

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 5x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15313-e-sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 3											
	CPU CORE REGISTERS; see Table 4-3 for specifics										
18Ch	SSP1BUF	Synchronous Serial P	chronous Serial Port Receive Buffer/Transmit Register								
18Dh	SSP1ADD		ADD<7:0>								0000 0000
18Eh	SSP1MSK				MSK<	7:0>				1111 1111	1111 1111
18Fh	SSP1STAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	0000 0000
190h	SSP1CON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
191h	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
192h	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000
193h 19Fh	_		Unimplemented								_

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

IADLL .	FIU. SFLOI	ALTONCTION	REGISTER	SUMMAR	DANKS 0-						
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 63											
	CPU CORE REGISTERS; see Table 4-3 for specifics										
1F8Ch 1FE3h	_		Unimplemented							-	_
1FE4h	STATUS_SHAD	—	—	—	—	—	Z	DC	С	xxx	uuu
1FE5h	WREG_SHAD	Working Register Sha	orking Register Shadow							XXXX XXXX	uuuu uuuu
1FE6h	BSR_SHAD	—	—	—	Bank Select Re	gister Shadow				x xxxx	u uuuu
1FE7h	PCLATH_SHAD	—	Program Counter	r Latch High Regi	ster Shadow					-xxx xxxx	uuuu uuuu
1FE8h	FSR0L_SHAD	Indirect Data Memory	Address 0 Low Po	inter Shadow						XXXX XXXX	uuuu uuuu
1FE9h	FSR0H_SHAD	Indirect Data Memory	Address 0 High Po	ointer Shadow						XXXX XXXX	uuuu uuuu
1FEAh	FSR1L_SHAD	Indirect Data Memory	Address 1 Low Po	inter Shadow						XXXX XXXX	uuuu uuuu
1FEBh	FSR1H_SHAD	Indirect Data Memory	Address 1 High Po	ointer Shadow						XXXX XXXX	uuuu uuuu
1FECh	_	Unimplemented								_	
1FEDh	STKPTR	—	_	_	Current Stack P	ointer				1 1111	1 1111
1FEEh	TOSL	Top of Stack Low byte	;							XXXX XXXX	uuuu uuuu
1FEFh	TOSH	_	— Top of Stack High byte -xxx xxxx -uuu uu							-uuu uuuu	

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

REGISTER 5-7:		REVI	SIONID	: REVIS	SION ID	REGIS	STER						
R	R	R	R	R	R	R	R	R	R	R	R	R	R
1	0			MJRRE	V<5:0>					MNRRE	V<5:0>		
bit 13								-					bit 0
Legend													
	R = Read	able bit											
	'0' = Bit is	cleared				'1' = Bi	t is set		x = Bit	is unkno	wn		

bit 13-12 **Fixed Value**: Read-only bits These bits are fixed with value '10' for all devices included in this data sheet.

bit 11-6MJRREV<5:0>: Major Revision ID bits
These bits are used to identify a major revision.bit 5-0MNRREV<5:0>: Minor Revision ID bits
These bits are used to identify a minor revision.

© 2017 Microchip Technology Inc.

-m/n = Value at POR/Value at all other Resets

Register Definitions: Power Control 8.15

u = Bit is unchanged

REGISTER 8-	2: PCON	U: POWER C	UNIRUL RE	EGISTER U					
R/W/HS-0/q	R/W/HS-0/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u		
STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR		
bit 7							bit 0		
Legend:									
HC = Bit is clea	ared by hardwa	ire		HS = Bit is set by hardware					
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					

NA. DOWED CONTROL DECICTED

x = Bit is unknown

'1' = Bit is set	'0' = Bit is cleared q = Value depends on condition
bit 7	STKOVF: Stack Overflow Flag bit 1 = A Stack Overflow occurred 0 = A Stack Overflow has not occurred or cleared by firmware
bit 6	STKUNF: Stack Underflow Flag bit 1 = A Stack Underflow occurred 0 = A Stack Underflow has not occurred or cleared by firmware
bit 5	 WDTWV: WDT Window Violation Flag bit 1 = A WDT Window Violation Reset has not occurred or set to '1' by firmware 0 = A WDT Window Violation Reset has occurred (a CLRWDT instruction was executed either without arming the window or outside the window (cleared by hardware)
bit 4	RWDT: Watchdog Timer Reset Flag bit 1 = A Watchdog Timer Reset has not occurred or set to '1' by firmware 0 = A Watchdog Timer Reset has occurred (cleared by hardware)
bit 3	RMCLR: MCLR Reset Flag bit 1 = A MCLR Reset has not occurred or set to '1' by firmware 0 = A MCLR Reset has occurred (cleared by hardware)
bit 2	RI: RESET Instruction Flag bit 1 = A RESET instruction has not been executed or set to '1' by firmware 0 = A RESET instruction has been executed (cleared by hardware)
bit 1	POR : Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset occurs)

9.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

9.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 9-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz-crystal resonators. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, ECH, ECM, ECL) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources.

The RSTOSC bits of Configuration Word 1 determine the type of oscillator that will be used when the device reset, including when it is first powered up.

The internal clock modes, LFINTOSC, HFINTOSC (set at 1 MHz), or HFINTOSC (set at 32 MHz) can be set through the RSTOSC bits.

If an external clock source is selected, the FEXTOSC bits of Configuration Word 1 must be used to select the external clock mode.

The external oscillator module can be configured in one of the following clock modes, by setting the FEXTOSC<2:0> bits of Configuration Word 1:

- 1. ECL External Clock Low-Power mode ECL<= 500 kHz
- 2. ECM External Clock Medium Power mode ECM <= 8 MHz
- 3. ECH External Clock High-Power mode ECH <= 32 MHz
- 4. LP 32 kHz Low-Power Crystal mode.
- 5. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode (between 100 kHz and 4 MHz)
- HS High Gain Crystal or Ceramic Resonator mode (above 4 MHz)

The ECH, ECM, and ECL clock modes rely on an external logic level signal as the device clock source. The LP, XT, and HS clock modes require an external crystal or resonator to be connected to the device. Each mode is optimized for a different frequency range. The INTOSC internal oscillator block produces low and high-frequency clock sources, designated LFINTOSC and HFINTOSC. (see Internal Oscillator Block, Figure 9-1). A wide selection of device clock frequencies may be derived from these clock sources.

	U-0	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0			
-	_	NVMREGS	LWLO	FREE	WRERR ^(1,2,3)	WREN	WR ^(4,5,6)	RD			
bit 7		·	•		· ·			bit 0			
Leger	nd:										
R = R	eadab	le bit	W = Writable bi	t	U = Unimplemented bit, read as '0'						
S = Bi	t can o	only be set	x = Bit is unkno	wn	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = B	it is se	et	'0' = Bit is clear	ed	HC = Bit is clear	ed by hardware					
bit 7		Unimplemente	d: Read as '0'								
bit 6		NVMREGS: Co 1 = Access DL 0 = Access PF	nfiguration Sele A, DCI, Configur M	ct bit ation, User ID a	and Device ID Reg	jisters					
bit 5	bit 5 LWLO: Load Write Latches Only bit <u>When FREE = 0</u> : 1 = The next WR command updates the write latch for this word within the row; no memory operation is initiated. 0 = The next WR command writes data or erases Otherwise: The bit is ignored										
bit 4	 FREE: PFM Erase Enable bit <u>When NVMREGS:NVMADR points to a PFM location</u>: 1 = Performs an erase operation with the next WR command; the 32-word pseudo-row containing the indicated address is erased (to all 1s) to prepare for writing. 0 = All erase operations have completed normally 										
bit 3		WRERR: Progr This bit is norm 1 = A write op NVMADR 0 = The progra	am/Erase Error ally set by hardw eration was inter points to a write- am or erase oper	Flag bit ^(1,2,3) vare. rrupted by a Re protected addre ration complete	eset, interrupted ur ess. d normally	nlock sequence	, or WR was writt	en to one while			
bit 2		WREN: Program 1 = Allows pro 0 = Inhibits pro	m/Erase Enable gram/erase cycl ogramming/erasi	bit es ng of program I	Flash						
bit 1	bit 1 WR: Write Control bit ^(4,5,6) When NVMREG:NVMADR points to a PFM location: 1 = Initiates the operation indicated by Table 13-4 0 = NV/M program/orage operation is complete and inactive										
bit 0		RD: Read Cont 1 = Initiates a bit is clean 0 = NVM read	rol bit ⁽⁷⁾ read at address ed when the ope operation is con	= NVMADR1, and eration is complete and inact	nd loads data to N' ete. The bit can or tive	VMDAT Read ta nly be set (not c	ikes one instructio leared) in softwar	on cycle and the e.			
Note	1: 2: 3: 4: 5:	Bit is undefined while Bit must be cleared b Bit may be written to This bit can only be s Operations are self-ti	WR = 1. y software; hard '1' by software ir et by following the med, and the W	ces. 3.3.2 "NVM Un 1 complete.	lock Sequence".						

REGISTER 13-5: NVMCON1: NONVOLATILE MEMORY CONTROL 1 REGISTER

6: Once a write operation is initiated, setting this bit to zero will have no effect.

INPUT SIGNAL	Input Pagister Name	Default Location	Reset Value	Remappable to Pins of PORTx
NAME	Input Register Name	at POR	(xxxPPS<4:0>)	PIC16(L)F15313
				PORTA
INT	INTPPS	RA2	00010	•
TOCKI	TOCKIPPS	RA2	00010	•
T1CKI	T1CKIPSS	RA5	00101	•
T1G	T1GPPS	RA4	00100	•
T2IN	T2INPPS	RA5	00101	•
CCP1	CCP1PPS	RA5	00101	•
CCP2	CCP2PPS	RA5	00101	•
CWG1IN	CWG1INPPS	RA2	00010	•
CLCIN0	CLCIN0PPS	RA3	00011	•
CLCIN1	CLCIN1PPS	RA5	00101	•
CLCIN2	CLCIN2PPS	RA1	00001	•
CLCIN3	CLCIN3PPS	RA0	00000	•
ADACT	ADACTPPS	RA5	00101	•
SCK1/SCL1	SSP1CLKPPS	RA1	00001	•
SDI1/SDA1	SSP1DATPPS	RA2	00010	•
SS1	SSP1SS1PPS	RA3	00011	•
RX1/DT1	RX1PPS	RA1	00001	•
CK1	TX1PPS	RA0	00000	•

TABLE 15-1: PPS INPUT SIGNAL ROUTING OPTIONS (PIC16(L)F15313)

21.0 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC1) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The input of the DAC can be connected to:

- External VREF pins
- VDD supply voltage
- FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a reference voltage to the following:

- Comparator positive input
- · ADC input channel
- DAC1OUT pin

The Digital-to-Analog Converter (DAC) is enabled by setting the DAC1EN bit of the DAC1CON0 register.

EQUATION 21-1: DAC OUTPUT VOLTAGE

$V_{OUT} = \left(V_{SOURCE+} - V_{SOURCE-} \times \frac{DAC1R\langle 4:0 \rangle}{2^5}\right) + (V_{SOURCE-})$

 $V_{SOURCE+} = V_{DD}$ or V_{REF+} or FVR

$V_{SOURCE} = V_{SS} \text{ or } V_{REF}$

21.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in Table 37-15.

21.3 DAC Voltage Reference Output

The DAC voltage can be output to the DAC1OUT1/2 pins by setting the DAC1OE1/2 bits of the DAC1CON0 register, respectively. Selecting the DAC reference voltage for output on the DAC1OUT1/2 pins automatically overrides the digital output buffer and digital input threshold detector functions, disables the weak pull-up, and disables the current-controlled drive function of that pin. Reading the DAC1OUT1/2 pin when it has been configured for DAC reference voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the DAC voltage reference output for external connections to the DAC1OUT1/2 pins. Figure 21-2 shows an example buffering technique.

21.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DAC1R<4:0> bits of the DAC1CON1 register.

The DAC output voltage is determined by Equation 21-1:

© 2017 Microchip Technology Inc.

Note 1: The increment registers are double-buffered to allow for value changes to be made without first disabling the NCO module. The full increment value is loaded into the buffer registers on the second rising edge of the NCOx clk signal that occurs immediately after a write to NCOxINCL register. The buffers are not user-accessible and are shown here for reference.

PIC16(L)F15313/23

REGISTER 23-5: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0	
—		_	_	_		MC2OUT	MC10UT	
bit 7 bit								

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Unimplemented: Read as '0'

bit 1 MC2OUT: Mirror Copy of C2OUT bit

bit 0 MC1OUT: Mirror Copy of C1OUT bit

TABLE 23-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4 Bit 3 Bit 2		Bit 1	Bit 0	Register on Page		
CMxCON0	ON	OUT	—	POL	—	—	HYS	SYNC	250	
CMxCON1	—	—	_		_	_	INTP	INTN	251	
CMOUT	—	—	_		_	_	MC2OUT	MC1OUT	253	
FVRCON	FVREN	FVRRDY	TSEN	TSRNG CDAFVR<1:0>			ADFVF	R<1:0>	210	
DAC1CON0	DAC1EN	—	DAC10E1	DAC10E2	E2 DAC1PSS<1:0>			DAC1NSS	232	
DAC1CON1	—	—	_		DAC1R<4:0>					
INTCON	GIE	PEIE	_					INTEDG	121	
PIE2	—	ZCDIE	—	_	—	—	C2IE	C1IE	124	
PIR2	—	ZCDIF	_		_	_	C2IF	C1IF	132	
RxyPPS	—	—	—	RxyPPS<4:0>					192	
CLCINxPPS	_	_		CLCIN0PPS<5:0>						
T1GPPS	—	_			T1GPPS<5:0>					

Legend: — = unimplemented location, read as '0'. Shaded cells are unused by the comparator module.

25.2 Clock Source Selection

The T0CS<2:0> bits of the T0CON1 register are used to select the clock source for Timer0. Register 25-2 displays the clock source selections.

25.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, Timer0 operates as a timer and will increment on multiples of the clock source, as determined by the Timer0 prescaler.

25.2.2 EXTERNAL CLOCK SOURCE

When an external clock source is selected, Timer0 can operate as either a timer or a counter. Timer0 will increment on multiples of the rising edge of the external clock source, as determined by the Timer0 prescaler.

25.3 Programmable Prescaler

A software programmable prescaler is available for exclusive use with Timer0. There are 16 prescaler options for Timer0 ranging in powers of two from 1:1 to 1:32768. The prescaler values are selected using the T0CKPS<3:0> bits of the T0CON1 register.

The prescaler is not directly readable or writable. Clearing the prescaler register can be done by writing to the TMR0L register or the T0CON1 register.

25.4 Programmable Postscaler

A software programmable postscaler (output divider) is available for exclusive use with Timer0. There are 16 postscaler options for Timer0 ranging from 1:1 to 1:16. The postscaler values are selected using the TOOUTPS<3:0> bits of the TOCON0 register.

The postscaler is not directly readable or writable. Clearing the postscaler register can be done by writing to the TMR0L register or the T0CON0 register. In the 16-bit mode, if the postscaler option is selected to a ratio other than 1:1, the reload of the TMR0H and TMR0L registers is not possible inside the Interrupt Service Routine. The timer period must be calculated with the prescaler and postscaler factors selected.

25.5 Operation during Sleep

When operating synchronously, Timer0 will halt. When operating asynchronously, Timer0 will continue to increment and wake the device from Sleep (if Timer0 interrupts are enabled) provided that the input clock source is active.

25.6 Timer0 Interrupts

The Timer0 interrupt flag bit (TMR0IF) is set when either of the following conditions occur:

- 8-bit TMR0L matches the TMR0H value
- · 16-bit TMR0 rolls over from 'FFFFh'

When the postscaler bits (T0OUTPS<3:0>) are set to 1:1 operation (no division), the T0IF flag bit will be set with every TMR0 match or rollover. In general, the TMR0IF flag bit will be set every T0OUTPS +1 matches or rollovers.

If Timer0 interrupts are enabled (TMR0IE bit of the PIE0 register = 1), the CPU will be interrupted and the device may wake from sleep (see Section 25.2 "Clock Source Selection" for more details).

25.7 Timer0 Output

The Timer0 output can be routed to any I/O pin via the RxyPPS output selection register (see Section 15.0 "Peripheral Pin Select (PPS) Module" for additional information). The Timer0 output can also be used by other peripherals, such as the Auto-conversion Trigger of the Analog-to-Digital Converter. Finally, the Timer0 output can be monitored through software via the Timer0 output bit (T0OUT) of the T0CON0 register (Register 25-1).

TMR0_out will be one postscaled clock period when a match occurs between TMR0L and TMR0H in 8-bit mode, or when TMR0 rolls over in 16-bit mode. The Timer0 output is a 50% duty cycle that toggles on each TMR0_out rising clock edge.

27.5.4 LEVEL-TRIGGERED HARDWARE LIMIT MODE

In the Level-Triggered Hardware Limit Timer modes the counter is reset by high or low levels of the external signal TMRx_ers, as shown in Figure 27-7. Selecting MODE<4:0> = 0.0110 will cause the timer to reset on a low level external signal. Selecting MODE<4:0> = 0.0111 will cause the timer to reset on a high level external signal. In the example, the counter is reset while TMRx_ers = 1. ON is controlled by BSF and BCF instructions. When ON = 0 the external signal is ignored.

When the CCP uses the timer as the PWM time base then the PWM output will be set high when the timer starts counting and then set low only when the timer count matches the CCPRx value. The timer is reset when either the timer count matches the PRx value or two clock periods after the external Reset signal goes true and stays true.

The timer starts counting, and the PWM output is set high, on either the clock following the PRx match or two clocks after the external Reset signal relinquishes the Reset. The PWM output will remain high until the timer counts up to match the CCPRx pulse width value. If the external Reset signal goes true while the PWM output is high then the PWM output will remain high until the Reset signal is released allowing the timer to count up to match the CCPRx value.

TABLE 29-3:	SUMMARY OF REGISTERS ASSOCIATED WITH PWMx

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
T2CON	ON		CKPS<2:0>			OUTPS	<3:0>		295
T2TMR Holding Register for the 8-bit TMR2 Register									
T2PR	TMR2 Period Register								
RxyPPS	—	—	_		R	xyPPS<4:0>			192
CWG1ISM	—	—	—	—		IS<3:	:0>		341
CLCxSELy	—	—			LCxDyS<	5:0>			352
TRISA	_	_	TRISA5	TRISA4	—	TRISA2	TRISA1	TRISA0	175
TRISC ⁽¹⁾	_	—	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	181

Legend: - = Unimplemented locations, read as '0'. Shaded cells are not used by the PWMx module.
 * Page with Register information.

Note 1: Present on PIC16(L)F15323 only.

30.0 COMPLEMENTARY WAVEFORM GENERATOR (CWG) MODULE

The Complementary Waveform Generator (CWG) produces half-bridge, full-bridge, and steering of PWM waveforms. It is backwards compatible with previous ECCP functions.

The CWG has the following features:

- · Six operating modes:
 - Synchronous Steering mode
 - Asynchronous Steering mode
 - Full-Bridge mode, Forward
 - Full-Bridge mode, Reverse
 - Half-Bridge mode
 - Push-Pull mode
- Output polarity control
- Output steering
 - Synchronized to rising event
 - Immediate effect
- Independent 6-bit rising and falling event deadband timers
 - Clocked dead band
 - Independent rising and falling dead-band enables
- Auto-shutdown control with:
 - Selectable shutdown sources
 - Auto-restart enable
 - Auto-shutdown pin override control

The CWG modules available are shown in Table 30-1.

TABLE 30-1: AVAILABLE CWG MODULES

Device	CWG1
PIC16(L)F15313/23	•

30.1 Fundamental Operation

The CWG module can operate in six different modes, as specified by MODE of the CWG1CON0 register:

- Half-Bridge mode (Figure 30-9)
- Push-Pull mode (Figure 30-2)
 - Full-Bridge mode, Forward (Figure 30-3)
 - Full-Bridge mode, Reverse (Figure 30-3)
- Steering mode (Figure 30-10)
- Synchronous Steering mode (Figure 30-11)

It may be necessary to guard against the possibility of circuit faults or a feedback event arriving too late or not at all. In this case, the active drive must be terminated before the Fault condition causes damage. Thus, all output modes support auto-shutdown, which is covered in **30.10** "Auto-Shutdown".

30.1.1 HALF-BRIDGE MODE

In Half-Bridge mode, two output signals are generated as true and inverted versions of the input as illustrated in Figure 30-9. A non-overlap (dead-band) time is inserted between the two outputs as described in **Section 30.5 "Dead-Band Control"**.

The unused outputs CWG1C and CWG1D drive similar signals, with polarity independently controlled by the POLC and POLD bits of the CWG1CON1 register, respectively.

PIC16(L)F15313/23

REGISTER 32-7: SSP1BUF: MSSP1 BUFFER REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x					
	SSP1BUF<7:0>											
bit 7							bit 0					
Lawarah												

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SSP1BUF<7:0>: MSSP Buffer bits

TABLE 32-3: SUMMARY OF REGISTERS ASSOCIATED WITH MSSP1

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
INTCON	GIE	PEIE			_	—		INTEDG	121	
PIR1	OSFIF	CSWIF			_	_		ADIF	131	
PIE1	OSFIE	CSWIE	_		_	—		ADIE	123	
SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	405	
SSP1CON1	WCOL	SSPOV	SSPEN	V CKP SSPM<3:0>						
SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	407	
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	405	
SSP1MSK				SSPMS	K<7:0>				409	
SSP1ADD				SSPAD	D<7:0>				409	
SSP1BUF				SSPBU	F<7:0>				410	
SSP1CLKPPS	_	_			SSP1CLK	PS<5:0>			191	
SSP1DATPPS	SSP1DATPPS<5:0>									
SSP1SSPPS	_	_			SSP1SSP	PS<5:0>			191	
RxyPPS	_	_	_		F	RxyPPS<4:0>			192	

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the MSSP module

Note 1: When using designated I^2C pins, the associated pin values in INLVLx will be ignored.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0
SPEN ⁽¹⁾	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7		·					bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'	
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is se	et	'0' = Bit is cle	ared				
h:+ 7		l Dant En abla bi	1 (1)				
DIL 7	1 = Serial no	ort enabled	(° /				
	0 = Serial p	ort disabled (hel	d in Reset)				
bit 6	RX9: 9-Bit R	eceive Enable b	pit				
	1 = Selects	9-bit reception					
	0 = Selects	8-bit reception					
bit 5	SREN: Singl	le Receive Enat	ole bit				
	Asynchronou	<u>us mode</u> :	innered				
	Synchronous	s mode – Value	r:				
	1 = Enables	single receive	_				
	0 = Disables	s single receive		. 1 .			
	I his bit is cle	eared after rece	otion is compl	ete.			
	Unused in th	is mode – value	anored				
bit 4	CREN: Cont	inuous Receive	Enable bit				
	<u>Asynchronou</u>	<u>us mode</u> :					
	1 = Enables	continuous rec	eive until enal	ble bit CREN is	s cleared		
	0 = Disables	s continuous rec	ceive				
	$\frac{3 \text{ ynchronous}}{1 = \text{ Enables}}$	<u>s moue</u> . continuous rec	eive until enal	hle hit CREN is	s cleared (CREI	Noverrides SRF	=N)
	0 = Disables	s continuous rec	ceive				
bit 3	ADDEN: Add	dress Detect En	able bit				
	<u>Asynchronou</u>	us mode 9-bit (F	<u>RX9 = 1)</u> :				
	1 = Enables	address detect	ion – enable i	nterrupt and lo	ad of the receiv	e buffer when t	he ninth bit in
	the rece	eive buffer is set	tion all hytes	are received a	nd ninth hit can	he used as nar	rity hit
	Asynchronou	us mode 8-bit (F	<u>RX9 = 0)</u> :				ity on
	Unused in th	is mode – value	e ignored				
bit 2	FERR: Fram	ing Error bit					
	1 = Framing 0 = No fram) error (can be u ing error	pdated by rea	ading RCxREG	register and re	ceive next valid	byte)
bit 1	OERR: Over	rrun Error bit					
	1 = Overrun	error (can be c	leared by clea	aring bit CREN)		
	0 = No over	run error		·			
bit 0	RX9D: Ninth	bit of Received	Data				
	This can be a	address/data bit	t or a parity bi	t and must be	calculated by us	ser firmware.	
Note 1: T	The EUSART mo	dule automatica bits for TX/CK a	Illy changes th nd RX/DT to ∶	ne pin from tri-s	state to drive as	needed. Config	jure the

REGISTER 33-2: RC1STA: RECEIVE STATUS AND CONTROL REGISTER

	SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
RATE A	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207	
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51	
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25	
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_	
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5	
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	—	_	_	
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_	
115.2k	—	_	_	_	_	_	115.2k	0.00	1	—	_	_	

TABLE 33-4: BAUD RATE FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1												
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215	
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303	
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151	
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287	
10417	10417	0.00	767	10417	0.00	479	10425	0.08	441	10433	0.16	264	
19.2k	19.18k	-0.08	416	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143	
57.6k	57.55k	-0.08	138	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47	
115.2k	115.9k	0.64	68	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23	

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1													
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832		
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207		
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103		
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25		
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23		
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12		
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	_		
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	—	_	_		

PIC16(L)F15313/23

© 2017 Microchip Technology Inc.

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimensior	n Limits	MIN	NOM	MAX			
Number of Pins	N		8				
Pitch	е		1.27 BSC				
Overall Height	Α	-	-	1.75			
Molded Package Thickness	A2	1.25	-	-			
Standoff §	A1	0.10	-	0.25			
Overall Width	Е	6.00 BSC					
Molded Package Width	E1		3.90 BSC				
Overall Length	D		4.90 BSC				
Chamfer (Optional)	h	0.25	-	0.50			
Foot Length	L	0.40	-	1.27			
Footprint	L1		1.04 REF				
Foot Angle	φ	0°	-	8°			
Lead Thickness	С	0.17	-	0.25			
Lead Width	b	0.31	-	0.51			
Mold Draft Angle Top	α	5°	-	15°			
Mold Draft Angle Bottom	β	5°	-	15°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-057C Sheet 2 of 2

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830 Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820