

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

20000	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 5x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15313t-i-rf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

										,	
Bank Offset Bank 0-Bank 63	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
All Banks											
x00h or x80h	INDF0	Addressing physical re	i this locatioi gister)	n uses cont	ents of FSF	R0H/FSR0L	to address	data memo	ry (not a	XXXX XXXX	XXXX XXXX
x01h or x81h	INDF1	Addressing physical re	this location gister)	n uses cont	ents of FSF	R1H/FSR1L	to address	data memo	ry (not a	XXXX XXXX	xxxx xxxx
x02h or x82h	PCL				PC	CL				0000 0000	0000 0000
x03h or x83h	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
x04h or x84h	FSR0L	FSR0L	Indirect Da	ta Memory	Address 0 I	Low Pointer				0000 0000	uuuu uuuu
x05h or x85h	FSR0H	FSR0H	Indirect Da	ta Memory	Address 0 I	High Pointe	r			0000 0000	0000 0000
x06h or x86h	FSR1L	FSR1L	Indirect Da	ta Memory	Address 1 I	Low Pointer				0000 0000	uuuu uuuu
x07h or x87h	FSR1H	FSR1H	Indirect Da	ta Memory	Address 1 I	High Pointe	r			0000 0000	0000 0000
x08h or x88h	BSR	_	_			BSR	<5:0>			00 0000	00 0000
x09h or x89h	WREG	Working Re	egister							0000 0000	uuuu uuuu
x0Ah or x8Ah	PCLATH	-	Write Buffe	Write Buffer for the upper 7 bits of the Program Counter -000 0000						-000 0000	
x0Bh or x8Bh	INTCON	GIE	PEIE	_	_	_	_	_	INTEDG	001	001

 TABLE 4-9:
 SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (ALL BANKS)

Legend: \mathbf{x} = unknown, \mathbf{u} = unchanged, \mathbf{q} = depends on condition, - = unimplemented, read as '0', \mathbf{r} = reserved. Shaded locations unimplemented, read as '0'.

Note 1: These Registers can be accessed from any bank.

REGIST	ER 5-7:	REVIS	SIONID	: REVIS	SION ID	REGIS	STER						
R	R	R	R	R	R	R	R	R	R	R	R	R	R
1	0		MJRREV<5:0>						MNRREV<5:0>				
bit 13		bit (bit 0				
Legend:													
	R = Read	able bit											
	'0' = Bit is	cleared				'1' = Bit	t is set		x = Bit	is unkno	wn		
r													

bit 13-12 **Fixed Value**: Read-only bits These bits are fixed with value '10' for all devices included in this data sheet.

bit 11-6MJRREV<5:0>: Major Revision ID bits
These bits are used to identify a major revision.bit 5-0MNRREV<5:0>: Minor Revision ID bits
These bits are used to identify a minor revision.

© 2017 Microchip Technology Inc.

9.3 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the New Oscillator Source (NOSC) and New Divider selection request (NDIV) bits of the OSCCON1 register.

9.3.1 NEW OSCILLATOR SOURCE (NOSC) AND NEW DIVIDER SELECTION REQUEST (NDIV) BITS

The New Oscillator Source (NOSC) and New Divider selection request (NDIV) bits of the OSCCON1 register select the system clock source and the frequency that are used for the CPU and peripherals.

When new values of NOSC and NDIV are written to OSCCON1, the current oscillator selection will continue to operate while waiting for the new clock source to indicate that it is stable and ready. In some cases, the newly requested source may already be in use, and is ready immediately. In the case of a divider-only change, the new and old sources are the same, and will be immediately ready. The device may enter Sleep while waiting for the switch as described in **Section 9.3.3 "Clock Switch and Sleep"**.

When the new oscillator is ready, the New Oscillator is Ready (NOSCR) bit of OSCCON3 and the Clock Switch Interrupt Flag (CSWIF) bit of PIR1 become set (CSWIF = 1). If Clock Switch Interrupts are enabled (CSWIE = 1), an interrupt will be generated at that time. The Oscillator Ready (ORDY) bit of OSCCON3 can also be polled to determine when the oscillator is ready in lieu of an interrupt.

If the Clock Switch Hold (CSWHOLD) bit of OSCCON3 is clear, the oscillator switch will occur when the new Oscillator's READY bit (NOSCR) is set, and the interrupt (if enabled) will be serviced at the new oscillator setting.

If CSWHOLD is set, the oscillator switch is suspended, while execution continues using the current (old) clock source. When the NOSCR bit is set, software should:

- set CSWHOLD = 0 so the switch can complete, or
- copy COSC into NOSC to abandon the switch.

If DOZE is in effect, the switch occurs on the next clock cycle, whether or not the CPU is operating during that cycle.

Changing the clock post-divider without changing the clock source (e.g., changing Fosc from 1 MHz to 2 MHz) is handled in the same manner as a clock source change, as described previously. The clock source will already be active, so the switch is relatively quick. CSWHOLD must be clear (CSWHOLD = 0) for the switch to complete.

The current COSC and CDIV are indicated in the OSCCON2 register up to the moment when the switch actually occurs, at which time OSCCON2 is updated and ORDY is set. NOSCR is cleared by hardware to indicate that the switch is complete.

9.3.2 PLL INPUT SWITCH

Switching between the PLL and any non-PLL source is managed as described above. The input to the PLL is established when NOSC selects the PLL, and maintained by the COSC setting.

When NOSC and COSC select the PLL with different input sources, the system continues to run using the COSC setting, and the new source is enabled per NOSC. When the new oscillator is ready (and CSWHOLD = 0), system operation is suspended while the PLL input is switched and the PLL acquires lock.

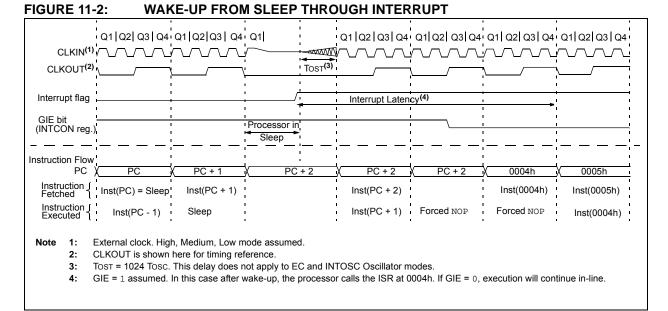
Note: If the PLL fails to lock, the FSCM will trigger.

9.3.3 CLOCK SWITCH AND SLEEP

If OSCCON1 is written with a new value and the device is put to Sleep before the switch completes, the switch will not take place and the device will enter Sleep mode.

When the device wakes from Sleep and the CSWHOLD bit is clear, the device will wake with the 'new' clock active, and the clock switch interrupt flag bit (CSWIF) will be set.

When the device wakes from Sleep and the CSWHOLD bit is set, the device will wake with the 'old' clock active and the new clock will be requested again.


11.2.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source, with the exception of the clock switch interrupt, has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared

- If the interrupt occurs **during or after** the execution of a **SLEEP** instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

11.2.3 LOW-POWER SLEEP MODE

The PIC16F15313/23 device contains an internal Low Dropout (LDO) voltage regulator, which allows the device I/O pins to operate at voltages up to 5.5V while the internal device logic operates at a lower voltage. The LDO and its associated reference circuitry must remain active when the device is in Sleep mode.

The PIC16F15313/23 allows the user to optimize the operating current in Sleep, depending on the application requirements.

Low-Power Sleep mode can be selected by setting the VREGPM bit of the VREGCON register. Depending on the configuration of these bits, the LDO and reference circuitry are placed in a low-power state when the device is in Sleep.

11.2.3.1 Sleep Current vs. Wake-up Time

In the default operating mode, the LDO and reference circuitry remain in the normal configuration while in Sleep. The device is able to exit Sleep mode quickly since all circuits remain active. In Low-Power Sleep mode, when waking-up from Sleep, an extra delay time is required for these circuits to return to the normal configuration and stabilize.

The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time. The Normal mode is beneficial for applications that need to wake from Sleep quickly and frequently.

11.2.3.2 Peripheral Usage in Sleep

Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The Low-Power Sleep mode is intended for use with these peripherals:

- Brown-out Reset (BOR)
- Watchdog Timer (WDT)
- · External interrupt pin/interrupt-on-change pins
- Timer1 (with external clock source)

It is the responsibility of the end user to determine what is acceptable for their application when setting the VREGPM settings in order to ensure operation in Sleep.

Note:	The PIC16LF15313/23 does not have a									
	configurable Low-Power Sleep mode.									
	PIC16LF15313/23 is an unregulated									
	device and is always in the lowest power									
	state when in Sleep, with no wake-up time									
	penalty. This device has a lower maximum									
	VDD and I/O voltage than the									
	PIC16F15313/23. See Section 37.0									
	"Electrical Specifications" for more									
	information.									

11.3 IDLE Mode

When the Idle Enable (IDLEN) bit is clear (IDLEN = 0), the SLEEP instruction will put the device into full Sleep mode (see **Section 11.2 "Sleep Mode**"). When IDLEN is set (IDLEN = 1), the SLEEP instruction will put the device into IDLE mode. In IDLE mode, the CPU and memory operations are halted, but the peripheral clocks continue to run. This mode is similar to DOZE mode, except that in IDLE both the CPU and PFM are shut off.

Note:	Peripherals using Fosc will continue										
	running while in Idle (but not in Sleep).										
	Peripherals using HFINTOSCLFINTOSC										
	will continue running in both Idle and										
	Sleep.										

Note: If CLKOUT is enabled (CLKOUT = 0, Configuration Word 1), the output will continue operating while in Idle.

11.3.1 IDLE AND INTERRUPTS

IDLE mode ends when an interrupt occurs (even if GIE = 0), but IDLEN is not changed. The device can re-enter IDLE by executing the SLEEP instruction.

If Recover-on-Interrupt is enabled (ROI = 1), the interrupt that brings the device out of Idle also restores full-speed CPU execution when doze is also enabled.

11.3.2 IDLE AND WDT

When in IDLE, the WDT Reset is blocked and will instead wake the device. The WDT wake-up is not an interrupt, therefore ROI does not apply.

Note: The WDT can bring the device out of IDLE, in the same way it brings the device out of Sleep. The DOZEN bit is not affected.

14.0 I/O PORTS

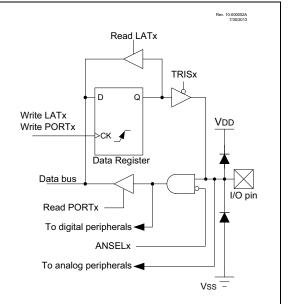
TABLE 14-1: PORT AVAILABILITY PER DEVICE

Device	PORTA	PORTC
PIC16(L)F15313	•	
PIC16(L)F15323	•	•

Each port has standard registers for its operation. These registers are:

- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)
- TRISx registers (data direction)
- ANSELx registers (analog select)
- WPUx registers (weak pull-up)
- INLVLx (input level control)
- SLRCONx registers (slew rate)
- ODCONx registers (open-drain)

Most port pins share functions with device peripherals, both analog and digital. In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output; however, the pin can still be read.


The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

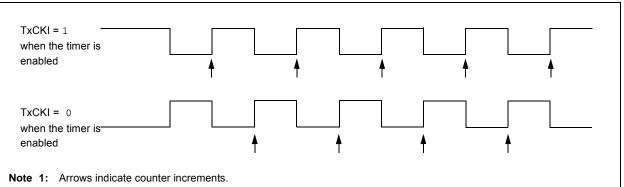
A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports that support analog inputs have an associated ANSELx register. When an ANSEL bit is set, the digital input buffer associated with that bit is disabled.

Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 14-1.

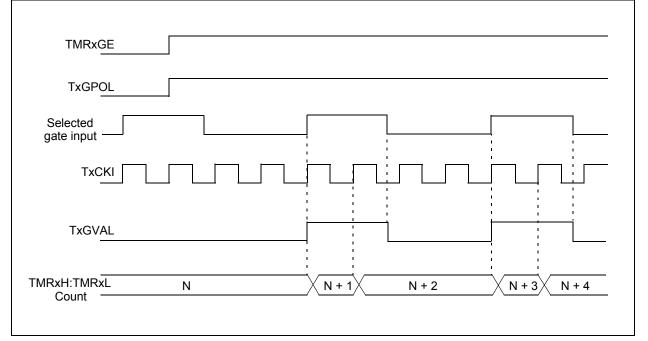
FIGURE 14-1: GENERIC I/O PORT OPERATION

14.1 I/O Priorities


Each pin defaults to the PORT data latch after Reset. Other functions are selected with the peripheral pin select logic. See **Section 15.0** "**Peripheral Pin Select** (**PPS**) **Module**" for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx register. Digital output functions may continue to control the pin when it is in Analog mode.

Analog outputs, when enabled, take priority over the digital outputs and force the digital output driver to the high-impedance state.


R/W-0/0	U-0	R-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
T0EN		TOOUT	T016BIT		TOOUT	PS<3:0>				
bit 7							bit C			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'				
u = Bit is uncl	hanged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets			
'1' = Bit is set		'0' = Bit is cle	ared							
bit 7	TOEN: Timer(
		lule is enabled) vest power mod						
bit 6		ited: Read as		vest power mot						
bit 5	-									
DIL D	Timer0 output	er0 Output bit (i t bit	eau-oniy)							
bit 4	-	er0 Operating	as 16-bit Time	er Select bit						
1 = Timer0 is a 16-bit timer										
	0 = Timer0 is	an 8-bit timer								
bit 3-0	TOOUTPS<3:0>: Timer0 output postscaler (divider) select bits									
	1111 = 1:16 1110 = 1:15									
	1101 = 1:14									
	1100 = 1:13									
	1011 = 1:12	Postscaler								
	1010 = 1:11 I									
	1001 = 1:10									
	1000 = 1:9 P									
	0111 = 1:8 P									
		0110 = 1:7 Postscaler 0101 = 1:6 Postscaler								
	0101 = 1.01									
	0011 = 1:4 P									
	0010 = 1:3 P									
	0001 = 1:2 P									
	0000 = 1:1 P	ostecolor								

2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.

R/W/HC-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
0N ⁽¹⁾		CKPS<2:0>			OUTP	S<3:0>					
bit 7							bit 0				
Legend:											
R = Readable		W = Writable		U = Unimplemented bit, read as '0'							
u = Bit is unch	is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Res										
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cle	eared by hardv	vare					
		a									
bit 7	ON: Timerx										
	1 = Timerx	is on is off: all counte	ra and stata n	achinas ara ra	act						
h:+ 0 4					sei						
bit 6-4		: Timer2-type Cl	ock Prescale	Select bits							
	111 = 1:128 Prescaler										
	110 = 1:64 Prescaler 101 = 1:32 Prescaler										
	100 = 1:16 Prescaler										
	011 = 1:8 Prescaler										
	010 = 1:4 P	escaler									
	001 = 1:2 P										
	000 = 1:1 P	rescaler									
bit 3-0	OUTPS<3:0>: Timerx Output Postscaler Select bits										
	1111 = 1:16										
	1110 = 1:15 Postscaler										
	1101 = 1:14 Postscaler 1100 = 1:13 Postscaler										
	1011 = 1:12 Postscaler 1010 = 1:11 Postscaler										
	1001 = 1:10										
	1000 = 1:9 Postscaler										
	0111 = 1:8 Postscaler										
	0110 = 1:7 Postscaler										
	0101 = 1:6 F										
	0100 = 1:5 F										
	0011 = 1:4 F 0010 = 1:3 F										
	0010 = 1.3 F										

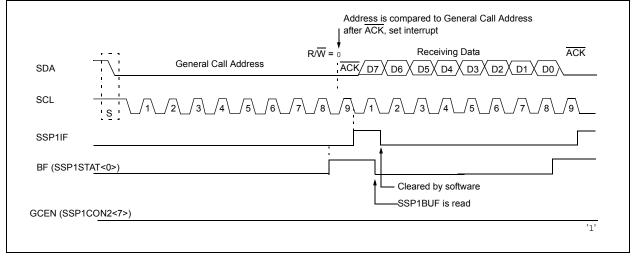
REGISTER 27-2: T2CON: TIMER2 CONTROL REGISTER

Note 1: In certain modes, the ON bit will be auto-cleared by hardware. See Section 27.5 "Operation Examples".

R/W-0/0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxPOL	—	—	_	LCxG4POL	LCxG3POL	LCxG2POL	LCxG1POL
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxPOL: CLO	CxOUT Output	Polarity Con	trol bit			
		ut of the logic o					
		ut of the logic o		erted			
bit 6-4	•	ted: Read as 'o					
bit 3		Gate 3 Output I	-				
	•	0		n applied to the	logic cell		
h:# 0		ut of gate 3 is r					
bit 2		Gate 2 Output I	,		1		
		ut of gate 2 is i ut of gate 2 is r		n applied to the	logic cell		
bit 1	•	Gate 1 Output I		rol bit			
			,	applied to the	logic cell		
	0 = The outp	ut of gate 1 is r	not inverted		0		
bit 0	LCxG1POL:	Gate 0 Output I	Polarity Cont	rol bit			
	•	•		n applied to the	logic cell		
	0 = The outp	ut of gate 0 is r	not inverted				

REGISTER 31-2: CLCxPOL: SIGNAL POLARITY CONTROL REGISTER

32.5.8 GENERAL CALL ADDRESS SUPPORT


The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is a reserved address in the I^2C protocol, defined as address $0 \ge 0.00$. When the GCEN bit of the SSP1CON2 register is set, the slave module will automatically ACK the reception of this address regardless of the value stored in SSP1ADD. After the slave clocks in an address of all zeros with the R/W bit clear, an interrupt is generated and slave software can read SSP1BUF and respond. Figure 32-24 shows a general call reception sequence.

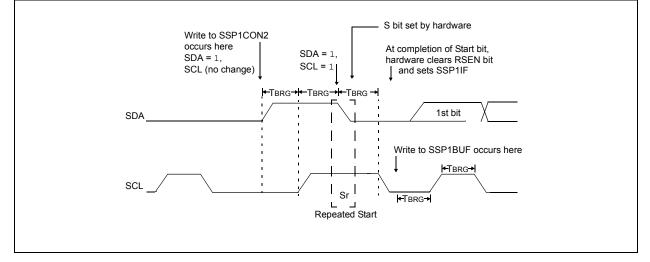
In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSP1CON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the eighth falling edge of SCL. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

32.5.9 SSP MASK REGISTER

An SSP Mask (SSP1MSK) register (Register 32-5) is available in I²C Slave mode as a mask for the value held in the SSP1SR register during an address comparison operation. A zero ('0') bit in the SSP1MSK register has the effect of making the corresponding bit of the received address a "don't care". This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value.

The SSP Mask register is active during:


- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSP mask has no effect during the reception of the first (high) byte of the address.

32.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 32-27) occurs when the RSEN bit of the SSP1CON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. SCL is asserted low. Following this, the RSEN bit of the SSP1CON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSP1STAT register will be set. The SSP1IF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

FIGURE 32-27: REPEATED START CONDITION WAVEFORM

32.7 BAUD RATE GENERATOR

The MSSP module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSP1ADD register (Register 32-6). When a write occurs to SSP1BUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 32-40 triggers the value from SSP1ADD to be loaded into the BRG counter. This occurs twice for each oscillation of the

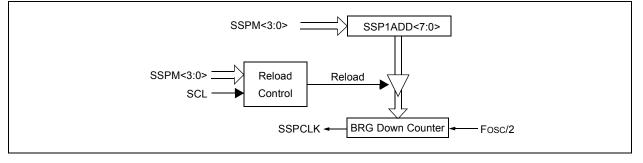
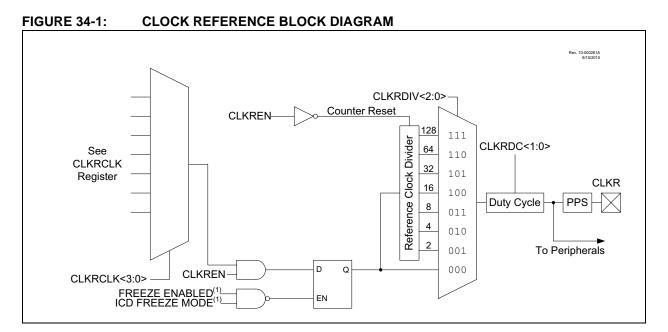

module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSP is being operated in.

Table 32-4 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSP1ADD.

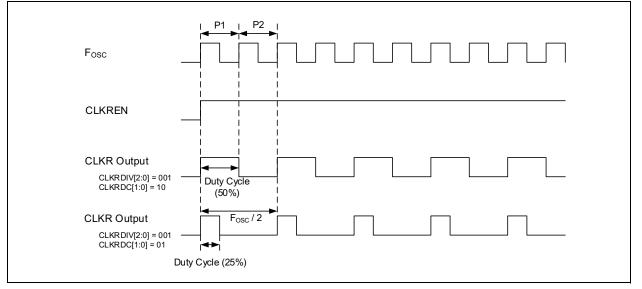
EQUATION 32-1:

 $FCLOCK = \frac{FOSC}{(SSP1ADD + 1)(4)}$

FIGURE 32-40: BAUD RATE GENERATOR BLOCK DIAGRAM



Note: Values of 0x00, 0x01 and 0x02 are not valid for SSP1ADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.


TABLE 32-2: MSSP CLOCK RATE W/BRG

Fosc	Fcy	BRG Value	FCLOCK (2 Rollovers of BRG)
32 MHz	8 MHz	13h	400 kHz
32 MHz	8 MHz	19h	308 kHz
32 MHz	8 MHz	4Fh	100 kHz
16 MHz	4 MHz	09h	400 kHz
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note: Refer to the I/O port electrical specifications in Table 37-4 to ensure the system is designed to support IOL requirements.

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
_	_	_	_		CLKRC	LK<3:0>					
bit 7							bit (
Legend:											
R = Readab	ole bit	W = Writable b	oit	U = Unimplemented bit, read as '0'							
u = Bit is un	unchanged x = Bit is unknown -n/n = Value at POR and BOR/					R/Value at all	other Resets				
'1' = Bit is s	et	'0' = Bit is clea	ared								
bit 7-4	-	ted: Read as '0									
oit 3-0	CLKRCLK<3	CLKRCLK<3:0>: CLKR Input bits									
	Clock Selection	Clock Selection									
	1111 = Rese	rved									
	•										
	•										
	• 1011 = Rese	nvod									
	1011 = Rese 1010 = LC4										
	$1010 = LC4_{1001}$										
	1000 = LC2										
	0111 = LC1										
	0110 = NCO										
	0101 = Rese	rved									
		TOSC (31.25 k									
		TOSC (500 kHz	z)								
	0010 = LFIN										
	0001 = HFIN	IOSC									

TABLE 34-1: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK REFERENCE OUTPUT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
CLKRCON	CLKREN			CLKRD	DC<1:0> CLKRDIV<2:0>				441		
CLKRCLK	—	_	_	_			442				
CLCxSELy	—	_			LCxDy	S<5:0>			352		
RxyPPS	_	_	_	RxyPPS<4:0>					192		

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the CLKR module.

BCF	Bit Clear f
Syntax:	[label] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BTFSS

BRA	Relative Branch
Syntax:	[<i>label</i>] BRA label [<i>label</i>] BRA \$+k
Operands:	-256 \leq label - PC + 1 \leq 255 -256 \leq k \leq 255
Operation:	$(PC) + 1 + k \rightarrow PC$
Status Affected:	None
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a 2-cycle instruction. This branch has a limited range.

Syntax:	[<i>label</i>] BRW
Operands:	None
Operation:	$(PC) + (W) \to PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + (W). This instruction is a 2-cycle instruction.

BSF	Bit Set f
Syntax:	[label]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

Syntax:	[label] BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

Bit Test f, Skip if Set

MOVIW	Move INDFn to W
Syntax:	[<i>label</i>] MOVIW ++FSRn [<i>label</i>] MOVIWFSRn [<i>label</i>] MOVIW FSRn++ [<i>label</i>] MOVIW FSRn [<i>label</i>] MOVIW k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01,10,11] -32 ≤ k ≤ 31
Operation:	$\begin{split} &\text{INDFn} \rightarrow W \\ &\text{Effective address is determined by} \\ &\text{•} \ &\text{FSR} + 1 \ (\text{preincrement}) \\ &\text{•} \ &\text{FSR} + 1 \ (\text{predecrement}) \\ &\text{•} \ &\text{FSR} + k \ (\text{relative offset}) \\ &\text{After the Move, the FSR value will be} \\ &\text{either:} \\ &\text{•} \ &\text{FSR} + 1 \ (\text{all increments}) \\ &\text{•} \ &\text{FSR} - 1 \ (\text{all decrements}) \\ &\text{•} \ &\text{Unchanged} \end{split}$
Status Affected:	Z

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

MOVLB Move literal to BSR

Syntax:	[label] MOVLB k
Operands:	$0 \le k \le$
Operation:	$k \rightarrow BSR$
Status Affected:	None
Description:	The 6-bit literal 'k' is loaded into the Bank Select Register (BSR).

MOVLP	Move literal to PCLATH
Syntax:	[<i>label</i>]MOVLP k
Operands:	$0 \leq k \leq 127$
Operation:	$k \rightarrow PCLATH$
Status Affected:	None
Description:	The 7-bit literal 'k' is loaded into the PCLATH register.
MOVLW	Move literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \le k \le 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The 8-bit literal 'k' is loaded into W reg- ister. The "don't cares" will assemble as '0's.
Words:	1
Cycles:	1
Example:	MOVLW 0x5A
	After Instruction W = 0x5A
MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example:	MOVWF LATA
	Before Instruction
	LATA = 0xFF

 $\label{eq:W} \begin{array}{l} W = 0x4F\\ \mbox{After Instruction}\\ \mbox{LATA} = 0x4F\\ \mbox{W} = 0x4F \end{array}$

ΜΟΥΨΙ	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01, 10, 11] -32 ≤ k ≤ 31
Operation:	$\label{eq:W} \begin{split} W &\rightarrow INDFn \\ \text{Effective address is determined by} \\ \bullet \ FSR + 1 \ (\text{preincrement}) \\ \bullet \ FSR + 1 \ (\text{preincrement}) \\ \bullet \ FSR + k \ (\text{relative offset}) \\ \text{After the Move, the FSR value will be either:} \\ \bullet \ FSR + 1 \ (\text{all increments}) \\ \bullet \ FSR + 1 \ (\text{all increments}) \\ \text{Unchanged} \end{split}$
Status Affected:	None

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h-FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

RESET	Software Reset				
Syntax:	[label] RESET				
Operands:	None				
Operation:	Execute a device Reset. Resets the \overline{RI} flag of the PCON register.				
Status Affected:	None				
Description:	This instruction provides a way to execute a hardware Reset by software.				

RETFIE	Return from Interrupt				
Syntax:	[<i>label</i>] RETFIE k				
Operands:	None				
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$				
Status Affected:	None				
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction.				
Words:	1				
Cycles:	2				
Example:	RETFIE				
	After Interrupt PC = TOS GIE = 1				

Standard Operating Conditions (unless otherwise stated)						
Param. No.	Sym.	Characteristic	Тур.	Units	Conditions	
TH01	θJA	Thermal Resistance Junction to Ambient	70	°C/W	8-pin PDIP package	
			95.3C	°C/W	8-pin SOIC package	
			100.0	°C/W	8-pin DFN package	
			100.0	°C/W	14-pin PDIR package	
			100.0	°C/W	14-pin TSSOP package	
			77.7	°C/W	14-pin SOIC package	
			51.5	°C/W/	16-pin UQFN 4x4mm package	
TH02	θJC	Thermal Resistance Junction to Case	32.75	°C/W	8-pin-PDIP package	
			31.0	°C/W	8-pin SØIC package	
			24.4	∕_°C/W	&-pin DFN package	
			5.4	WX5° /	14 pin PDIP package	
			27,5	~wy?	14-pm TSSOP package	
			31.1	°C/Ŵ	1₄-pin SOIC package	
			23.1	°C/W	16-pin UQFN 4x4mm package	
TH03	TJMAX	Maximum Junction Temperature	150) °Ç		
TH04	PD	Power Dissipation	$\langle - \rangle$	Ŵ	PD = PINTERNAL + PI/O	
TH05	PINTERNAL	Internal Power Dissipation		∕ w	PINTERNAL = IDD x VDD ⁽¹⁾	
TH06	Pi/o	I/O Power Dissipation	$\langle - \rangle$	V W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$	
TH07	Pder	Derated Power	$\langle - \rangle$	W	Pder = PDmax (Τj - Τa)/θja ⁽²⁾	

TABLE 37-6: THERMAL CHARACTERISTICS

Note 1: IDD is current to run the chip alone without driving any load on the output pins.
2: TA = Ambient Temperature, TJ = Junction Temperature

TABLE 37-11: RESET, WDT, OSCILLATOR START-UP TIMER, POWER-UP TIMER, BROWN-OUT RESET AND LOW-POWER BROWN-OUT RESET SPECIFICATIONS

Standard	Standard Operating Conditions (unless otherwise stated)						
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
RST01*	TMCLR	MCLR Pulse Width Low to ensure Reset	2	_	_	μS	
RST02*	Tioz	I/O high-impedance from Reset detection			2	μS	
RST03	Twdt	Watchdog Timer Time-out Period		16	_	ms	16 ms Wominal Reset Time
RST04*	TPWRT	Power-up Timer Period		65	_	ms	
RST05	Tost	Oscillator Start-up Timer Period ^(1,2)		1024	— /	∕~ T osc	
RST06	VBOR	Brown-out Reset Voltage ⁽⁴⁾	2.55 2.30 1.80	2.70 2.45 1.90	2.85 2.60 2.10		BORV = 0 BORV = 1 (F devices) BORV = 1 (LF devices)
RST07	VBORHYS	Brown-out Reset Hysteresis		40 🧹	$\overline{)}$	m∖V ′	
RST08	TBORDC	Brown-out Reset Response Time	—	3	$\backslash - \backslash$	μs	\rangle
RST09	VLPBOR	Low-Power Brown-out Reset Voltage	1.8	/ 1.9-	22	V V	LF Devices Only

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 37-12: ANALOG-TO-DIGITAL CONVERTER (ADC) ACCURACY SPECIFICATIONS^(1,2):

Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C							
Param. No.	Sym.	Characteristic	Min.	Typt	Max.	Units	Conditions
AD01	Nr	Resolution	\rightarrow		10	bit	
AD02	EIL	Integral Error	$\supset -$	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V
AD03	Edl	Differential Error	- 1	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V
AD04	EOFF	Offset Error		0.5	2.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V
AD05	Egn	Gain Error	_	±0.2	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V
AD06	VADREF	ADC Reference Voltage (ADREF+ - ADREF-)	1.8		Vdd	V	
AD07	VAIN	Fulf-Scale Range	ADREF-	_	ADREF+	V	
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	_	10	_	kΩ	
AD09	RVREF	ADC Voltage Reference Ladder Impedance	—	50	—	kΩ	Note 3

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error is the sum of the offset, gain and integral non-linearity (INL) errors.

2: The ADC conversion result never decreases with an increase in the input and has no missing codes.

3: This is the impedance seen by the VREF pads when the external reference pads are selected.

<sup>Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.
2: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible.</sup> 0.1 μF and 0.01 μF values in parallel are recommended.