

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	99
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.63V
Data Converters	A/D 32x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	128-TQFP
Supplier Device Package	128-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsame54p20a-aut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SAMD5x/E5x Family Data Sheet

I/O Multiplexing and Considerations

Table 6-24. TC4 IO SET Configuration

TC Signal	IOSET 1 PINs	IOSET 2 PINs	IOSET 3 PINs
WO0	PB08	PB12	PA22
WO1	PB09	PB13	PA23

Table 6-25. TC5 IO SET Configuration

TC Signal	IOSET 1 PINs	IOSET 2 PINs	IOSET 3 PINs
WO0	PB10	PB14	PA24
WO1	PB11	PB15	PA25

Table 6-26. TC6 IO SET Configuration

TC Signal	IOSET 1 PINs	IOSET 2 PINs	IOSET 3 PINs
WO0	PB16	PA30	PB02
WO1	PB03	PB17	PA31

Table 6-27. TC7 IO SET Configuration

TC Signal	IOSET 1 PINs	IOSET 2 PINs	IOSET 3 PINs
WO0	PA20	PB22	PB00
WO1	PA21	PB23	PB01

6.2.8.5 TCC IOSET Configurations

The following tables lists each IOSET Pins for each TCC instance.

Table 6-28. TCC0 IO SET Configuration

TCC Signal	IOSET 1 PINs	IOSET 2 PINs	IOSET 3 PINs	IOSET 4 PINs	IOSET 5 PINs	IOSET 6 PINs
WO0	PA08	PC04	PC10	PC16	PB12	PA20
WO1	PA09	PD08	PC11	PC17	PB13	PA21
WO2	PA10	PD09	PC12	PC18	PB14	PA22
WO3	PA11	PD10	PC13	PC19	PB15	PA23
WO4	PB10	PD11	PC14	PC20	PA16	PB16
WO5	PB11	PD12	PC15	PC21	PA17	PB17
WO6	PA12	PC22	PA18	PB30	N/A ⁽¹⁾	N/A ⁽¹⁾
WO7	PA13	PC23	PA19	PB31	N/A ⁽¹⁾	N/A ⁽¹⁾

Note: 1. The signal is available, but the edges are not aligned wrt. the other signals as specified.

21.8.13 Tamper Control

Name:	TAMPCTRL
Offset:	0x60
Reset:	0x0000000
Property:	PAC Write-Protection, Enable-Protected

Bit	31	30	29	28	27	26	25	24
				DEBNC4	DEBNC3	DEBNC2	DEBNC1	DEBNC0
Access								
Reset				0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				TAMLVL4	TAMLVL3	TAMLVL2	TAMLVL1	TAMLVL0
Access								
Reset				0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
							IN4AC	T[1:0]
Access								
Reset							0	0
Bit	7	6	5	4	3	2	1	0
	IN3ACT[1:0]		IN2AC	CT[1:0] IN		IN1ACT[1:0]		CT[1:0]
Access								
Reset	0	0	0	0	0	0	0	0

Bits 24, 25, 26, 27, 28 – DEBNC Debounce Enable of Tamper Input INn

Value	Description
0	Debouncing is disabled for Tamper input INn
1	Debouncing is enabled for Tamper input INn

Bits 16, 17, 18, 19, 20 - TAMLVL Tamper Level Select of Tamper Input INn

Value	Description
0	A falling edge condition will be detected on Tamper input INn.
1	A rising edge condition will be detected on Tamper input INn.

Bits 0:1, 2:3, 4:5, 6:7, 8:9 – INACT Tamper Channel n Action These bits determine the action taken by Tamper Channel n.

Value	Name	Description
0x0	OFF	Off (Disabled)
0x1	WAKE	Wake and set Tamper flag
0x2	CAPTURE	Capture timestamp and set Tamper flag
0x3	ACTL	Compare RTC signal routed between INn and OUT pins . When a mismatch
		occurs, capture timestamp and set Tamper flag

RTC – Real-Time Counter

21.12.3 Event Control in Clock/Calendar mode (CTRLA.MODE=2)

Name:	EVCTRL
Offset:	0x04
Reset:	0x0000000
Property:	PAC Write-Protection, Enable-Protected

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
								TAMPEVEI
Access								R/W
Reset								0
Bit	15	14	13	12	11	10	9	8
	OVFEO	TAMPEREO					ALARM	EOn[1:0]
Access	R/W	R/W					R/W	R/W
Reset	0	0					0	0
Bit	7	6	5	4	3	2	1	0
				PERE	Dn[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Reset	U	U	U	0	U	0	U	U

Bit 16 – TAMPEVEI Tamper Event Input Enable

Value	Description
0	Tamper event input is disabled, and incoming events will be ignored.
1	Tamper event input is enabled, and all incoming events will capture the CLOCK value.

Bit 15 - OVFEO Overflow Event Output Enable

Value	Description
0	Overflow event is disabled and will not be generated.
1	Overflow event is enabled and will be generated for every overflow.

Bit 14 – TAMPEREO Tamper Event Output Enable

Value	Description
0	Tamper event output is disabled, and will not be generated
1	Tamper event output is enabled, and will be generated for every tamper input.

Bits 9:8 – ALARMEOn[1:0] Alarm n Event Output Enable [n = 1..0]

Value	Description
0	Alarm n event is disabled and will not be generated.
1	Alarm n event is enabled and will be generated for every compare match.

Bits 5:0 – SECOND[5:0] Second 0 – 59

If Partial Store and Forward mode is active, the DMA will begin fetching the packet data before the status is available. As soon as the status becomes available, the DMA will fetch this information as soon as possible before continuing to fetch the remainder of the frame. Once the last frame data has been transferred to the packet buffer, the status and statistics are updated to the GMAC registers.

24.6.4 MAC Transmit Block

The MAC transmitter can operate in either half duplex or full duplex mode and transmits frames in accordance with the Ethernet IEEE 802.3 standard. In half duplex mode, the CSMA/CD protocol of the IEEE 802.3 specification is followed.

A small input buffer receives data through the FIFO interface which will extract data in 32-bit form. All subsequent processing prior to the final output is performed in bytes.

Transmit data can be output using the MII interface.

Frame assembly starts by adding preamble and the start frame delimiter. Data is taken from the transmit FIFO interface a word at a time.

If necessary, padding is added to take the frame length to 60 bytes. CRC is calculated using an order 32bit polynomial. This is inverted and appended to the end of the frame taking the frame length to a minimum of 64 bytes. If the no CRC bit is set in the second word of the last buffer descriptor of a transmit frame, neither pad nor CRC are appended. The no CRC bit can also be set through the FIFO interface.

In full duplex mode (at all data rates), frames are transmitted immediately. Back to back frames are transmitted at least 96 bit times apart to guarantee the interframe gap.

In half duplex mode, the transmitter checks carrier sense. If asserted, the transmitter waits for the signal to become inactive, and then starts transmission after the interframe gap of 96 bit times. If the collision signal is asserted during transmission, the transmitter will transmit a jam sequence of 32 bits taken from the data register and then retry transmission after the back off time has elapsed. If the collision occurs during either the preamble or Start Frame Delimiter (SFD), then these fields will be completed prior to generation of the jam sequence.

The back off time is based on an XOR of the 10 least significant bits of the data coming from the transmit FIFO interface and a 10-bit pseudo random number generator. The number of bits used depends on the number of collisions seen. After the first collision 1 bit is used, then the second 2 bits and so on up to the maximum of 10 bits. All 10 bits are used above ten collisions. An error will be indicated and no further attempts will be made if 16 consecutive attempts cause collision. This operation is compliant with the description in Clause 4.2.3.2.5 of the IEEE 802.3 standard which refers to the truncated binary exponential back off algorithm.

In 10/100 mode, both collisions and late collisions are treated identically, and back off and retry will be performed up to 16 times. This condition is reported in the transmit buffer descriptor word 1 (late collision, bit 26) and also in the Transmit Status register (late collision, bit 7). An interrupt can also be generated (if enabled) when this exception occurs, and bit 5 in the Interrupt Status register will be set.

In all modes of operation, if the transmit DMA underruns, a bad CRC is automatically appended using the same mechanism as jam insertion and the GTXER signal is asserted. For a properly configured system this should never happen and also it is impossible if configured to use the DMA with packet buffers, as the complete frame is buffered in local packet buffer memory.

By setting when bit 28 is set in the Network Configuration register, the Inter Packet Gap (IPG) may be stretched beyond 96 bits depending on the length of the previously transmitted frame and the value written to the IPG Stretch register (IPGS). The least significant 8 bits of the IPG Stretch register multiply the previous frame length (including preamble). The next significant 8 bits (+1 so as not to get a divide by

© 2018 Microchip Technology Inc.

24.9.50 GMAC Greater Than 1518 Byte Frames Transmitted Register

Name:	GTBFT1518
Offset:	0x130
Reset:	0x00000000
Property:	Read-only

31	30	29	28	27	26	25	24
			NFTX	[31:24]			
R	R	R	R	R	R	R	R
0	0	0	0	0	0	0	0
23	22	21	20	19	18	17	16
			NFTX	[23:16]			
R	R	R	R	R	R	R	R
0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8
			NFTX	[15:8]			
R	R	R	R	R	R	R	R
0	0	0	0	0	0	0	0
7	6	5	4		2	1	0
			NFT	X[7:0]			
R	R	R	R	R	R	R	R
0	0	0	0	0	0	0	0
	R 0 23 R 0 15 R 0 7 7 R	R R 0 0 23 22 R R 0 0 15 14 R R 0 0 7 6 R R R R R R R R R R R R	R R R 0 0 0 23 22 21 R R R 0 0 0 15 14 13 R R R 0 0 0 7 6 5 R R R R R R	R R	R R R R R 0 0 0 0 0 23 22 21 20 19 23 22 21 20 19 NFTX[23:16] NFTX[23:16] NFTX[23:16] R R R R 0 0 0 0 15 14 13 12 11 NFTX[15:8] NFTX[15:8] NFTX[15:8] NFTX[15:8] R R R R R 7 6 5 4 3 NFTX[7:0] NFTX[7:0] NFTX[7:0] NFTX[7:0]	R R R R R R R 0 0 0 0 0 0 0 23 22 21 20 19 18 NFTX[23:16] R R R R R 0 0 0 0 0 0 15 14 13 12 11 10 NFTX[15:8] R R R R R 0 0 0 0 0 0 7 6 5 4 3 2 NFTX[7:0] It R R R R	NFTX[31:24] R R R R R R R 0 0 0 0 0 0 0 23 22 21 20 19 18 17 NFTX[23:16] R R R R R R 0 0 0 0 0 0 15 14 13 12 11 10 9 NFTX[15:8] R R R R R R 0 0 0 0 0 0 0 7 6 5 4 3 2 1 NFTX[7:0] R R R R R R

Bits 31:0 – NFTX[31:0] Greater than 1518 Byte Frames Transmitted without Error This register counts the number of 1518 or above byte frames successfully transmitted without error i.e., no underrun and not too many retries.

Clock Failure Detection

The CFD is reset only at power-on (POR). The CFD does not monitor the XOSC32K clock when the oscillator is disabled (XOSC32K.ENABLE=0).

Before starting CFD operation, the user must start and enable the safe clock source (OSCULP32K oscillator).

CFD operation is started by writing a '1' to the CFD Enable bit in the External Oscillator Control register (CFDCTRL.CFDEN). After starting or restarting the XOSC32K, the CFD does not detect failure until the start-up time has elapsed. The start-up time is configured by the Oscillator Start-Up Time in the External Multipurpose Crystal Oscillator Control register (XOSC32K.STARTUP). Once the XOSC32K Start-Up Time is elapsed, the XOSC32K clock is constantly monitored.

During a period of 4 safe clocks (monitor period), the CFD watches for a clock activity from the XOSC32K. There must be at least one rising and one falling XOSC32K clock edge during 4 safe clock periods to meet non-failure conditions. If no or insufficient activity is detected, the failure status is asserted: The Clock Failure Detector status bit in the Status register (STATUS.XOSC32KFAIL) and the Clock Failure Detector interrupt flag bit in the Interrupt Flag register (INTFLAG.XOSC32KFAIL) are set. If the XOSC32KFAIL bit in the Interrupt Enable Set register (INTENSET.XOSC32KFAIL) is set, an interrupt is generated as well. If the Event Output enable bit in the Event Control register (EVCTRL.CFDEO) is set, an output event is generated, too.

After a clock failure was issued the monitoring of the XOSC32K clock is continued, and the Clock Failure Detector status bit in the Status register (STATUS.XOSC32KFAIL) reflects the current XOSC32K activity.

Clock Switch

When a clock failure is detected, the XOSC32K clock is replaced by the safe clock in order to maintain an active clock during the XOSC32K clock failure. The safe clock source is the OSCULP32K oscillator clock. Both 32KHz and 1KHz outputs of the XOSC32K are replaced by the respective OSCULP32K 32KHz and 1KHz outputs. The safe clock source can be scaled down by a configurable prescaler to ensure that the safe clock frequency does not exceed the operating conditions selected by the application. When the XOSC32K clock is switched to the safe clock, the Clock Switch bit in the Status register (STATUS.XOSC32KSW) is set.

When the CFD has switched to the safe clock, the XOSC32K is not disabled. If desired, the application must take the necessary actions to disable the oscillator. The application must also take the necessary actions to configure the system clocks to continue normal operations. In the case the application can recover the XOSC32K, the application can switch back to the XOSC32K clock by writing a '1' to Switch Back Enable bit in the Clock Failure Control register (CFDCTRL.SWBACK). Once the XOSC32K clock is switched back, the Switch Back bit (CFDCTRL.SWBACK) is cleared by hardware.

Prescaler

The CFD has an internal configurable prescaler to generate the safe clock from the OSCULP32K oscillator. The prescaler size allows to scale down the OSCULP32K oscillator so the safe clock frequency is not higher than the XOSC32K clock frequency monitored by the CFD. The maximum division factor is 2.

The prescaler is applied on both outputs (32KHz and 1KHz) of the safe clock.

Example 29-1. Example

For an external crystal oscillator at 32KHz and the OSCULP32K frequency is 32KHz, the XOSC32K.CFDPRESC should be set to 0 for a safe clock of equal frequency.

- 1. Abort the current transfer.
- 2. Flush the transmit buffer.
- 3. Disable transmitter (CTRLB.TXEN=0)
 - This is done after a synchronization delay. The CTRLB Synchronization Busy bit (SYNCBUSY.CTRLB) will be set until this is complete.
 - After disabling, the TxD pin will be tri-stated.
- 4. Set the Collision Detected bit (STATUS.COLL) along with the Error interrupt flag (INTFLAG.ERROR).
- 5. Set the Transmit Complete interrupt flag (INTFLAG.TXC), since the transmit buffer no longer contains data.

After a collision, software must manually enable the transmitter again before continuing, after assuring that the CTRLB Synchronization Busy bit (SYNCBUSY.CTRLB) is not set.

34.6.3.9 Loop-Back Mode

For loop-back mode, configure the Receive Data Pinout (CTRLA.RXPO) and Transmit Data Pinout (CTRLA.TXPO) to use the same data pins for transmit and receive. The loop-back is through the pad, so the signal is also available externally.

34.6.3.10 Start-of-Frame Detection

The USART start-of-frame detector can wake up the CPU when it detects a start bit. In standby sleep mode, the internal fast startup oscillator must be selected as the GCLK_SERCOMx_CORE source.

When a 1-to-0 transition is detected on RxD, the 8MHz Internal Oscillator is powered up and the USART clock is enabled. After startup, the rest of the data frame can be received, provided that the baud rate is slow enough in relation to the fast startup internal oscillator start-up time. Refer to *Electrical Characteristics* for details. The start-up time of this oscillator varies with supply voltage and temperature.

The USART start-of-frame detection works both in asynchronous and synchronous modes. It is enabled by writing '1' to the Start of Frame Detection Enable bit in the Control B register (CTRLB.SFDE).

If the Receive Start Interrupt Enable bit in the Interrupt Enable Set register (INTENSET.RXS) is set, the Receive Start interrupt is generated immediately when a start is detected.

When using start-of-frame detection without the Receive Start interrupt, start detection will force the 8MHz Internal Oscillator and USART clock active while the frame is being received. In this case, the CPU will not wake up until the Receive Complete interrupt is generated.

34.6.3.11 Sample Adjustment

In asynchronous mode (CTRLA.CMODE=0), three samples in the middle are used to determine the value based on majority voting. The three samples used for voting can be selected using the Sample Adjustment bit field in Control A register (CTRLA.SAMPA). When CTRLA.SAMPA=0, samples 7-8-9 are used for 16x oversampling, and samples 3-4-5 are used for 8x oversampling.

34.6.3.12 32-bit Extension

For better system bus utilization, 32-bit data receive and transmit can be enabled separately by writing to the Data 32-bit bit field in the Control C register (CTRLC.DATA32B). When enabled, writes and/or reads to the DATA register are 32 bit in size.

If frames are not multiples of 4 Bytes, the length counter (LENGTH.LEN) and length enable (LENGTH.LENEN) must be configured before data transfer begins, LENGTH.LEN must be enabled only when CTRLC.DATA32B is enabled.

The figure below shows the order of transmit and receive when using 32-bit extension. Bytes are transmitted or received, and stored in order from 0 to 3. Only 8-bit and smaller character sizes are

SERCOM I2C – Inter-Integrated Circuit

36.8.5 Interrupt Enable Set

Name:INTENSETOffset:0x16Reset:0x00Property:PAC Write-Protection

This register allows the user to enable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Clear register (INTENCLR).

Bit	7	6	5	4	3	2	1	0
	ERROR					DRDY	AMATCH	PREC
Access	R/W					R/W	R/W	R/W
Reset	0					0	0	0

Bit 7 – ERROR Error Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Error Interrupt Enable bit, which enables the Error interrupt.

Value	Description
0	Error interrupt is disabled.
1	Error interrupt is enabled.

Bit 2 – DRDY Data Ready Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Data Ready bit, which enables the Data Ready interrupt.

Value	Description
0	The Data Ready interrupt is disabled.
1	The Data Ready interrupt is enabled.

Bit 1 – AMATCH Address Match Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Address Match Interrupt Enable bit, which enables the Address Match interrupt.

Value	Description
0	The Address Match interrupt is disabled.
1	The Address Match interrupt is enabled.

Bit 0 – PREC Stop Received Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Stop Received Interrupt Enable bit, which enables the Stop Received interrupt.

Value	Description
0	The Stop Received interrupt is disabled.
1	The Stop Received interrupt is enabled.

38.8.3.1 Device Endpoint Configuration register n

Name:	EPCFGn
Offset:	0x100 + (n x 0x20)
Reset:	0x00
Property:	PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
[EPTYPE1[2:0]				EPTYPE0[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		0	0	0		0	0	0

Bits 6:4 – EPTYPE1[2:0] Endpoint Type for IN direction

These bits contains the endpoint type for IN direction.

Upon receiving a USB reset EPCFGn.EPTYPE1 is cleared except for endpoint 0 which is unchanged.

Value	Description
0x0	Bank1 is disabled.
0x1	Bank1 is enabled and configured as Control IN.
0x2	Bank1 is enabled and configured as Isochronous IN.
0x3	Bank1 is enabled and configured as Bulk IN.
0x4	Bank1 is enabled and configured as Interrupt IN.
0x5	Bank1 is enabled and configured as Dual-Bank OUT
	(Endpoint type is the same as the one defined in EPTYPE0)
0x6-0x7	Reserved

Bits 2:0 – EPTYPE0[2:0] Endpoint Type for OUT direction

These bits contains the endpoint type for OUT direction.

Upon receiving a USB reset EPCFGn.EPTYPE0 is cleared except for endpoint 0 which is unchanged.

Value	Description				
0x0	Bank0 is disabled.				
0x1	ank0 is enabled and configured as Control SETUP / Control OUT.				
0x2	Bank0 is enabled and configured as Isochronous OUT.				
0x3	Bank0 is enabled and configured as Bulk OUT.				
0x4	Bank0 is enabled and configured as Interrupt OUT.				
0x5	Bank0 is enabled and configured as Dual Bank IN				
	(Endpoint type is the same as the one defined in EPTYPE1)				
0x6-0x7	Reserved				

- 38.8.4 Device Registers Endpoint RAM
- 38.8.4.1 Endpoint Descriptor Structure

38.8.6.1 Host Pipe n Configuration

Name:	PCFGn
Offset:	0x100 + (n x 0x20)
Reset:	0x00
Property:	PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
				PTYPE[2:0]		BK	PTOK	EN[1:0]
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bits 5:3 – PTYPE[2:0] Type of the Pipe These bits contains the pipe type.

PTYPE[2:0]	Description
0x0	Pipe is disabled
0x1	Pipe is enabled and configured as CONTROL
0x2	Pipe is enabled and configured as ISO
0x3	Pipe is enabled and configured as BULK
0x4	Pipe is enabled and configured as INTERRUPT
0x5	Pipe is enabled and configured as EXTENDED
0x06-0x7	Reserved

These bits are cleared upon sending a USB reset.

Bit 2 – BK Pipe Bank

This bit selects the number of banks for the pipe.

For control endpoints writing a zero to this bit is required as only Bank0 is used for Setup/In/Out transactions.

This bit is cleared when a USB reset is sent.

BK <u>(1)</u>	Description
0x0	Single-bank endpoint
0x1	Dual-bank endpoint

1. Bank field is ignored when PTYPE is configured as EXTENDED.

Value	Description
0	A single bank is used for the pipe.
1	A dual bank is used for the pipe.

Bits 1:0 - PTOKEN[1:0] Pipe Token

These bits contains the pipe token.

SD/MMC Host Controller ...

	Name: Offset: Reset: Property:	CACR 0x230 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
					[7:0]			
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
								CAPWREN
Access								R/W
Reset								0

40.8.41 Capabilities Control Register

Bits 15:8 - KEY[7:0] Key

Value	Name	Description
46h	KEY	Writing any other value in this field aborts the write operation of the CAPWREN bit.
		Always reads as 0.

Bit 0 – CAPWREN Capabilities Write Enable

This bit can only be written if KEY correspond to 46h.

Value	Description
0	Capabilities registers (CA0R and CA1R) cannot be written.
1	Capabilities registers (CA0R and CA1R) can be written.

CCL – Configurable Custom Logic

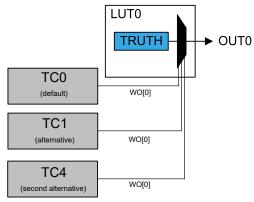
Timer/Counter Inputs (TC)

The TC waveform output WO[0] can be used as input source for the LUT (LUTCTRLx.INSELy=TC). Only consecutive instances of the TC, i.e. TCx and the subsequent TC(x+1), are available as default and alternative TC selections (e.g., TC0 and TC1 are sources for LUT0, TC1 and TC2 are sources for LUT1, etc). See the figure below for an example for LUT0. More general, the Timer/Counter selection for each LUT follows the formula:

 $IN[N][i] = DefaultTC[N \% TC_Instance_Number]$

 $IN[N][i] = AlternativeTC[(N + 1) \% TC_Instance_Number]$

Where N represents the LUT number and i represents the LUT input index (i=0,1,2).


For devices with more than four TC instances, it is also possible to enable a second alternative option (LUTCTRLx.INSEL=ALT2TC). This option is intended to relax the alternative pin function or PCB design constraints when the default or the alternative TC instances are used for other purposes. When enabled, the Timer/Counter selection for each LUT follows the formula:

 $IN[N][i] = SecondAlternativeTC[(N + 4) \% TC_Instance_Number]$

Note that for not implemented TC_Instance_Number, the corresponding input is tied to ground.

Before selecting the waveform outputs, the TC must be configured first.

Figure 41-9. TC Input Selection

Timer/Counter for Control Application Inputs (TCC)

The TCC waveform outputs can be used as input source for the LUT. Only WO[2:0] outputs can be selected and routed to the respective LUT input (i.e., IN0 is connected to WO0, IN1 to WO1, and IN2 to WO2), as shown in the figure below.

Note:

The TCC selection for each LUT follows the formula:

 $IN[N][i] = TCC[N \% TCC_Instance_Number]$

Where *N* represents the LUT number.

Before selecting the waveform outputs, the TCC must be configured first.

43.3.6.6.4 Parameters Definition

WA is the Point A window size and WB is the Point B window size (see Options below for details).

Important: Please calculate precisely the length of areas with the formulas. Ensure that the pu1 type is a pointer on 4 bytes and contains the full address (see 43.3.3.4 Aligned Significant Length).

Table 43-74. ZpEccQuickDualMulFast Service Parameters

Parameter	Туре	Direction	Location	Data Length	Before Executing the Service	After Executing the Service
pu1ModCnsBase	pu1	I	Crypto RAM	2 * u2ModLength + 16	Base of modulus P, Base of Cns	Base of modulus P, Base of Cns
u2Option	u2	1	_	-	Option related to the called service (see below)	-
u2ModLength	u2	I	_	_	Length of modulus P	Length of modulus P
pu1KABBase	pu1	1	Any RAM	2 * u2KLength + 8	Scalar numbers used to multiply the points A and B	Unchanged
u2KLength	u2	I	-	_	Length of scalars KA and KB	Length of scalars KA and KB
pu1PointABase	pu1	I/O	Crypto RAM	(3*(u2ModLength + 4)) * (2 ^(WA-2)) (1)	Input point A (projective coordinates)	Unchanged
pu1PointBBase	pu1	I	Crypto RAM	(3*(u2ModLength + 4)) * (2 ^(WB-2)) (2)	Input point B (projective coordinates)	Unchanged
pu1AWorkBase	pu1	I	Crypto RAM	9*u2ModLength + 48	Parameter a of the elliptic curve	Resulting point C (projective coordinates) in pu1AWorkBase Base + u2ModLength + 4

Note:

- 1. The precalculus table size for the point A is calculated from chosen window size "WA".
- 2. The precalculus table size for the point B is calculated from chosen window size "WB".

SAMD5x/E5x Family Data Sheet

Public Key Cryptography Controller (PUKCC)

Parameter	Туре	Direction	Location	Data Length	Before Executing the Service	After Executing the Service
nu1ABBase	nu1	I	Crypto RAM	u2ModLength + 4	Parameter a of the elliptic curve	Unchanged
nu1Workspace	nu1	I	Crypto RAM	7*u2ModLength + 40	_	Corrupted workspace

43.3.7.2.5 Code Example

```
PUKCL PARAM PUKCLParam;
PPUKCL PARAM pvPUKCLParam = & PUKCLParam;
//Depending on the function the Random Number Generator
//must be initialized and started
//following the directives given for the RNG on the chip
PUKCL(u2Option) = 0;
PUKCL_GF2NEccAdd(nu1ModBase) = <Base of the ram location of P>;
PUKCL GF2NEccAdd(nulCnsBase) = <Base of the ram location of Cns>;
PUKCL GF2NEccAdd(u2ModLength) = <Byte length of P>;
PUKCL GF2NEccAdd (nulPointABase) = < Base of the ram location of the A point>;
PUKCL GF2NEccAdd (nulPointBBase) = <Base of the ram location of the B point>;
PUKCL_GF2NEccAdd(nulABBase) = <Base of the ram location of the a Parameter>;
PUKCL GF2NEccAdd(nulWorkspace) = <Base of the ram location of the workspace>;
// vPUKCL Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(GF2NEccAddFast, pvPUKCLParam);
if (PUKCL(u2Status) == PUKCL OK)
               {
else // Manage the error
```

43.3.7.2.6 Constraints

No overlapping between either input and output are allowed The following conditions must be avoided to ensure the service works correctly:

- nu1ModBase,nu1CnsBase, nu1PointABase, nu1PointBBase, nu1ABBase, nu1Workspace are not aligned on 32-bit boundaries
- {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase, 3*u2ModLength+ 12}, {nu1PointBBase, 3*u2ModLength + 12}, {nu1ABase,u2ModLength + 4}, {nu1Workspace, <WorkspaceLength>} are not in Crypto RAM
- u2ModLength is either: < 12, > 0xffc or not a 32-bit length
- All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength +8}, {nu1PointABase, 3*u2ModLength + 12}, {nu1PointBBase, 3*u2ModLength + 12}, {nu1ABase,u2ModLength + 4} and {nu1Workspace, 5*u2ModLength + 32}

43.3.7.2.7 Status Returned Values

Table 43-95. GF2NEccAddFast Service Return Codes

Returned Status	Importance	Meaning
PUKCL_OK	_	The computation passed without errors.

43.3.7.3 Point Doubling

43.3.7.3.1 Purpose

This service is used to perform a Point Doubling, based on a given elliptic curve over GF(2ⁿ).

ADC – Analog-to-Digital Converter

45.8.5 Control B

Name:	CTRLB
Offset:	0x06
Reset:	0x0000
Property:	PAC Write-Protection, Write-Synchronized

Bit	15	14	13	12	11	10	9	8
					WINSS		WINMODE[2:0]	
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	7	6	5	4	3	2	1	0
				RESS	EL[1:0]	CORREN	FREERUN	LEFTADJ
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bit 11 – WINSS Window Single Sample

When this bit is written the window functionality is working on each conversions and not on the accumulated value. The number of convesions matching with the window comparator is available on STATUS register (STATUS.WCC). The last sample result is available on RESS register.

Bits 10:8 – WINMODE[2:0] Window Monitor Mode

These bits enable and define the window monitor mode.

Value	Name	Description
0x0	DISABLE	No window mode (default)
0x1	MODE1	RESULT > WINLT
0x2	MODE2	RESULT < WINUT
0x3	MODE3	WINLT < RESULT < WINUT
0x4	MODE4	!(WINLT < RESULT < WINUT)
0x5 -		Reserved
0x7		

Bits 4:3 - RESSEL[1:0] Conversion Result Resolution

These bits define whether the ADC completes the conversion 12-, 10- or 8-bit result resolution.

Value	Name	Description
0x0	12BIT	12-bit result
0x1	16BIT	For averaging mode output
0x2	10BIT	10-bit result
0x3	8BIT	8-bit result

Bit 2 – CORREN Digital Correction Logic Enable

The ADC conversion result in the RESULT register is then corrected for gain and offset based on the values in the GAINCORR and OFFSETCORR registers. Conversion time will be increased by 13 cycles according to the value in the Offset Correction Value bit group in the Offset Correction register.

SAMD5x/E5x Family Data Sheet

TC – Timer/Counter

Value	Description
0	Event from Event System is selected as trigger source for capture operation on channel x.
1	I/O pin is selected as trigger source for capture operation on channel x.

Bits 16, 17 – CAPTENx Capture Channel x Enable

Bit x of CAPTEN[1:0] selects whether channel x is a capture or a compare channel.

These bits are not synchronized.

Value	Description
0	CAPTEN disables capture on channel x.
1	CAPTEN enables capture on channel x.

Bit 15 – DMAOS DMA One-Shot Trigger Mode

This bit enables the DMA One-shot Trigger Mode.

Writing a '1' to this bit will generate a DMA trigger on TC cycle following a TC_CTRLBSET_CMD_DMAOS command.

Writing a '0' to this bit will generate DMA triggers on each TC cycle.

This bit is not synchronized.

Bit 11 – ALOCK Auto Lock

When this bit is set, Lock bit update (LUPD) is set to '1' on each overflow/underflow or re-trigger event.

This bit is not synchronized.

Value	Description
0	The LUPD bit is not affected on overflow/underflow, and re-trigger event.
1	The LUPD bit is set on each overflow/underflow or re-trigger event.

Bits 10:8 – PRESCALER[2:0] Prescaler

These bits select the counter prescaler factor.

These bits are not synchronized.

Value	Name	Description
0x0	DIV1	Prescaler: GCLK_TC
0x1	DIV2	Prescaler: GCLK_TC/2
0x2	DIV4	Prescaler: GCLK_TC/4
0x3	DIV8	Prescaler: GCLK_TC/8
0x4	DIV16	Prescaler: GCLK_TC/16
0x5	DIV64	Prescaler: GCLK_TC/64
0x6	DIV256	Prescaler: GCLK_TC/256
0x7	DIV1024	Prescaler: GCLK_TC/1024

Bit 7 - ONDEMAND Clock On Demand

This bit selects the clock requirements when the TC is stopped.

In standby mode, if the Run in Standby bit (CTRLA.RUNSTDBY) is '0', ONDEMAND is forced to '0'.

This bit is not synchronized.

© 2018 Microchip Technology Inc.

DITH5 mode:

$$PwmPulseWidth = \left(\frac{\text{DITHERCY}}{32} + \text{CCx}\right) \left(\frac{1}{f_{\text{GCLK}_{\text{TCC}}}}\right)$$

DITH6 mode:

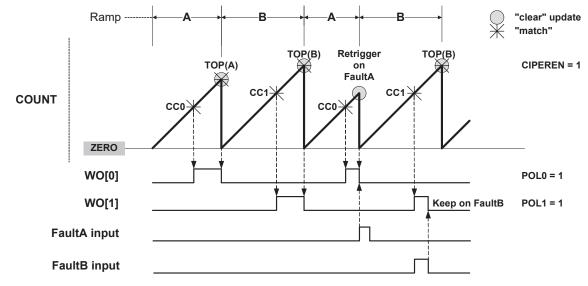
 $PwmPulseWidth = \left(\frac{\text{DITHERCY}}{64} + \text{CCx}\right) \left(\frac{1}{f_{\text{GCLK}_{\text{TCC}}}}\right)$

Note: The PWM period will remain static in this case.

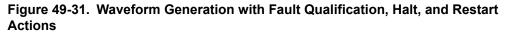
49.6.3.4 Ramp Operations

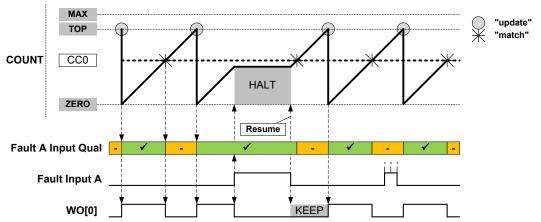
Three ramp operation modes are supported. All of them require the timer/counter running in single-slope PWM generation. The ramp mode is selected by writing to the Ramp Mode bits in the Waveform Control register (WAVE.RAMP).

RAMP1 Operation

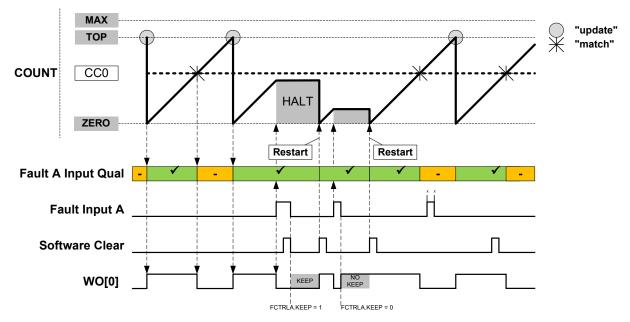

This is the default PWM operation, described in Single-Slope PWM Generation.

RAMP2 Operation


These operation modes are dedicated for power factor correction (PFC), Half-Bridge and Push-Pull SMPS topologies, where two consecutive timer/counter cycles are interleaved, see Figure 49-18. In cycle A, odd channel output is disabled, and in cycle B, even channel output is disabled. The ramp index changes after each update, but can be software modified using the Ramp index command bits in Control B Set register (CTRLBSET.IDXCMD).


Standard RAMP2 (RAMP2) Operation

Ramp A and B periods are controlled by the PER register value. The PER value can be different on each ramp by the Circular Period buffer option in the Wave register (WAVE.CIPEREN=1). This mode uses a two-channel TCC to generate two output signals, or one output signal with another CC channel enabled in capture mode.


Figure 49-18. RAMP2 Standard Operation

Software Halt Action This is configured by writing 0x2 to the Fault n Halt mode bits in the Recoverable Fault n configuration register (FCTRLn.HALT). Software halt action is similar to hardware halt action, but in order to restart the timer/counter, the corresponding fault condition must not be present anymore, and the corresponding FAULT n bit in the STATUS register must be cleared by software.

Figure 49-32. Waveform Generation with Software Halt, Fault Qualification, Keep and Restart Actions

49.6.3.6 Non-Recoverable Faults

The non-recoverable fault action will force all the compare outputs to a pre-defined level programmed into the Driver Control register (DRVCTRL.NRE and DRVCTRL.NRV). The non-recoverable fault input (EV0 and EV1) actions are enabled in Event Control register (EVCTRL.EVACT0 and EVCTRL.EVACT1).

To avoid false fault detection on external events (e.g. a glitch on an I/O port) a digital filter can be enabled using Non-Recoverable Fault Input x Filter Value bits in the Driver Control register