripheral associated with the PUKCC, and will generate an interrupt request if INTENCLR/SET.ERR is '1'.

© 2018 Microchip Technology Inc.

The Event System can arbitrate between all channels with pending interrupts. The arbiter can be configured to prioritize statically or dynamically the incoming events. The priority is evaluated each time a new channel has an interrupt pending, or an interrupt has been cleared. The Channel Pending Interrupt register (INTPEND) will provide the channel number with the highest interrupt priority, and the corresponding channel interrupt flags and status bits.

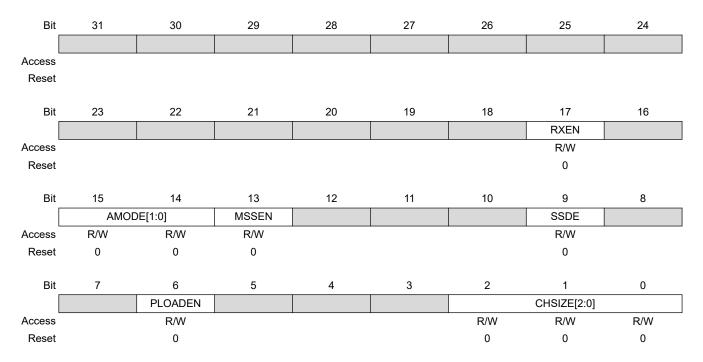

By default, static arbitration is enabled (PRICTRL.RRENx is '0'), the arbiter will prioritize a low channel number over a high channel number as shown below. When using the status scheme, there is a risk of high channel numbers never being granted access by the arbiter. This can be avoided using a dynamic arbitration scheme.

Figure 31-3. Static Priority

35.8.2 Control B

Name:	CTRLB
Offset:	0x04
Reset:	0x0000000
Property:	PAC Write-Protection, Enable-Protected, Write-Synchronized

Bit 17 - RXEN Receiver Enable

Writing '0' to this bit will disable the SPI receiver immediately. The receive buffer will be flushed, data from ongoing receptions will be lost and STATUS.BUFOVF will be cleared.

Writing '1' to CTRLB.RXEN when the SPI is disabled will set CTRLB.RXEN immediately. When the SPI is enabled, CTRLB.RXEN will be cleared, SYNCBUSY.CTRLB will be set and remain set until the receiver is enabled. When the receiver is enabled CTRLB.RXEN will read back as '1'.

Writing '1' to CTRLB.RXEN when the SPI is enabled will set SYNCBUSY.CTRLB, which will remain set until the receiver is enabled, and CTRLB.RXEN will read back as '1'.

This bit is not enable-protected.

Value	Description			
0	The receiver is disabled or being enabled.			
1 The receiver is enabled or it will be enabled when SPI is enabled.				

Bits 15:14 – AMODE[1:0] Address Mode

These bits set the slave addressing mode when the frame format (CTRLA.FORM) with address is used. They are unused in master mode.

38.8.5.6 Host Interrupt Enable Register Clear

Name:	INTENCLR
Offset:	0x14
Reset:	0x0000
Property:	PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Set (INTENSET) register.

Bit	15	14	13	12	11	10	9	8
							DDISC	DCONN
Access							R/W	R/W
Reset							0	0
Bit	7	6	5	4	3	2	1	0
	RAMACER	UPRSM	DNRSM	WAKEUP	RST	HSOF		
Access	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0		

Bit 9 – DDISC Device Disconnection Interrupt Disable Writing a zero to this bit has no effect.

Writing a one to this bit will clear the Device Disconnection interrupt Enable bit and disable the corresponding interrupt request.

Value	Description			
0	The Device Disconnection interrupt is disabled.			
1	The Device Disconnection interrupt is enabled and an interrupt request will be generated when the Device Disconnection interrupt Flag is set.			

Bit 8 – DCONN Device Connection Interrupt Disable

Writing a zero to this bit has no effect.

Writing a one to this bit will clear the Device Connection interrupt Enable bit and disable the corresponding interrupt request.

Value	Description			
0	The Device Connection interrupt is disabled.			
1	The Device Connection interrupt is enabled and an interrupt request will be generated when the Device Connection interrupt Flag is set.			

Bit 7 – RAMACER RAM Access Interrupt Disable

Writing a zero to this bit has no effect.

Writing a one to this bit will clear the RAM Access interrupt Enable bit and disable the corresponding interrupt request.

Value	Description			
0	The RAM Access interrupt is disabled.			
1	The RAM Access interrupt is enabled and an interrupt request will be generated when the			
	RAM Access interrupt Flag is set.			

40.8.10 Host Control 1 Register

Name:	HC1R
Offset:	0x28
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	CARDDSEL	CARDDTL	EXTDW	DMAS	EL[1:0]	HSEN	DW	LEDCTRL
Access	R/W	R/W	R/W			R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 7 – CARDDSEL Card Detect Signal Selection

Note:

This register entry is specific to the SD/SDIO operation mode.

This bit selects the source for the card detection.

ſ	Value	Description
	0	The CD pin is selected.
	1	The Card Detect Test Level (CARDDTL) is selected (for test purpose).

Bit 6 – CARDDTL Card Detect Test Level

Note:

This register entry is specific to the SD/SDIO operation mode.

This bit is enabled while the Card Detect Signal Selection (CARDDSEL) is set to 1 and it indicates whether the card is inserted or not.

Value	Description	
0	No card.	
1	Card inserted.	

Bit 5 – EXTDW Extended Data Width

Note: This register entry is specific to the e.MMC operation mode.

This bit controls the 8-bit Bus Width mode for embedded devices. Support of this function is indicated in 8-bit Support for Embedded Device in CA0R. If a device supports the 8-bit mode, this may be set to 1. If this bit is 0, the bus width is controlled by Data Width (DW).

Bits 4:3 – DMASEL[1:0] DMA Select

One of the supported DAM modes can be selected. The user must check support of DMA modes by referring the CA0R. Use of selected DMA is determined by DMA Enable (DMAEN) in TMR.

Value	Name	Description	
0	SDMA SDMA is selected		
1	Reserved	Reserved	
2	ADMA32	32-bit Address ADMA2 is selected	
3	Reserved	Reserved	

40.8.32 ADMA System Address Register

Name:	ASARx
Offset:	0x58
Reset:	0x00000000
Property:	-

Bit	31	30	29	28	27	26	25	24
	ADMASA[31:24]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				ADMAS	A[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	ADMASA[15:8]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	ADMASA[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:0 – ADMASA[31:0] ADMA System Address

This field holds the byte address of the executing command of the descriptor table. At the start of ADMA, the user must set the start address of the descriptor table. The ADMA increments this register address, which points to the next Descriptor line to be fetched.

When the ADMA Error (ADMA) status flag rises, this field holds a valid descriptor address depending on the ADMA Error State (ERRST). The user must program Descriptor Table on 32-bit boundary and set 32-bit boundary address to this register. ADMA2 ignores the lower 2 bits of this register and assumes it to be 0.

Note: Most of the Elliptic Curve computations are reduced modulo P. In many functions the reductions are made with the Fast Reduction.

• Cns the Modular Constant (often pointed by {nu1CnsBase,u2ModLength + 12}): This parameter contains the Modular Constant associated to the Modulus

Important: The Modular Constant must be calculated before using the GF(p) Elliptic Curves functions by a call to the Setup for Modular Reductions with the GF(p) option (see Modular Reduction Setup in the 43.3.5.1 Modular Reduction section).

43.3.6.2 Point Addition

43.3.6.2.1 Purpose

This service is used to perform a point addition, based on a given elliptic curve over GF(p). Please note that:

• This service is not intended to add the same point twice. In this particular case, use the doubling service

(see 43.3.6.4 Fast Point Doubling).

43.3.6.2.2 How to Use the Service

43.3.6.2.3 Description

The operation performed is:

 $Pt_C = Pt_A + Pt_B$

In this computation, the following parameters need to be provided:

- A the input point is filled in projective coordinates (X,Y,Z) (pointed by {nu1PointABase, 3*u2ModLength + 12}). This point can be the Infinite Point.
- B the input point is filled in projective coordinates (X,Y,Z) (pointed by {nu1PointBBase, 3*u2ModLength + 12}). This point can be the Infinite Point.
- Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength +8})
- P the modulus filled (pointed by {nu1ModBase,u2ModLength +4})
- The workspace not initialized (pointed by {nu1WorkSpace, 5*u2ModLength +32}

The resulting C point is represented in projective coordinates (X,Y,Z) and is stored at the very same place than the input point A. This Point can be the Infinite Point.

The service name for this operation is *ZpEccAddFast*. This service uses Fast mode and Fast Modular Reduction for computations.

Important: Before using this service, ensure that the constant Cns has been calculated with the Setup of the Modular Reduction functions.

ADC – Analog-to-Digital Converter

45.8.18 Synchronization Busy

Name: Offset: Reset: Property:		SYNCBUSY 0x30 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
	RBSSW							
Access	R			•				
Reset	0							
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
-			10	10				
Bit	15	14	13	12	11	10	9	8
					SWTRIG	OFFSETCORR	GAINCORR	WINUT
Access					R	R	R	R
Reset					0	0	0	0
Bit	7	6	5	4	3	2	1	0
	WINLT	SAMPCTRL	AVGCTRL	REFCTRL	CTRLB	INPUTCTRL	ENABLE	SWRST
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bit 31 – RBSSW Reset BootStrap Switch Synchronization Busy

Bit 11 – SWTRIG Software Trigger Synchronization Busy

This bit is cleared when the synchronization of SWTRIG register between the clock domains is complete.

This bit is set when the synchronization of SWTRIG register between clock domains is started.

Note: For the slave ADC, this bit is always read zero when the SLAVEEN bit is set (CTRLA.SLAVEEN= 1).

Bit 10 - OFFSETCORR Offset Correction Synchronization Busy

This bit is cleared when the synchronization of OFFSETCORR register between the clock domains is complete.

This bit is set when the synchronization of OFFSETCORR register between clock domains is started.

Bit 9 – GAINCORR Gain Correction Synchronization Busy

This bit is cleared when the synchronization of GAINCORR register between the clock domains is complete.

This bit is set when the synchronization of GAINCORR register between clock domains is started.

Bit 8 – WINUT Window Monitor Upper Threshold Synchronization Busy

This bit is cleared when the synchronization of WINUT register between the clock domains is complete.

© 2018 Microchip Technology Inc.

DAC – Digital-to-Analog Converter

Value	Description
0	Filter 0 Result Ready interrupt is disabled.
1	Filter 0 Result Ready interrupt is enabled.

Bit 3 – EMPTY1 Data Buffer 1 Empty Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Data Buffer 1 Empty Interrupt Enable bit, which disables the Data Buffer 1 Empty interrupt.

Value	Description
0	The Data Buffer 1 Empty interrupt is disabled.
1	The Data Buffer 1 Empty interrupt is enabled.

Bit 2 – EMPTY0 Data Buffer 0 Empty Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Data Buffer 0 Empty Interrupt Enable bit, which disables the Data Buffer 0 Empty interrupt.

Value	Description
0	The Data Buffer 0 Empty interrupt is disabled.
1	The Data Buffer 0 Empty interrupt is enabled.

Bit 1 – UNDERRUN1 Underrun Interrupt Enable for DAC1

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Data Buffer 1 Underrun Interrupt Enable bit, which disables the Data Buffer 1 Underrun interrupt.

Value	Description
0	The Data Buffer 1 Underrun interrupt is disabled.
1	The Data Buffer 1 Underrun interrupt is enabled.

Bit 0 – UNDERRUN0 Underrun Interrupt Enable for DAC0

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Data Buffer 0 Underrun Interrupt Enable bit, which disables the Data Buffer 0 Underrun interrupt.

Valu	le	Description
0		The Data Buffer 0 Underrun interrupt is disabled.
1		The Data Buffer 0 Underrun interrupt is enabled.

TC – Timer/Counter

Value	Description
0	Event from Event System is selected as trigger source for capture operation on channel x.
1	I/O pin is selected as trigger source for capture operation on channel x.

Bits 16, 17 – CAPTENx Capture Channel x Enable

Bit x of CAPTEN[1:0] selects whether channel x is a capture or a compare channel.

These bits are not synchronized.

Value	Description
0	CAPTEN disables capture on channel x.
1	CAPTEN enables capture on channel x.

Bit 15 – DMAOS DMA One-Shot Trigger Mode

This bit enables the DMA One-shot Trigger Mode.

Writing a '1' to this bit will generate a DMA trigger on TC cycle following a TC_CTRLBSET_CMD_DMAOS command.

Writing a '0' to this bit will generate DMA triggers on each TC cycle.

This bit is not synchronized.

Bit 11 – ALOCK Auto Lock

When this bit is set, Lock bit update (LUPD) is set to '1' on each overflow/underflow or re-trigger event.

This bit is not synchronized.

Value	Description
0	The LUPD bit is not affected on overflow/underflow, and re-trigger event.
1	The LUPD bit is set on each overflow/underflow or re-trigger event.

Bits 10:8 – PRESCALER[2:0] Prescaler

These bits select the counter prescaler factor.

These bits are not synchronized.

Value	Name	Description
0x0	DIV1	Prescaler: GCLK_TC
0x1	DIV2	Prescaler: GCLK_TC/2
0x2	DIV4	Prescaler: GCLK_TC/4
0x3	DIV8	Prescaler: GCLK_TC/8
0x4	DIV16	Prescaler: GCLK_TC/16
0x5	DIV64	Prescaler: GCLK_TC/64
0x6	DIV256	Prescaler: GCLK_TC/256
0x7	DIV1024	Prescaler: GCLK_TC/1024

Bit 7 - ONDEMAND Clock On Demand

This bit selects the clock requirements when the TC is stopped.

In standby mode, if the Run in Standby bit (CTRLA.RUNSTDBY) is '0', ONDEMAND is forced to '0'.

This bit is not synchronized.

Note:

When a re-trigger event action is configured in the Event Action bits in the Event Control register (EVCTRL.EVACTn=0x1, RETRIGGER), enabling the counter will not start the counter. The counter will start on the next incoming event and restart on corresponding following event.

Start Event Action

The start action can be selected in the Event Control register (EVCTRL.EVACT0=0x3, START) and can start the counting operation when previously stopped. The event has no effect if the counter is already counting. When the module is enabled, the counter operation starts when the event is received or when a re-trigger software command is applied.

Note:

When a start event action is configured in the Event Action bits in the Event Control register (EVCTRL.EVACT0=0x3, START), enabling the counter will not start the counter. The counter will start on the next incoming event, but it will not restart on subsequent events.

Count Event Action

The TCC can count events. When an event is received, the counter increases or decreases the value, depending on direction settings (CTRLBSET.DIR or CTRLBCLR.DIR).

The count event action is selected by the Event Action 0 bit group in the Event Control register (EVCTRL.EVACT0=0x5, COUNT).

Direction Event Action

The direction event action can be selected in the Event Control register (EVCTRL.EVACT1=0x2, DIR). When this event is used, the asynchronous event path specified in the event system must be configured or selected. The direction event action can be used to control the direction of the counter operation, depending on external events level. When received, the event level overrides the Direction settings (CTRLBSET.DIR or CTRLBCLR.DIR) and the direction bit value is updated accordingly.

Increment Event Action

The increment event action can be selected in the Event Control register (EVCTRL.EVACT0=0x4, INC) and can change the counter state when an event is received. When the TCE0 event (TCCx_EV0) is received, the counter increments, whatever the direction setting (CTRLBSET.DIR or CTRLBCLR.DIR) is.

Decrement Event Action

The decrement event action can be selected in the Event Control register (EVCTRL.EVACT1=0x4, DEC) and can change the counter state when an event is received. When the TCE1 (TCCx_EV1) event is received, the counter decrements, whatever the direction setting (CTRLBSET.DIR or CTRLBCLR.DIR) is.

Non-recoverable Fault Event Action

Non-recoverable fault actions can be selected in the Event Control register (EVCTRL.EVACTn=0x7, FAULT). When received, the counter will be stopped and the output of the compare channels is overridden according to the Driver Control register settings (DRVCTRL.NREx and DRVCTRL.NRVx). TCE0 and TCE1 must be configured as asynchronous events.

Event Action Off

If the event action is disabled (EVCTRL.EVACTn=0x0, OFF), enabling the counter will also start the counter.

Related Links

© 2018 Microchip Technology Inc.

TCC – Timer/Counter for Control Applications

49.8.12 Interrupt Flag Status and Clear

	Name: Offset: Reset: Property:	INTFLAG 0x2C 0x00000000 -						
Bit	23	22	21	20	19	18	17	16
			MCx	MCx	MCx	MCx	MCx	MCx
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	FAULTx	FAULTx	FAULTB	FAULTA	DFS			
Access	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0
					ERR	CNT	TRG	OVF
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bits 21,20,19,18,17,16 – MCx Match or Capture Channel x Interrupt Flag

This flag is set on the next CLK_TCC_COUNT cycle after a match with the compare condition or once CCx register contain a valid capture value.

Writing a '0' to one of these bits has no effect.

Writing a '1' to one of these bits will clear the corresponding Match or Capture Channel x interrupt flag

In Capture operation, this flag is automatically cleared when CCx register is read.

Bits 15,14 – FAULTx Non-Recoverable Fault x Interrupt Flag

This flag is set on the next CLK_TCC_COUNT cycle after a Non-Recoverable Fault x occurs.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit clears the Non-Recoverable Fault x interrupt flag.

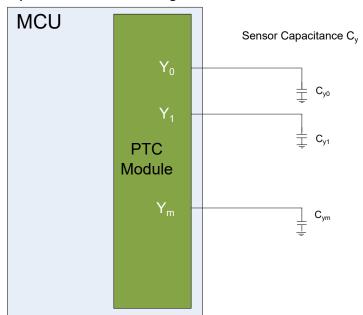
Bit 13 – FAULTB Recoverable Fault B Interrupt Flag

This flag is set on the next CLK_TCC_COUNT cycle after a Recoverable Fault B occurs.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit clears the Recoverable Fault B interrupt flag.

Bit 12 – FAULTA Recoverable Fault A Interrupt Flag


This flag is set on the next CLK_TCC_COUNT cycle after a Recoverable Fault B occurs.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit clears the Recoverable Fault B interrupt flag.

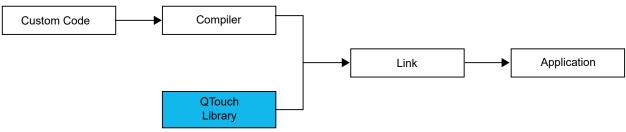
PTC - Peripheral Touch Controller

Figure 50-4. Self-Capacitance Sensor Arrangement

For more information about designing the touch sensor, refer to Buttons, Sliders and Wheels Touch Sensor Design Guide.

50.5.2 Analog-Digital Converter (ADC)

The PTC is using the ADC for signal conversion and acquisition. The ADC must be enabled and configured appropriately to allow correct behavior of the PTC.


Related Links

45. ADC - Analog-to-Digital Converter

50.6 Functional Description

In order to access the PTC, the user must use the Atmel Start QTouch[®] Configurator to configure and link the QTouch Library firmware with the application software. QTouch Library can be used to implement buttons, sliders, and wheels in a variety of combinations on a single interface.

Figure 50-5. QTouch Library Usage

For more information about QTouch Library, refer to the QTouch Library Peripheral Touch Controller User Guide.

I2S - Inter-IC Sound Controller

DATASIZE[2:0]	Name	Description
0x2	20	20 bits
0x3	18	18 bits
0x4	16	16 bits
0x5	16C	16 bits compact stereo
0x6	8	8 bits
0x7	8C	8 bits compact stereo

Bit 7 – SLOTADJ Data Slot Formatting Adjust

This field defines left or right adjustment of data samples in the slot.

SLOTADJ	Name	Description
0x0	RIGHT	Data is right adjusted in slot
0x1	LEFT	Data is left adjusted in slot

Bit 5 – CLKSEL Clock Unit Selection.

CLKSEL	Name	Description
0x0	CLK0	Use Clock Unit 0
0x1	CLK1	Use Clock Unit 1

Bits 1:0 – SERMODE[1:0] Serializer Mode.

SERMODE[1:0]	Name	Description
0x0	RX	Receive
0x1		Reserved
0x2	PDM2	Receive one PDM data on each serial clock edge
0x3		Reserved