

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	16-UQFN Exposed Pad
Supplier Device Package	16-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15323-e-jq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Program Flash Memory
 - Device Information Area (DIA)
 - Device Configuration Information (DCI)
 - Revision ID
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing
- NVMREG access

TABLE 4-1: DEVICE SIZES AND ADDRESSES

Device	Program Memory Size (Words)	Last Program Memory Address	
PIC16(L)F15313/23	2048	07FFh	

4.1 **Program Memory Organization**

The enhanced mid-range core has a 15-bit program counter capable of addressing $32K \times 14$ program memory space. Table 4-1 shows the memory sizes implemented. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 4-1).

	Bank 60		Bank 61		Bank 62		Bank 63
1E41h	—	1EC1h	—	1F41h	—	1FC1h	—
1E42h	_	1EC2h	—	1F42h	—	1FC2h	_
1E43h	_	1EC3h	ADACTPPS	1F43h	—	1FC3h	_
1E44h	_	1EC4h	_	1F44h	—	1FC4h	_
1E45h	_	1EC5h	SSP1CLKPPS	1F45h	—	1FC5h	_
1E46h	_	1EC6h	SSP1DATPPS	1F46h	—	1FC6h	_
1E47h	_	1EC7h	SSP1SSPPS	1F47h	—	1FC7h	_
1E48h	_	1EC8h	_	1F48h	_	1FC8h	_
1E49h	_	1EC9h	_	1F49h	_	1FC9h	_
1E4Ah	_	1ECAh	_	1F4Ah	_	1FCAh	—
1E4Bh	_	1ECBh	RXDT1PPS	1F4Bh	_	1FCBh	_
1E4Ch	_	1ECCh	TXCK1PPS	1F4Ch	_	1FCCh	
1E4Dh	_	1ECDh	—	1F4Dh	_	1FCDh	
1E4Eh	_	1ECEh	_	1F4Eh	ANSELC ⁽¹⁾	1FCEh	_
1E4Fh	_	1ECFh	_	1F4Fh	WPUC ⁽¹⁾	1FCFh	—
1E50h	_	1ED0h	_	1F50h	ODCONC ⁽¹⁾	1FD0h	_
1E51h	_	1ED1h	_	1F51h	SLRCONC ⁽¹⁾	1FD1h	_
1E52h	—	1ED2h	—	1F52h	INLVLC ⁽¹⁾	1FD2h	_
1E53h	_	1ED3h	_	1F53h	IOCCP ⁽¹⁾	1FD3h	_
1E54h	_	1ED4h		1F54h	IOCCN ⁽¹⁾	1FD4h	_
1E55h	—	1ED5h	_	1F55h	IOCCF ⁽¹⁾	1FD5h	_
1E56h	_	1ED6h	_	1F56h	—	1FD6h	_
1E57h	—	1ED7h	—	1F57h	—	1FD7h	_
1E58h	_	1ED8h	_	1F58h	_	1FD8h	_
1E59h	_	1ED9h	_	1F59h	_	1FD9h	_
1E5Ah	_	1EDAh	_	1F5Ah	_	1FDAh	_
1E5Bh	_	1EDBh	—	1F5Bh	_	1FDBh	_
1E5Ch	_	1EDCh	—	1F5Ch	_	1FDCh	—
1E5Dh	_	1EDDh	—	1F5Dh	_	1FDDh	—
1E5Eh	—	1EDEh	—	1F5Eh	—	1FDEh	—
1E5Fh	—	1EDFh	—	1F5Fh	—	1FDFh	—
1E60h	—	1EE0h	—	1F60h	—	1FE0h	—
1E61h	—	1EE1h	—	1F61h	—	1FE1h	_
1E62h	—	1EE2h	—	1F62h	—	1FE2h	_
1E63h	_	1EE3h		1F63h	_	1FE3h	BSR_ICDSHAD
1E64h	_	1EE4h	_	1F64h	_	1FE4h	STATUS_SHAD
1E65h	_	1EE5h	_	1F65h	_	1FE5h	WREG_SHAD
1E66h	_	1EE6h	_	1F66h	_	1FE6h	BSR_SHAD
1E67h	_	1EE7h	_	1F67h	_	1FE7h	PCLATH_SHAD
1E68h	_	1EE8h	_	1F68h	_	1FE8h	FSR0L_SHAD
1E69h	—	1EE9h	—	1F69h	—	1FE9h	FSR0H_SHAD
1E6Ah	—	1EEAh	—	1F6Ah	—	1FEAh	FSR1L_SHAD
1E6Bh	_	1EEBh	_	1F6Bh	_	1FEBh	FSR1H_SHAD
1E6Ch	—	1EECh	_	1F6Ch	_	1FECh	—
1E6Dh	—	1EEDh	_	1F6Dh	—	1FEDh	STKPTR
1E6Eh	_	1EEEh	_	1F6Eh	—	1FEEh	TOSL
1E6Fh	_	1EEFh	_	1F6Fh	_	1FEFh	TOSH

TABLE 4-8:PIC16(L)F15313/23 MEMORY MAP, BANKS 60, 61, 62, AND 63 (CONTINUED)

Legend:

= Unimplemented data memory locations, read as '0'

Note 1: Present only in PIC16(L)F15323.

		R/W-1	U-1	R/W-1	U-1	R/W-1	R/W-1
		LVP	_	WRTSAF ⁽¹⁾	_	WRTC ⁽¹⁾	WRTB ⁽¹⁾
		bit 13	12	11	10	9	bit 8
R/W-1	U-1	U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
WRTAPP ⁽¹⁾	_	_	SAFEN ⁽¹⁾	BBEN ⁽¹⁾	BBSIZE2	BBSIZE1	BBSIZE0
bit 7	6	5	4	3	2	1	bit 0
Legend:							
R = Readable	bit	P = Programma	able bit	x = Bit is unknor	wn	U = Unimpleme as '1'	nted bit, read
'0' = Bit is clea	red	'1' = Bit is set		W = Writable bit	t	n = Value when Bulk Erase	blank or after
bit 13	LVP: Low Volt 1 = Low vol 0 = HV on M The LVP bit ca rule is to preve eliminating LV The precondit	age Programming tage programming //CLR/VPP must be annot be written (t ent the user from o P mode from the o ioned (erased) sta	Enable bit enabled. MCLR used for progra zero) while ope dropping out of L configuration stat te for this bit is c	VVPP pin function amming. erating from the L VP mode while pi te. ritical.	is MCLR. MCLF VP programming rogramming fron	₹E Configuration I g interface. The pi n LVP mode, or a	bit is ignored. urpose of this ccidentally
bit 12	Unimplement	ed: Read as '1'					
bit 11	WRTSAF: Sto	orage Area Flash V	Vrite Protection I	oit			
	1 = SAF NO 0 = SAF writ Unimplemente	T write-protected e-protected ed, if SAF is not su	pported in the d	evice family and o	only applicable if	SAFEN = 0.	
bit 10	Unimplement	ed: Read as '1'					
bit 9	WRTC: Configu 1 = Configu 0 = Configu	guration Register N ration Register NC ration Register wri	Nrite Protection I DT write-protecte te-protected	bit d			
bit 8	WRTB: Boot Block Write Protected = Boot Block NOT write-protected 0 = Boot Block write-protected 0 = Boot Block write-protected						
bit 7	WRTAPP: Application Block Write Protection bit 1 = Application Block NOT write-protected 0 = Application Block write-protected						
bit 6-5	Unimplemented: Read as '1'						
bit 4	SAFEN: SAF Enable bit 1 = SAF disabled 0 = SAF enabled						
bit 3	BBEN: Boot Block Enable bit 1 = Boot Block disabled 0 = Boot Block enabled						
bit 2-0	BBSIZE<2:0> BBSIZE is use BBSIZ bits car	: Boot Block Size ed only when BBE n only be written w	Selection bits (S N = 0 /hile BBEN = 1; ;	ee Table 5-1) after \overline{BBEN} = 0, E	BSIZ is write-pr	otected.	
Note 1: Bit	ts are implemen	ted as sticky bits.	Once protection	is enabled, it can	only be reset th	rough a Bulk Eras	se.

REGISTER 5-4: CONFIGURATION WORD 4: MEMORY

8.4 Low-Power Brown-out Reset (LPBOR)

The Low-Power Brown-out Reset (LPBOR) is an important part of the Reset subsystem. Refer to Figure 8-1 to see how the BOR and LPBOR interact with other modules.

The LPBOR is used to monitor the external VDD pin. When too low of a voltage is detected, the device is held in Reset.

8.4.1 ENABLING LPBOR

The LPBOR is controlled by the $\overrightarrow{\text{LPBOR}}$ bit of the Configuration Word (Register 5-1). When the device is erased, the LPBOR module defaults to disabled.

8.4.2 LPBOR MODULE OUTPUT

The output of the LPBOR module is a signal indicating whether or not a Reset is to be asserted. When this occurs, a register bit (BOR) is changed to indicate that a BOR Reset has occurred. The same bit is set for either the BOR or the LPBOR (refer to Register 8-3). This signal is OR'd with the output of the BOR module to provide the generic BOR signal, which goes to the PCON register and to the power control block. Refer to Figure 8-1 for the OR gate connections of the BOR and LPBOR Reset signals, which eventually generates one common BOR Reset.

8.5 MCLR

The $\overline{\text{MCLR}}$ is an optional external input that can reset the device. The $\overline{\text{MCLR}}$ function is controlled by the MCLRE bit of Configuration Words and the LVP bit of Configuration Words (Table 8-2).

 TABLE 8-2:
 MCLR CONFIGURATION

MCLRE	LVP	MCLR
0	0	Disabled
1	0	Enabled
x	1	Enabled

8.5.1 MCLR ENABLED

When MCLR is enabled and the pin is held low, the device is held in Reset. The MCLR pin is connected to VDD through an internal weak pull-up. Refer to **Section 2.3 "Master Clear (MCLR) Pin"** for recommended MCLR connections.

The device has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

Note: A Reset does not drive the MCLR pin low.

8.5.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. See **Section 14.1** "**I/O Priorities**" for more information.

8.6 Windowed Watchdog Timer (WWDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period and the window is open. The TO and PD bits in the STATUS register and the WDT bit in PCON are changed to indicate a WDT Reset caused by the timer overflowing, and WDTWV bit in the PCON register is changed to indicate a WDT Reset caused by a window violation. See Section 12.0 "Windowed Watchdog Timer (WWDT)" for more information.

8.7 RESET Instruction

A RESET instruction will cause a device Reset. The \overline{RI} bit in the PCON register will be set to '0'. See Table 8-4 for default conditions after a RESET instruction has occurred.

8.8 Stack Overflow/Underflow Reset

The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Words. See **Section 4.5.2** "**Overflow/Underflow Reset**" for more information.

8.9 Programming Mode Exit

Upon exit of In-Circuit Serial Programming[™] (ICSP[™]) mode, the device will behave as if a POR had just occurred (the device does not reset upon run time self-programming/erase operations).

8.10 Power-up Timer

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the $\overrightarrow{\mathsf{PWRTE}}$ bit of the Configuration Words.

The Power-up Timer provides a nominal 64 ms time out on POR or Brown-out Reset. The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the VDD to rise to an acceptable level. The Power-up Timer is enabled by clearing the PWRTE bit in the Configuration Words. The Power-up Timer starts after the release of the POR and BOR. For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*" (DS00607).

PIC16(L)F15313/23

REGISTER 9	-6: OSCF	RQ: HFINTO	SC FREQUE	NCY SELEC	TION REGIS	TER	
U-0	U-0	U-0	U-0	U-0	R/W-q/q	R/W-q/q	R/W-q/q
	_		_	_	ŀ	HFFRQ<2:0> ⁽¹⁾)
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-3	Unimplemer	nted: Read as '	0'				
bit 2-0	HFFRQ<2:0	>: HFINTOSC F	requency Sele	ection bits			
	Nominal Free	q (MHz):					
	111 = Reserved						
	110 = 32						
	101 = 16						
	100 = 12						
	011 = 8						
	010 = 4						
	001 = 2						

- 000 = 1
- Note 1: When RSTOSC=110 (HFINTOSC 1 MHz), the HFFRQ bits will default to '010' upon Reset; when RSTOSC = 001 (HFINTOSC 32 MHz), the HFFRQ bits will default to '101' upon Reset.

11.4 Register Definitions: Voltage Regulator and DOZE Control

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	U-1
	_	_	—	—		VREGPM	—
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable I	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 11-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER⁽¹⁾

bit 7-2 Unimplemented: Read as '0'

VREGPM: Voltage Regulator Power Mode Selection bit

1 = Low-Power Sleep mode enabled in Sleep⁽²⁾

Draws lowest current in Sleep, slower wake-up

0 = Normal Power mode enabled in Sleep⁽²⁾
 Draws higher current in Sleep, faster wake-up

bit 0 Unimplemented: Read as '1'. Maintain this bit set

Note 1: PIC16F15313/23 only.

bit 1

2: See Section 37.0 "Electrical Specifications".

REGISTER 12-2:	WDTCON1: WATCHDOG TIMER CONTROL REGISTER 1

U-0	R/W ⁽³⁾ -q/q ⁽¹⁾	R/W ⁽³⁾ -q/q ⁽¹⁾ R/W ⁽³⁾ -q/q ⁽¹⁾	U-0	R/W ⁽⁴⁾ -q/q ⁽²⁾	R/W ⁽⁴⁾ -q/q ⁽²⁾	R/W ⁽⁴⁾ -q/q ⁽²⁾
_		WDTCS<2:0>	-		WINDOW<2:0>	
bit 7						bit 0
Legend:						
R = Readabl	le bit	W = Writable bit	U = Unimple	mented bit, read	as '0'	
u = Bit is und	changed	x = Bit is unknown	-n/n = Value	at POR and BO	R/Value at all othe	er Resets
'1' = Bit is se	et	'0' = Bit is cleared	q = Value de	pends on condit	ion	

'0'
•

bit 6-4 WDTCS<2:0>: Watchdog Timer Clock Select bits

111 = Reserved

•

- •
- 010 = Reserved

001 = MFINTOSC 31.25 kHz

- 000 = LFINTOSC 31 kHz
- bit 3 Unimplemented: Read as '0'
- bit 2-0 WINDOW<2:0>: Watchdog Timer Window Select bits

WINDOW<2:0>	Window delay Percent of time	Window opening Percent of time
111	N/A	100
110	12.5	87.5
101	25	75
100	37.5	62.5
011	50	50
010	62.5	37.5
001	75	25
000	87.5	12.5

Note 1: If WDTCCS <2:0> in CONFIG3 = 111, the Reset value of WDTCS<2:0> is 000.

2: The Reset value of WINDOW<2:0> is determined by the value of WDTCWS<2:0> in the CONFIG3 register.

3: If WDTCCS<2:0> in CONFIG3 \neq 111, these bits are read-only.

4: If WDTCWS<2:0> in CONFIG3 \neq 111, these bits are read-only.

PIC16(L)F15313/23

REGISTER 16-4: PMD3: PMD CONTROL REGISTER 3 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 PWM6MD PWM5MD PWM4MD PWM3MD CCP2MD CCP1MD bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged -n/n = Value at POR and BOR/Value at all other Resets x = Bit is unknown '1' = Bit is set '0' = Bit is cleared q = Value depends on condition bit 7-6 Unimplemented: Read as '0' bit 5 PWM6MD: Disable Pulse-Width Modulator PWM6 bit 1 = PWM6 module disabled 0 = PWM6 module enabled PWM5MD: Disable Pulse-Width Modulator PWM5 bit bit 4 1 = PWM5 module disabled 0 = PWM5 module enabled bit 3 PWM4MD: Disable Pulse-Width Modulator PWM4 bit 1 = PWM4 module disabled 0 = PWM4 module enabled bit 2 **PWM3MD:** Disable Pulse-Width Modulator PWM3 bit 1 = PWM3 module disabled 0 = PWM3 module enabled CCP2MD: Disable CCP2 bit bit 1 1 = CCP2 module disabled 0 = CCP2 module enabled CCP1MD: Disable CCP1 bit bit 0 1 = CCP1 module disabled

0 = CCP1 module enabled

24.0 ZERO-CROSS DETECTION (ZCD) MODULE

The ZCD module detects when an A/C signal crosses through the ground potential. The actual zero crossing threshold is the zero crossing reference voltage, VCPINV, which is typically 0.75V above ground.

The connection to the signal to be detected is through a series current limiting resistor. The module applies a current source or sink to the ZCD pin to maintain a constant voltage on the pin, thereby preventing the pin voltage from forward biasing the ESD protection diodes. When the applied voltage is greater than the reference voltage, the module sinks current. When the applied voltage is less than the reference voltage, the module sources current. The current source and sink action keeps the pin voltage constant over the full range of the applied voltage. The ZCD module is shown in the simplified block diagram Figure 24-2.

The ZCD module is useful when monitoring an A/C waveform for, but not limited to, the following purposes:

- A/C period measurement
- · Accurate long term time measurement
- · Dimmer phase delayed drive
- Low EMI cycle switching

24.1 External Resistor Selection

The ZCD module requires a current limiting resistor in series with the external voltage source. The impedance and rating of this resistor depends on the external source peak voltage. Select a resistor value that will drop all of the peak voltage when the current through the resistor is nominally 300 μ A. Refer to Equation 24-1 and Figure 24-1. Make sure that the ZCD I/O pin internal weak pull-up is disabled so it does not interfere with the current source and sink.

EQUATION 24-1: EXTERNAL RESISTOR

$$RSERIES = \frac{VPEAK}{3 \times 10^{-4}}$$

FIGURE 24-1: EXTERNAL VOLTAGE

26.3 Timer Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

26.4 Timer Operation in Asynchronous Counter Mode

If the control bit SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If the external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 26.4.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note: When switching from synchronous to asynchronous operation, it is possible to skip an increment. When switching from asynchronous to synchronous operation, it is possible to produce an additional increment.

26.4.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

26.5 Timer Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using the time gate circuitry. This is also referred to as Timer Gate Enable.

The timer gate can also be driven by multiple selectable sources.

26.5.1 TIMER GATE ENABLE

The Timer Gate Enable mode is enabled by setting the GE bit of the T1GCON register. The polarity of the Timer Gate Enable mode is configured using the GPOL bit of the T1GCON register.

When Timer Gate Enable signal is enabled, the timer will increment on the rising edge of the Timer1 clock source. When Timer Gate Enable signal is disabled, the timer always increments, regardless of the GE bit. See Figure 26-3 for timing details.

TABLE 26-2: TIMER GATE ENABLE SELECTIONS

T1CLK	T1GPOL	T1G	Timer Operation
\uparrow	1	1	Counts
\uparrow	1	0	Holds Count
\uparrow	0	1	Holds Count
1	0	0	Counts

27.0 TIMER2 MODULE WITH HARDWARE LIMIT TIMER (HLT)

The Timer2 module is an 8-bit timer that can operate as free-running period counters or in conjunction with external signals that control start, run, freeze, and reset operation in One-Shot and Monostable modes of operation. Sophisticated waveform control such as pulse density modulation are possible by combining the operation of this timer with other internal peripherals such as the comparators and CCP modules. Features of the timer include:

- 8-bit timer register
- 8-bit period register

- · Selectable external hardware timer Resets
- Programmable prescaler (1:1 to 1:128)
- Programmable postscaler (1:1 to 1:16)
- · Selectable synchronous/asynchronous operation
- Alternate clock sources
- Interrupt-on-period
- · Three modes of operation:
 - Free Running Period
 - One-shot
 - Monostable

See Figure 27-1 for a block diagram of Timer2. See Figure 27-2 for the clock source block diagram.

© 2017 Microchip Technology Inc.

27.5.5 SOFTWARE START ONE-SHOT MODE

In One-Shot mode the timer resets and the ON bit is cleared when the timer value matches the PRx period value. The ON bit must be set by software to start another timer cycle. Setting MODE<4:0> = 01000 selects One-Shot mode which is illustrated in Figure 27-8. In the example, ON is controlled by BSF and BCF instructions. In the first case, a BSF instruction sets ON and the counter runs to completion and clears ON. In the second case, a BSF instruction starts the cycle, BCF/BSF instructions turn the counter off and on during the cycle, and then it runs to completion.

When One-Shot mode is used in conjunction with the CCP PWM operation the PWM pulse drive starts concurrent with setting the ON bit. Clearing the ON bit while the PWM drive is active will extend the PWM drive. The PWM drive will terminate when the timer value matches the CCPRx pulse width value. The PWM drive will remain off until software sets the ON bit to start another cycle. If software clears the ON bit after the CCPRx match but before the PRx match then the PWM drive will be extended by the length of time the ON bit remains cleared. Another timing cycle can only be initiated by setting the ON bit after it has been cleared by a PRx period count match.

FIGURE 27-8: SOFTWARE START ONE-SHOT MODE TIMING DIAGRAM (MODE = 01000)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
PSYNC ^{(1,}	2) CKPOL ⁽³⁾	CKSYNC ^(4, 5)			MODE<4:0> ^(6, 7)		
bit 7	÷	· · · · · ·					bit 0
Legend:							
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'							
u = Bit is une	changed	x = Bit is unknov	vn	-n/n = Value at	POR and BOR/V	alue at all other	Resets
'1' = Bit is se	et	'0' = Bit is cleare	d				
bit 7	PSYNC: Time	rx Prescaler Synch	ronization Ena	ble bit ^(1, 2)			
	1 = TMRx Pr	escaler Output is s	ynchronized to	Fosc/4			
h it C			ot synchronize	u 10 FOSC/4			
DIE O	1 = Falling er	rx Clock Polarity S	election bit	scaler			
	0 = Rising ed	lge of input clock c	locks timer/pre	scaler			
bit 5	CKSYNC: Tim	erx Clock Synchro	nization Enable	e bit ^(4, 5)			
	1 = ON regis	ter bit is synchroniz	zed to TMR2_c	lk input			
	0 = ON regis	ter bit is not synchi	ronized to TMR	2_clk input			
bit 4-0	MODE<4:0>:	Timerx Control Mo	de Selection bi	ts ^(6, 7)			
	See Table 27-1						
Note 1:	Setting this bit ens	ures that reading T	MRx will return	n a valid value.			
2:	When this bit is '1'	, Timer2 cannot op	erate in Sleep	mode.			
3:	CKPOL should not	t be changed while	ON = 1.				
4:	Setting this bit ens	ures glitch-free op	eration when th	e ON is enabled	or disabled.		
5:	When this bit is se	t then the timer op	eration will be c	lelayed by two TN	/IRx input clocks	after the ON bit	is set.
6:	Unless otherwise in of TMRx).	ndicated, all modes	s start upon ON	= 1 and stop upo	n ON = 0 (stops	occur without affe	ecting the value

REGISTER 27-3: T2HLT: TIMERx HARDWARE LIMIT CONTROL REGISTER

7: When TMRx = PRx, the next clock clears TMRx, regardless of the operating mode.

FIGURE 32-22: I²C SLAVE, 10-BIT ADDRESS, TRANSMISSION (SEN = 0, AHEN = 0, DHEN = 0)

PIC16(L)F15313/23

33.3.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RC1STA register and the received data as indicated by RC1REG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when:

- · RX1IF bit is set
- · FERR bit is set
- RC1REG = 00h

The second method uses the Auto-Wake-up feature described in **Section 33.3.3 "Auto-Wake-up on Break"**. By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RX1IF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUD1CON register before placing the EUSART in Sleep mode.

36.2 General Format for Instructions

Mnemonic,		Description	Cyclos		14-Bit Opcode)	Status	Notos
Oper	ands	Description	Cycles	MSb			LSb	Affected	Notes
	BYTE-ORIENTED FILE REGISTER OPERATIONS								
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	_	Clear W	1	00	0001	0000	00xx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	2
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	2
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	2
MOVWF	f	Move W to f	1	00	0000	1fff	ffff		2
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	2
SUBWFB	f, d	Subtract with Borrow W from f	1	11	1011	dfff	ffff	C, DC, Z	2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	2
		BYTE ORIENTED SKIP O	PERATIO	ONS					
DECES7	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1, 2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2
		BIT-ORIENTED FILE REGIST	ER OPER		IS	1			
BCE	f, b	Bit Clear f	1	01	00bb	bfff	ffff		2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		2
		BIT-ORIENTED SKIP O	PERATIO	NS					
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2
LITERAL O	OPERATIO	NS							•
ADDLW	k	Add literal and W	1	11	1110	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLB	k	Move literal to BSR	1	00	000	0k	kkkk		
MOVLP	k	Move literal to PCLATH	1	11	0001	1kkk	kkkk		
MOVLW	k	Move literal to W	1	11	0000	kkkk	kkkk		
SUBLW	k	Subtract W from literal	1	11	1100	kkkk	kkkk	C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
·			•					·	

TABLE 36-3: INSTRUCTION SET

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

PIC16(L)F15313/23

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<6:3>) → PC<14:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation: Status Affected:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT} \\ \text{0} \rightarrow \text{WDT} \text{ prescaler,} \\ 1 \rightarrow \overline{\text{TO}} \\ 1 \rightarrow \overline{\text{PD}} \\ \hline \overline{\text{TO}}, \overline{\text{PD}} \end{array}$
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits $\overline{\text{TO}}$ and $\overline{\text{PD}}$ are set.

CALLW	Subroutine Call With W	COMF	Complement f
Syntax:	[label] CALLW	Syntax:	[<i>label</i>] COMF f,d
Operands:	None	Operands:	$0 \le f \le 127$
Operation:	(PC) +1 \rightarrow TOS, (W) \rightarrow PC<7:0>, (PCLATH<6:0>) \rightarrow PC<14:8>	Operation: Status Affected:	$a \in [0, 1]$ (\overline{f}) \rightarrow (destination) Z
Status Affected:	None	Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction.		stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow (\text{W}) \\ \text{1} \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is

set.

<

PIC16LF15313/23			Standard Operating Conditions (unless otherwise stated)					
PIC16F1	5313/23						\bigcirc	
Param.							Conditions	
No.	Symbol	Device Characteristics	Min.	Typ.†	мах.	Units	NDD	Note
D100	IDD _{XT4}	XT = 4 MHz	—	360	400	μA	3.0V	
D100	IDD _{XT4}	XT = 4 MHz	—	380	450	μA	3.00	
D101	IDD _{HFO16}	HFINTOSC = 16 MHz	-	1.4	1.8	/mA	3.0	
D101	IDD _{HFO16}	HFINTOSC = 16 MHz	—	1.5	1,9	≻ mA	3 .0V	
D102	IDD _{HFOPLL}	HFINTOSC = 32 MHz	—	2.3	3.2	/mA `	⊂ 3.0V	
D102	IDD _{HFOPLL}	HFINTOSC = 32 MHz	$\left \right\rangle$	2.4	3,2	mA	3.0V	
D103	IDD _{HSPLL32}	HS+PLL = 32 MHz	_	2.3	3.2	∕mA	3.0V	
D103	IDD _{HSPLL32}	HS+PLL = 32 MHz	/	24	3.2	mA	3.0V	
D104	IDDIDLE	IDLE mode, HFINTOSC = 16 MHz	K	1.05	1.5	mA	3.0V	
D104	IDDIDLE	IDLE mode, HFINTOSC = 16 MHz	\searrow	1.15	1.5	mA	3.0V	
D105	IDD _{DOZE} (3)	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 16	1	1.1	_	mA	3.0V	
D105	IDD _{DOZE} (3)	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 16	\triangleright	1.2	—	mA	3.0V	

TABLE 37-2: SUPPLY CURRENT (IDD)^(1,2,4)

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins are outputs driven low, MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: $IDD_{DOZE} = [IDD_{IDLE} / (N_1)/N] + IDD_{HFO} 16/N$ where N = DOZE Ratio (Register 11-2).

- 4: PMD bits are all in the default state, no modules are disabled.
- 5: = F device

16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	MILLIMETERS			
Dimensior	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	X2			2.70	
Optional Center Pad Length	Y2			2.70	
Contact Pad Spacing	C1		4.00		
Contact Pad Spacing	C2		4.00		
Contact Pad Width (X16)	X1			0.35	
Contact Pad Length (X16)	Y1			0.80	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2257A