

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

EXF

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 32MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                  |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                      |
| Number of I/O              | 12                                                                         |
| Program Memory Size        | 3.5KB (2K x 14)                                                            |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | -                                                                          |
| RAM Size                   | 256 x 8                                                                    |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 5.5V                                                                |
| Data Converters            | A/D 11x10b; D/A 1x5b                                                       |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 14-TSSOP (0.173", 4.40mm Width)                                            |
| Supplier Device Package    | 14-TSSOP                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16f15323-e-st |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# **Table of Contents**

| 1.0  | Device Overview                                                           |     |
|------|---------------------------------------------------------------------------|-----|
| 2.0  | Guidelines for Getting Started with PIC16(L)F15313/23 Microcontrollers.   |     |
| 3.0  | Enhanced Mid-Range CPU                                                    |     |
| 4.0  | Memory Organization                                                       |     |
| 5.0  | Device Configuration                                                      |     |
| 6.0  | Device Information Area                                                   |     |
| 7.0  | Device Configuration Information                                          |     |
| 8.0  | Resets                                                                    |     |
| 9.0  | Oscillator Module (with Fail-Safe Clock Monitor)                          | 100 |
| 10.0 | Interrupts                                                                | 117 |
| 11.0 | Power-Saving Operation Modes                                              | 139 |
| 12.0 | Windowed Watchdog Timer (WWDT)                                            | 146 |
| 13.0 | Nonvolatile Memory (NVM) Control                                          | 154 |
| 14.0 | I/O Ports                                                                 | 172 |
| 15.0 | Peripheral Pin Select (PPS) Module                                        | 185 |
| 16.0 | Peripheral Module Disable                                                 | 194 |
| 17.0 | Interrupt-On-Change                                                       | 202 |
| 18.0 | Fixed Voltage Reference (FVR)                                             | 209 |
| 19.0 | Temperature Indicator Module                                              | 212 |
| 20.0 | Analog-to-Digital Converter (ADC) Module                                  |     |
| 21.0 | 5-Bit Digital-to-Analog Converter (DAC1) Module                           | 229 |
| 22.0 | Numerically Controlled Oscillator (NCO) Module                            |     |
| 23.0 | Comparator Module                                                         |     |
| 24.0 | Zero-Cross Detection (ZCD) Module                                         |     |
| 25.0 | Timer0 Module                                                             |     |
| 26.0 | Timer1 Module with Gate Control                                           |     |
| 27.0 | Timer2 Module With Hardware Limit Timer (HLT)                             | 279 |
| 28.0 | Capture/Compare/PWM Modules                                               |     |
| 29.0 | Pulse-Width Modulation (PWM)                                              | 311 |
| 30.0 | Complementary Waveform Generator (CWG) Module                             | 318 |
| 31.0 | Configurable Logic Cell (CLC)                                             |     |
| 32.0 | Master Synchronous Serial Port (MSSP1) Module                             | 360 |
| 33.0 | Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) | 411 |
| 34.0 | Reference Clock Output Module                                             |     |
| 35.0 | In-Circuit Serial Programming™ (ICSP™)                                    | 443 |
| 36.0 | Instruction Set Summary                                                   | 445 |
| 37.0 | Electrical Specifications                                                 |     |
| 38.0 | DC and AC Characteristics Graphs and Charts                               |     |
| 39.0 | Development Support                                                       |     |
| 40.0 | Packaging Information                                                     |     |

# TABLE 4-5: PIC16(L)F15313/23 MEMORY MAP, BANKS 8-15

|      | BANK 8                       |      | BANK 9                       |      | BANK 10                      |      | BANK 11                      |      | BANK 12                      |      | BANK 13                      |      | BANK 14                      |      | BANK 15                      |  |
|------|------------------------------|------|------------------------------|------|------------------------------|------|------------------------------|------|------------------------------|------|------------------------------|------|------------------------------|------|------------------------------|--|
| 400h | Core Register<br>(Table 4-3) | 480h | Core Register<br>(Table 4-3) | 500h | Core Register<br>(Table 4-3) | 580h | Core Register<br>(Table 4-3) | 600h | Core Register<br>(Table 4-3) | 680h | Core Register<br>(Table 4-3) | 700h | Core Register<br>(Table 4-3) | 780h | Core Register<br>(Table 4-3) |  |
| 40Bh | ( )                          | 48Bh | · · · ·                      | 50Bh | · · · · ·                    | 58Bh | · · · · ·                    | 60Bh | ( )                          | 68Bh | , ,                          | 70Bh | , ,                          | 78Bh | · · · · ·                    |  |
| 40Ch | —                            | 48Ch | —                            | 50Ch | —                            | 58Ch | NCO1ACCL                     | 60Ch | CWG1CLK                      | 68Ch | —                            | 70Ch | PIR0                         | 78Ch | _                            |  |
| 40Dh | _                            | 48Dh | —                            | 50Dh | _                            | 58Dh | NCO1ACCH                     | 60Dh | CWG1DAT                      | 68Dh | _                            | 70Dh | PIR1                         | 78Dh | _                            |  |
| 40Eh | _                            | 48Eh | _                            | 50Eh | _                            | 58Eh | NCO1ACCU                     | 60Eh | CWG1DBR                      | 68Eh | -                            | 70Eh | PIR2                         | 78Eh | _                            |  |
| 40Fh | —                            | 48Fh |                              | 50Fh | —                            | 58Fh | NCO1INCL                     | 60Fh | CWG1DBF                      | 68Fh | —                            | 70Fh | PIR3                         | 78Fh | _                            |  |
| 410h | —                            | 490h | _                            | 510h | —                            | 590h | NCO1INCH                     | 610h | CWG1CON0                     | 690h | -                            | 710h | PIR4                         | 790h | -                            |  |
| 411h | _                            | 491h | —                            | 511h | —                            | 591h | NCO1INCU                     | 611h | CWG1CON1                     | 691h | —                            | 711h | PIR5                         | 791h | _                            |  |
| 412h | —                            | 492h | _                            | 512h | —                            | 592h | NCO1CON                      | 612h | CWG1AS0                      | 692h | —                            | 712h | PIR6                         | 792h | —                            |  |
| 413h | —                            | 493h |                              | 513h | —                            | 593h | NCO1CLK                      | 613h | CWG1AS1                      | 693h | _                            | 713h | PIR7                         | 793h | —                            |  |
| 414h | —                            | 494h | _                            | 514h | —                            | 594h | -                            | 614h | CWG1STR                      | 694h | _                            | 714h | _                            | 794h | _                            |  |
| 415h | —                            | 495h | —                            | 515h | —                            | 595h | —                            | 615h | —                            | 695h | —                            | 715h | —                            | 795h | —                            |  |
| 416h | —                            | 496h | —                            | 516h | _                            | 596h | _                            | 616h | —                            | 696h | —                            | 716h | PIE0                         | 796h | PMD0                         |  |
| 417h | —                            | 497h | _                            | 517h | _                            | 597h | _                            | 617h | _                            | 697h | —                            | 717h | PIE1                         | 797h | PMD1                         |  |
| 418h | —                            | 498h | _                            | 518h | _                            | 598h | _                            | 618h | _                            | 698h | —                            | 718h | PIE2                         | 798h | PMD2                         |  |
| 419h | —                            | 499h | —                            | 519h | _                            | 599h | _                            | 619h | —                            | 699h | —                            | 719h | PIE3                         | 799h | PMD3                         |  |
| 41Ah | _                            | 49Ah | —                            | 51Ah | _                            | 59Ah | _                            | 61Ah | —                            | 69Ah | —                            | 71Ah | PIE4                         | 79Ah | PMD4                         |  |
| 41Bh |                              | 49Bh |                              | 51Bh | _                            | 59Bh | _                            | 61Bh |                              | 69Bh | —                            | 71Bh | PIE5                         | 79Bh | PMD5                         |  |
| 41Ch | _                            | 49Ch |                              | 51Ch | _                            | 59Ch | TMR0                         | 61Ch |                              | 69Ch | _                            | 71Ch | PIE6                         | 79Ch | _                            |  |
| 41Dh | _                            | 49Dh | —                            | 51Dh | _                            | 59Dh | PR0                          | 61Dh | —                            | 69Dh | —                            | 71Dh | PIE7                         | 79Dh | _                            |  |
| 41Eh | _                            | 49Eh |                              | 51Eh | _                            | 59Eh | T0CON0                       | 61Eh |                              | 69Eh | —                            | 71Eh | —                            | 79Eh | _                            |  |
| 41Fh |                              | 49Fh | _                            | 51Fh | _                            | 59Fh | T0CON1                       | 61Fh | _                            | 69Fh | —                            | 71Fh | —                            | 79Fh | _                            |  |
| 420h |                              | 4A0h |                              | 520h |                              | 5A0h |                              | 620h |                              | 6A0h |                              | 720h |                              | 7A0h |                              |  |
|      | Unimplemented<br>Read as '0' |  |
| 46Fh |                              | 4EFh |                              | 56Fh |                              | 5EFh |                              | 66Fh |                              | 6EFh |                              | 76Fh |                              | 7EFh |                              |  |
| 470h | Common RAM                   | 4F0h | Common RAM                   | 570h | Common RAM                   | 5F0h | Common RAM                   | 670h | Common RAM                   | 6F0h | Common RAM                   | 770h | Common RAM                   | 7F0h | Common RAM                   |  |
|      | Accesses                     |  |
| 47Fh | 70h-7Fh                      | 4FFh | 70h-7Fh                      | 57Fh | 70h-7Fh                      | 5FFh | 70h-7Fh                      | 67Fh | 70h-7Fh                      | 6FFh | 70h-7Fh                      | 77Fh | 70h-7Fh                      | 7FFh | 70h-7Fh                      |  |

Note 1: Unimplemented locations read as '0'.

| Address          | Name                                            | Bit 7                | Bit 6                                                    | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on:<br>POR, BOR | V <u>alue o</u> n:<br>MCLR |
|------------------|-------------------------------------------------|----------------------|----------------------------------------------------------|-------|-------|-------|-------|-------|-------|-----------------------|----------------------------|
| Bank 3           |                                                 |                      |                                                          |       |       |       |       |       |       |                       |                            |
|                  | CPU CORE REGISTERS; see Table 4-3 for specifics |                      |                                                          |       |       |       |       |       |       |                       |                            |
| 18Ch             | SSP1BUF                                         | Synchronous Serial P | synchronous Serial Port Receive Buffer/Transmit Register |       |       |       |       |       |       |                       | XXXX XXXX                  |
| 18Dh             | SSP1ADD                                         |                      | ADD<7:0>                                                 |       |       |       |       |       |       |                       | 0000 0000                  |
| 18Eh             | SSP1MSK                                         |                      | MSK<7:0>                                                 |       |       |       |       |       |       |                       | 1111 1111                  |
| 18Fh             | SSP1STAT                                        | SMP                  | CKE                                                      | D/Ā   | Р     | S     | R/W   | UA    | BF    | 0000 0000             | 0000 0000                  |
| 190h             | SSP1CON1                                        | WCOL                 | SSPOV                                                    | SSPEN | CKP   | SSPM3 | SSPM2 | SSPM1 | SSPM0 | 0000 0000             | 0000 0000                  |
| 191h             | SSP1CON2                                        | GCEN                 | ACKSTAT                                                  | ACKDT | ACKEN | RCEN  | PEN   | RSEN  | SEN   | 0000 0000             | 0000 0000                  |
| 192h             | SSP1CON3                                        | ACKTIM               | PCIE                                                     | SCIE  | BOEN  | SDAHT | SBCDE | AHEN  | DHEN  | 0000 0000             | 0000 0000                  |
| 193h<br><br>19Fh | _                                               | Unimplemented        |                                                          |       |       |       |       |       |       | _                     | _                          |

# TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

#### 4.5 Stack

All devices have a 16-level x 15-bit wide hardware stack (refer to Figure 4-4 through Figure 4-7). The stack space is not part of either program or data space. The PC is PUSHed onto the stack when CALL or CALLW instructions are executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer if the STVREN bit is programmed to '0' (Configuration Words). This means that after the stack has been PUSHed sixteen times, the seventeenth PUSH overwrites the value that was stored from the first PUSH. The eighteenth PUSH overwrites the second PUSH (and so on). The STKOVF and STKUNF flag bits will be set on an Overflow/Underflow, regardless of whether the Reset is enabled.

Note 1: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, CALLW, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

#### 4.5.1 ACCESSING THE STACK

The stack is accessible through the TOSH, TOSL and STKPTR registers. STKPTR is the current value of the Stack Pointer. TOSH:TOSL register pair points to the TOP of the stack. Both registers are read/writable. TOS is split into TOSH and TOSL due to the 15-bit size of the PC. To access the stack, adjust the value of STKPTR, which will position TOSH:TOSL, then read/write to TOSH:TOSL. STKPTR is five bits to allow detection of overflow and underflow.

| Note: | Care should be taken when modifying the |
|-------|-----------------------------------------|
|       | STKPTR while interrupts are enabled.    |

During normal program operation, CALL, CALLW and interrupts will increment STKPTR while RETLW, RETURN, and RETFIE will decrement STKPTR. STKPTR can be monitored to obtain to value of stack memory left at any given time. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC value from the stack and then decrement the STKPTR.

Reference Figure 4-4 through Figure 4-7 for examples of accessing the stack.



#### FIGURE 4-4: ACCESSING THE STACK EXAMPLE 1

| Name                 | Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3      | Bit 2  | Bit 1               | Bit 0  | Register<br>on Page |
|----------------------|-------|-------|--------|--------|------------|--------|---------------------|--------|---------------------|
| INTCON               | GIE   | PEIE  | _      |        | —          |        |                     | INTEDG | 121                 |
| PIE0                 | _     | _     | TMR0IE | IOCIE  | —          | _      | _                   | INTE   | 122                 |
| PIE1                 | OSFIE | CSWIE | _      | _      | —          | _      | _                   | ADIE   | 123                 |
| PIE2                 | _     | ZCDIE | _      | _      | —          | _      | C2IE <sup>(1)</sup> | C1IE   | 124                 |
| PIE3                 | _     | _     | RC1IE  | TX1IE  | _          | _      | BCL1IE              | SSP1IE | 125                 |
| PIE4                 | _     | _     | _      | _      | —          | _      | TMR2IE              | TMR1IE | 126                 |
| PIR0                 | —     | _     | TMR0IF | IOCIF  | —          | —      | _                   | INTF   | 130                 |
| PIR1                 | OSFIF | CSWIF | _      | -      | —          | —      | -                   | ADIF   | 131                 |
| PIR2                 | _     | ZCDIF | _      | _      | _          | _      | C2IF <sup>(1)</sup> | C1IF   | 132                 |
| PIR3                 | -     | _     | RC1IF  | TX1IF  | _          | _      | BCL1IF              | SSP1IF | 133                 |
| PIR4                 |       | _     | _      | _      | _          |        | TMR2IF              | TMR1IF | 134                 |
| IOCAP                |       | _     | IOCAP5 | IOCAP4 | IOCAP3     | IOCAP2 | IOCAP1              | IOCAP0 | 204                 |
| IOCAN                | _     | _     | IOCAN5 | IOCAN4 | IOCAN3     | IOCAN2 | IOCAN1              | IOCAN0 | 204                 |
| IOCAF                | _     | _     | IOCAF5 | IOCAF4 | IOCAF3     | IOCAF2 | IOCAF1              | IOCAF0 | 205                 |
| IOCCP <sup>(1)</sup> | _     | _     | IOCCP5 | IOCCP4 | IOCCP3     | IOCCP2 | IOCCP1              | IOCCP0 | 206                 |
| IOCCN <sup>(1)</sup> | -     | _     | IOCCN5 | IOCCN4 | IOCCN3     | IOCCN2 | IOCCN1              | IOCCN0 | 206                 |
| IOCCF <sup>(1)</sup> | -     | _     | IOCCF5 | IOCCF4 | IOCCF3     | IOCCF2 | IOCCF1              | IOCCF0 | 207                 |
| STATUS               | _     | _     | _      | TO     | PD         | Z      | DC                  | С      | 32                  |
| VREGCON              |       |       | _      |        |            | _      | VREGPM              |        | 143                 |
| CPUDOZE              | IDLEN | DOZEN | ROI    | DOE    | _          |        | DOZE<2:0>           |        | 144                 |
| WDTCON0              | _     | —     |        | 1      | WDTPS<4:0> | >      | 150                 |        |                     |

|--|

**Legend:** — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

**Note 1:** Present only in PIC16(L)F15323.

# EXAMPLE 13-5: DEVICE ID ACCESS

| ; This  | s write routine assumes the following:                                              |                          |                                                  |  |  |  |  |  |
|---------|-------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------|--|--|--|--|--|
| ; 1. A  | 1. A full row of data are loaded, starting at the address in DATA_ADDR              |                          |                                                  |  |  |  |  |  |
| ; 2. E  | ; 2. Each word of data to be written is made up of two adjacent bytes in DATA_ADDR, |                          |                                                  |  |  |  |  |  |
| ; store | ; stored in little endian format                                                    |                          |                                                  |  |  |  |  |  |
| ; 3. A  | A valid starting addr                                                               | ess (the least significa | ant bits = 00000) is loaded in ADDRH:ADDRL       |  |  |  |  |  |
| ; 4. A  | ADDRH and ADDRL are 1                                                               | ocated in common RAM (lo | ocations 0x70 - 0x7F)                            |  |  |  |  |  |
| ; 5. N  | NVM interrupts are no                                                               | t taken into account     |                                                  |  |  |  |  |  |
|         |                                                                                     |                          |                                                  |  |  |  |  |  |
|         | BANKSEL                                                                             | NVMADRH                  |                                                  |  |  |  |  |  |
|         | MOVF                                                                                | ADDRH,W                  |                                                  |  |  |  |  |  |
|         | MOVWF                                                                               | NVMADRH                  | ; Load initial address                           |  |  |  |  |  |
|         | MOVF                                                                                | ADDRL,W                  |                                                  |  |  |  |  |  |
|         | MOVWF                                                                               | NVMADRL                  |                                                  |  |  |  |  |  |
|         | MOVLW                                                                               | LOW DATA_ADDR            | ; Load initial data address                      |  |  |  |  |  |
|         | MOVWF                                                                               | FSROL                    |                                                  |  |  |  |  |  |
|         | MOVLW                                                                               | HIGH DATA_ADDR           |                                                  |  |  |  |  |  |
|         | MOVWF                                                                               | FSROH                    |                                                  |  |  |  |  |  |
|         | BCF                                                                                 | NVMCON1,NVMREGS          | ; Set PFM as write location                      |  |  |  |  |  |
|         | BSF                                                                                 | NVMCON1,WREN             | ; Enable writes                                  |  |  |  |  |  |
|         | BSF                                                                                 | NVMCON1,LWLO             | ; Load only write latches                        |  |  |  |  |  |
| TOOD    |                                                                                     |                          |                                                  |  |  |  |  |  |
| LOOP    | NOTITI                                                                              |                          |                                                  |  |  |  |  |  |
|         | MOVIW                                                                               | FSRU++                   | . Tool floor data both                           |  |  |  |  |  |
|         | MOVWF                                                                               | NVMDATL                  | i Load first data byte                           |  |  |  |  |  |
|         | MOVIW                                                                               | FSRU++                   | · Lood accord data buta                          |  |  |  |  |  |
|         | MOVWF                                                                               | NVMDATH                  | , Load Second data byte                          |  |  |  |  |  |
|         | CALL                                                                                | UNLOCK_SEQ               | ; If not, go load latch                          |  |  |  |  |  |
|         | INCF                                                                                | NVMADRL, F               | ; Increment address                              |  |  |  |  |  |
|         | MOVF                                                                                | NVMADRL,W                |                                                  |  |  |  |  |  |
|         | XORLW                                                                               | 0x1F                     | ; Check if lower bits of address are 00000       |  |  |  |  |  |
|         | ANDLW                                                                               | 0x1F                     | ; and if on last of 32 addresses                 |  |  |  |  |  |
|         | BTFSC                                                                               | STATUS , Z               | ; Last of 32 words?                              |  |  |  |  |  |
|         | GOTO                                                                                | START_WRITE              | ; If so, go write latches into memory            |  |  |  |  |  |
|         | GOTO                                                                                | LOOP                     |                                                  |  |  |  |  |  |
|         |                                                                                     |                          |                                                  |  |  |  |  |  |
| START_W | RITE                                                                                |                          |                                                  |  |  |  |  |  |
|         | BCF                                                                                 | NVMCON1,LWLO             | ; Latch writes complete, now write memory        |  |  |  |  |  |
|         | CALL                                                                                | UNLOCK_SEQ               | ; Perform required unlock sequence               |  |  |  |  |  |
|         | BCF                                                                                 | NVMCON1,LWLO             | ; Disable writes                                 |  |  |  |  |  |
| UNI OCK | CEO.                                                                                |                          |                                                  |  |  |  |  |  |
| OMPOCK_ |                                                                                     | 550                      |                                                  |  |  |  |  |  |
|         |                                                                                     | INTCON CIE               | : Digable interrupts                             |  |  |  |  |  |
|         | BCT                                                                                 | MIMCON2                  | , preadre interrupts                             |  |  |  |  |  |
|         | MOVI M                                                                              | A A D                    | , begin antock sequence                          |  |  |  |  |  |
|         | MOVINE                                                                              | AAII<br>MMACON2          |                                                  |  |  |  |  |  |
|         | MUVWF                                                                               |                          |                                                  |  |  |  |  |  |
|         | BOF                                                                                 | INVICONI, WR             | I The leaf accurate complete the such is in the  |  |  |  |  |  |
|         | BSF                                                                                 | INTCON, GIE              | , UNLOCK sequence complete, re-enable interrupts |  |  |  |  |  |
|         | return                                                                              |                          |                                                  |  |  |  |  |  |
|         |                                                                                     |                          |                                                  |  |  |  |  |  |

|           |            | Default     |                             | Remappable to | Pins of PORTx |
|-----------|------------|-------------|-----------------------------|---------------|---------------|
| NAME      | Name       | Location at | Reset Value - (xxxPPS<4:0>) | PIC16(L       | )F15323       |
|           |            | POR         | (1000 1 0 1007 )            | PORTA         | PORTC         |
| INT       | INTPPS     | RA2         | 00010                       | •             | •             |
| TOCKI     | T0CKIPPS   | RA2         | 00010                       | •             | •             |
| T1CKI     | T1CKIPSS   | RA5         | 00101                       | •             | •             |
| T1G       | T1GPPS     | RA4         | 00100                       | •             | •             |
| T2IN      | T2INPPS    | RA5         | 00101                       | •             | •             |
| CCP1      | CCP1PPS    | RC5         | 10101                       | •             | •             |
| CCP2      | CCP2PPS    | RC3         | 10011                       | •             | •             |
| CWG1IN    | CWG1INPPS  | RA2         | 00010                       | •             | •             |
| CLCIN0    | CLCIN0PPS  | RC3         | 10011                       | •             | •             |
| CLCIN1    | CLCIN1PPS  | RC4         | 10100                       | •             | •             |
| CLCIN2    | CLCIN2PPS  | RC1         | 10001                       | •             | •             |
| CLCIN3    | CLCIN3PPS  | RA5         | 00101                       | •             | •             |
| ADACT     | ADACTPPS   | RC2         | 10010                       | •             | •             |
| SCK1/SCL1 | SSP1CLKPPS | RC0         | 10000                       | •             | •             |
| SDI1/SDA1 | SSP1DATPPS | RC1         | 10001                       | •             | •             |
| SS1       | SSP1SS1PPS | RC3         | 10011                       | •             | •             |
| RX1/DT1   | RX1DTPPS   | RC5         | 10101                       | •             | •             |
| CK1       | TX1CKPPS   | RC4         | 10100                       | •             | •             |

| TARI E 15-2- | DDS INDUT SIGNAL | POLITING | ODTIONS |           | E15323) |
|--------------|------------------|----------|---------|-----------|---------|
| IADLE 13-2:  | PPS INPUT SIGNAL | ROUTING  | UP HUNS | (PICI0(L) | FIJJZJ) |

# 15.3 Bidirectional Pins

PPS selections for peripherals with bidirectional signals on a single pin must be made so that the PPS input and PPS output select the same pin. Peripherals that have bidirectional signals include:

- EUSART (synchronous operation)
- MSSP (I<sup>2</sup>C)
- The I<sup>2</sup>C SCLx and SDAx functions can be Note: remapped through PPS. However, only the RB1, RB2, RC3 and RC4 pins have the I<sup>2</sup>C and SMBus specific input buffers implemented (I<sup>2</sup>C mode disables INLVL and sets thresholds that are specific for  $I^2C$ ). If the SCLx or SDAx functions are mapped to some other pin (other than RB1, RB2, RC3 or RC4), the general purpose TTL or ST input buffers (as configured based on INLVL register setting) will be used instead. In most applications, it is therefore recommended only to map the SCLx and SDAx pin functions to the RB1, RB2, RC3 or RC4 pins.

# 15.4 PPS Lock

The PPS includes a mode in which all input and output selections can be locked to prevent inadvertent changes. PPS selections are locked by setting the PPSLOCKED bit of the PPSLOCK register. Setting and clearing this bit requires a special sequence as an extra precaution against inadvertent changes. Examples of setting and clearing the PPSLOCKED bit are shown in Example 15-1.

#### EXAMPLE 15-1: PPS LOCK/UNLOCK SEQUENCE

| ; | suspend interrupts                     |
|---|----------------------------------------|
|   | BCF INTCON, GIE                        |
| ; | BANKSEL PPSLOCK ; set bank             |
| ; | required sequence, next 5 instructions |
|   | MOVLW 0x55                             |
|   | MOVWF PPSLOCK                          |
|   | MOVLW 0xAA                             |
|   | MOVWF PPSLOCK                          |
| ; | Set PPSLOCKED bit to disable writes or |
| ; | Clear PPSLOCKED bit to enable writes   |
|   | BSF PPSLOCK, PPSLOCKED                 |
| ; | restore interrupts                     |
|   | BSF INTCON, GIE                        |
|   |                                        |

# 15.5 PPS Permanent Lock

The PPS can be permanently locked by setting the PPS1WAY Configuration bit. When this bit is set, the PPSLOCKED bit can only be cleared and set one time after a device Reset. This allows for clearing the PPSLOCKED bit so that the input and output selections can be made during initialization. When the PPSLOCKED bit is set after all selections have been made, it will remain set and cannot be cleared until after the next device Reset event.

# 15.6 Operation During Sleep

PPS input and output selections are unaffected by Sleep.

# 15.7 Effects of a Reset

A device Power-on-Reset (POR) clears all PPS input and output selections to their default values (Permanent Lock Removed). All other Resets leave the selections unchanged. Default input selections are shown in Table 15-1 and Table 15-2.

| REGISTER 15-2: RxyPPS: PIN Rxy OUTPUT SOURCE SELECTION R | REGISTER |
|----------------------------------------------------------|----------|
|----------------------------------------------------------|----------|

| U-0     | U-0 | U-0 | R/W-0/u | R/W-0/u | R/W-0/u     | R/W-0/u | R/W-0/u |
|---------|-----|-----|---------|---------|-------------|---------|---------|
| —       | —   | —   |         |         | RxyPPS<4:0> |         |         |
| bit 7   |     |     |         |         |             |         | bit 0   |
|         |     |     |         |         |             |         |         |
| Legend: |     |     |         |         |             |         |         |

| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
|----------------------|----------------------|-------------------------------------------------------|
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

| bit 7-5 | Unimplemented: Read as '0'                        |
|---------|---------------------------------------------------|
| bit 4-0 | RxyPPS<4:0>: Pin Rxy Output Source Selection bits |
|         | See Table 15-4 and Table 15-5.                    |

Note 1: TRIS control is overridden by the peripheral as required.

## REGISTER 15-3: PPSLOCK: PPS LOCK REGISTER

| U-0   | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0/0   |
|-------|-----|-----|-----|-----|-----|-----|-----------|
| —     | —   | —   | —   | —   | —   | —   | PPSLOCKED |
| bit 7 |     |     |     |     |     |     | bit 0     |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-1 Unimplemented: Read as '0'

bit 0 PPSLOCKED: PPS Locked bit

 $\ensuremath{\texttt{1=PPS}}$  is locked. PPS selections can not be changed.

0= PPS is not locked. PPS selections can be changed.

# PIC16(L)F15313/23

#### **REGISTER 16-4:** PMD3: PMD CONTROL REGISTER 3 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 PWM6MD PWM5MD PWM4MD PWM3MD CCP2MD CCP1MD bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged -n/n = Value at POR and BOR/Value at all other Resets x = Bit is unknown '1' = Bit is set '0' = Bit is cleared q = Value depends on condition bit 7-6 Unimplemented: Read as '0' bit 5 PWM6MD: Disable Pulse-Width Modulator PWM6 bit 1 = PWM6 module disabled 0 = PWM6 module enabled PWM5MD: Disable Pulse-Width Modulator PWM5 bit bit 4 1 = PWM5 module disabled 0 = PWM5 module enabled bit 3 PWM4MD: Disable Pulse-Width Modulator PWM4 bit 1 = PWM4 module disabled 0 = PWM4 module enabled bit 2 **PWM3MD:** Disable Pulse-Width Modulator PWM3 bit 1 = PWM3 module disabled 0 = PWM3 module enabled CCP2MD: Disable CCP2 bit bit 1 1 = CCP2 module disabled 0 = CCP2 module enabled CCP1MD: Disable CCP1 bit bit 0 1 = CCP1 module disabled

0 = CCP1 module enabled

# 17.5 Register Definitions: Interrupt-on-Change Control

#### **REGISTER 17-1: IOCAP: INTERRUPT-ON-CHANGE PORTA POSITIVE EDGE REGISTER**

| U-0     | U-0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0               | R/W-0/0               |
|---------|-----|---------|---------|---------|---------|-----------------------|-----------------------|
| —       | —   | IOCAP5  | IOCAP4  | IOCAP3  | IOCAP2  | IOCAP1 <sup>(1)</sup> | IOCAP0 <sup>(1)</sup> |
| bit 7   |     |         |         |         |         |                       | bit 0                 |
|         |     |         |         |         |         |                       |                       |
| Legend: |     |         |         |         |         |                       |                       |

| Logona.              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

#### bit 7-6 Unimplemented: read as '0'

bit 5-0

bit 5-0

IOCAP<5:0>: Interrupt-on-Change PORTA Positive Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

## REGISTER 17-2: IOCAN: INTERRUPT-ON-CHANGE PORTA NEGATIVE EDGE REGISTER

| U-0   | U-0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0               | R/W-0/0               |
|-------|-----|---------|---------|---------|---------|-----------------------|-----------------------|
| —     | —   | IOCAN5  | IOCAN4  | IOCAN3  | IOCAN2  | IOCAN1 <sup>(1)</sup> | IOCAN0 <sup>(1)</sup> |
| bit 7 |     |         |         |         |         |                       | bit 0                 |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

#### bit 7-6 Unimplemented: read as '0'

IOCAN<5:0>: Interrupt-on-Change PORTA Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative-going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

| R/W-0/0              | R/W-0/0                                                                                                                     | R/W-0/0                  | R/W-0/0           | R/W-0/0                   | R/W-0/0                     | R/W-0/0           | R/W-0/0          |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------|---------------------------|-----------------------------|-------------------|------------------|
| PSYNC <sup>(1,</sup> | 2) CKPOL <sup>(3)</sup>                                                                                                     | CKSYNC <sup>(4, 5)</sup> |                   |                           | MODE<4:0> <sup>(6, 7)</sup> | 1                 |                  |
| bit 7                | ÷                                                                                                                           | · · · · · ·              |                   |                           |                             |                   | bit 0            |
|                      |                                                                                                                             |                          |                   |                           |                             |                   |                  |
| Legend:              |                                                                                                                             |                          |                   |                           |                             |                   |                  |
| R = Readab           | le bit                                                                                                                      | W = Writable bit         |                   | U = Unimpleme             | nted bit, read as           | ʻ0'               |                  |
| u = Bit is une       | changed                                                                                                                     | x = Bit is unknov        | vn                | -n/n = Value at           | POR and BOR/V               | alue at all other | Resets           |
| '1' = Bit is se      | et                                                                                                                          | '0' = Bit is cleare      | d                 |                           |                             |                   |                  |
|                      |                                                                                                                             |                          |                   |                           |                             |                   |                  |
| bit 7                | PSYNC: Time                                                                                                                 | rx Prescaler Synch       | ronization Ena    | ble bit <sup>(1, 2)</sup> |                             |                   |                  |
|                      | 1 = TMRx Pr                                                                                                                 | escaler Output is s      | ynchronized to    | Fosc/4                    |                             |                   |                  |
| <b>h</b> it C        |                                                                                                                             |                          | ot synchronize    | u 10 FOSC/4               |                             |                   |                  |
| DIE O                | 1 = Falling er                                                                                                              | rx Clock Polarity S      | election bit      | scaler                    |                             |                   |                  |
|                      | 0 = Rising ed                                                                                                               | lge of input clock c     | locks timer/pre   | scaler                    |                             |                   |                  |
| bit 5                | CKSYNC: Tim                                                                                                                 | erx Clock Synchro        | nization Enable   | e bit <sup>(4, 5)</sup>   |                             |                   |                  |
|                      | 1 = ON regis                                                                                                                | ter bit is synchroniz    | zed to TMR2_c     | lk input                  |                             |                   |                  |
|                      | 0 = ON regis                                                                                                                | ter bit is not synchi    | ronized to TMR    | 2_clk input               |                             |                   |                  |
| bit 4-0              | MODE<4:0>:                                                                                                                  | Timerx Control Mo        | de Selection bi   | ts <sup>(6, 7)</sup>      |                             |                   |                  |
|                      | See Table 27-1                                                                                                              |                          |                   |                           |                             |                   |                  |
| Note 1:              | Setting this bit ens                                                                                                        | ures that reading T      | MRx will return   | n a valid value.          |                             |                   |                  |
| 2:                   | When this bit is '1'                                                                                                        | , Timer2 cannot op       | erate in Sleep    | mode.                     |                             |                   |                  |
| 3:                   | CKPOL should not                                                                                                            | t be changed while       | ON = 1.           |                           |                             |                   |                  |
| 4:                   | Setting this bit ens                                                                                                        | ures glitch-free op      | eration when th   | e ON is enabled           | or disabled.                |                   |                  |
| 5:                   | When this bit is se                                                                                                         | t then the timer op      | eration will be c | lelayed by two TN         | /IRx input clocks           | after the ON bit  | is set.          |
| 6:                   | Unless otherwise indicated, all modes start upon ON = 1 and stop upon ON = 0 (stops occur without affecting the v of TMRx). |                          |                   |                           |                             |                   | ecting the value |

# REGISTER 27-3: T2HLT: TIMERx HARDWARE LIMIT CONTROL REGISTER

7: When TMRx = PRx, the next clock clears TMRx, regardless of the operating mode.



# 30.10 Auto-Shutdown

Auto-shutdown is a method to immediately override the CWG output levels with specific overrides that allow for safe shutdown of the circuit. The shutdown state can be either cleared automatically or held until cleared by software. The auto-shutdown circuit is illustrated in Figure 30-12.

#### 30.10.1 SHUTDOWN

The shutdown state can be entered by either of the following two methods:

- Software generated
- External Input

#### 30.10.1.1 Software Generated Shutdown

Setting the SHUTDOWN bit of the CWG1AS0 register will force the CWG into the shutdown state.

When the auto-restart is disabled, the shutdown state will persist as long as the SHUTDOWN bit is set.

When auto-restart is enabled, the SHUTDOWN bit will clear automatically and resume operation on the next rising edge event.

## 30.10.2 EXTERNAL INPUT SOURCE

External shutdown inputs provide the fastest way to safely suspend CWG operation in the event of a Fault condition. When any of the selected shutdown inputs goes active, the CWG outputs will immediately go to the selected override levels without software delay. Several input sources can be selected to cause a shutdown condition. All input sources are active-low. The sources are:

- Comparator C1OUT\_sync
- Comparator C2OUT\_sync
- Timer2 TMR2\_postscaled
- CWG1IN input pin

Shutdown inputs are selected using the CWG1AS1 register (Register 30-6).

Note: Shutdown inputs are level sensitive, not edge sensitive. The shutdown state cannot be cleared, except by disabling auto-shutdown, as long as the shutdown input level persists.

# 30.11 Operation During Sleep

The CWG module operates independently from the system clock and will continue to run during Sleep, provided that the clock and input sources selected remain active.

The HFINTOSC remains active during Sleep when all the following conditions are met:

- CWG module is enabled
- · Input source is active
- HFINTOSC is selected as the clock source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and the CWG clock source, when the CWG is enabled and the input source is active, then the CPU will go idle during Sleep, but the HFINTOSC will remain active and the CWG will continue to operate. This will have a direct effect on the Sleep mode current.

#### 32.5.6 CLOCK STRETCHING

Clock stretching occurs when a device on the bus holds the SCL line low, effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master device. A master device is not concerned with stretching as anytime it is active on the bus and not transferring data it is stretching. Any stretching done by a slave is invisible to the master software and handled by the hardware that generates SCL.

The CKP bit of the SSP1CON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. Setting CKP will release SCL and allow more communication.

#### 32.5.6.1 Normal Clock Stretching

Following an ACK if the R/W bit of SSP1STAT is set, a read request, the slave hardware will clear CKP. This allows the slave time to update SSP1BUF with data to transfer to the master. If the SEN bit of SSP1CON2 is set, the slave hardware will always stretch the clock after the ACK sequence. Once the slave is ready; CKP is set by software and communication resumes.

#### 32.5.6.2 10-bit Addressing Mode

In 10-bit Addressing mode, when the UA bit is set the clock is always stretched. This is the only time the SCL is stretched without CKP being cleared. SCL is released immediately after a write to SSP1ADD.

#### 32.5.6.3 Byte NACKing

When AHEN bit of SSP1CON3 is set; CKP is cleared by hardware after the eighth falling edge of SCL for a received matching address byte. When DHEN bit of SSP1CON3 is set; CKP is cleared after the eighth falling edge of SCL for received data.

Stretching after the eighth falling edge of SCL allows the slave to look at the received address or data and decide if it wants to ACK the received data.

# 32.5.7 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external  $I^2C$  master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the  $I^2C$  bus have released SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 32-23).



FIGURE 32-23: CLOCK SYNCHRONIZATION TIMING

# FIGURE 33-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

| CYSSC (                      | UNUNUN.<br>Bit set by s                | (UNUANU<br>***                          | furvuru                              | ng<br>Li                              | vvv                                  | U<br>J          | MAN                                   | WWW | <u>punn</u>      | nyuru<br>:  |             |                                      | AUNUNUN<br>Asteoret                   |
|------------------------------|----------------------------------------|-----------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|-----------------|---------------------------------------|-----|------------------|-------------|-------------|--------------------------------------|---------------------------------------|
| 1950-1950 W<br>1990-1990 W M |                                        | . %                                     | ,                                    | , , , , , , , , , , , , , , , , , , , | ······<br>·<br>·                     | ·····<br>·<br>· | · · · · · ·                           |     | ·,····<br>·<br>· | :<br>:<br>: | •<br>•<br>• |                                      | ,<br>5<br>,                           |
|                              |                                        | 2<br>:<br>:<br>:                        | :                                    |                                       |                                      | 111.:           |                                       |     | ;<br>;<br>;<br>; |             | /////:<br>  | ><br>><br>>                          | 2<br>2<br>2<br>2                      |
| istanis.                     |                                        | :<br>:<br>:                             |                                      | :<br>:<br>:                           | ······<br>:<br>:                     |                 | <br>:<br>:                            | -03 | Porad Jue        | so ĝiser Re | ad d        | Şildər Alasısı 2                     | с.<br>С.<br>;                         |
| Mil<br>Riche 31              | 11. 11. 11. 11. 11. 11. 11. 11. 11. 11 | IIIIIIIIIIIIIIIIIIII<br>E recueice in S | //////////////////////////////////// | //////<br>Vests                       | //////////////////////////////////// | /////           | ///////////////////////////////////// |     |                  |             |             | //////////////////////////////////// | 9.11111111111111111111111111111111111 |

# FIGURE 33-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP



The The SUSPER remains in His while the Will be set.

# 33.3.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TX1STA register. The Break character transmission is then initiated by a write to the TX1REG. The value of data written to TX1REG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TX1STA register indicates when the transmit operation is active or idle, just as it does during normal transmission. See Figure 33-9 for the timing of the Break character sequence.

## 33.3.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TX1REG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TX1REG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TX1REG becomes empty, as indicated by the TX1IF, the next data byte can be written to TX1REG.

# PIC16(L)F15313/23

| BCF              | Bit Clear f                                                    |
|------------------|----------------------------------------------------------------|
| Syntax:          | [ label ] BCF f,b                                              |
| Operands:        | $\begin{array}{l} 0\leq f\leq 127\\ 0\leq b\leq 7 \end{array}$ |
| Operation:       | $0 \rightarrow (f \le b >)$                                    |
| Status Affected: | None                                                           |
| Description:     | Bit 'b' in register 'f' is cleared.                            |

| BTFSC            | Bit Test f, Skip if Clear                                                                                                                                                                                                     |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label]BTFSC f,b                                                                                                                                                                                                              |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$                                                                                                                                                           |
| Operation:       | skip if (f <b>) = 0</b>                                                                                                                                                                                                       |
| Status Affected: | None                                                                                                                                                                                                                          |
| Description:     | If bit 'b' in register 'f' is '1', the next<br>instruction is executed.<br>If bit 'b', in register 'f', is '0', the next<br>instruction is discarded, and a NOP is<br>executed instead, making this a<br>2-cycle instruction. |

| BRA              | Relative Branch                                                                                                                                                                                                                                 |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ]BRA label<br>[ <i>label</i> ]BRA \$+k                                                                                                                                                                                           |
| Operands:        | -256 ≤ label - PC + 1 ≤ 255<br>-256 ≤ k ≤ 255                                                                                                                                                                                                   |
| Operation:       | $(PC) + 1 + k \rightarrow PC$                                                                                                                                                                                                                   |
| Status Affected: | None                                                                                                                                                                                                                                            |
| Description:     | Add the signed 9-bit literal 'k' to the<br>PC. Since the PC will have<br>incremented to fetch the next<br>instruction, the new address will be<br>PC + 1 + k. This instruction is a<br>2-cycle instruction. This branch has a<br>limited range. |

| BTFSS            | Bit Test f, Skip if Set                                                                                                                                                                                         |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ label ] BTFSS f,b                                                                                                                                                                                             |
| Operands:        | $0 \le f \le 127$<br>$0 \le b < 7$                                                                                                                                                                              |
| Operation:       | skip if (f <b>) = 1</b>                                                                                                                                                                                         |
| Status Affected: | None                                                                                                                                                                                                            |
| Description:     | If bit 'b' in register 'f' is '0', the next<br>instruction is executed.<br>If bit 'b' is '1', then the next instruction<br>is discarded and a NOP is executed<br>instead, making this a 2-cycle<br>instruction. |

## BRW Relative Branch with W

| Syntax:          | [ label ] BRW                                                                                                                                                                                                 |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operands:        | None                                                                                                                                                                                                          |
| Operation:       | $(PC) + (W) \to PC$                                                                                                                                                                                           |
| Status Affected: | None                                                                                                                                                                                                          |
| Description:     | Add the contents of W (unsigned) to<br>the PC. Since the PC will have<br>incremented to fetch the next<br>instruction, the new address will be<br>PC + 1 + (W). This instruction is a<br>2-cycle instruction. |

| BSF              | Bit Set f                                                           |  |  |
|------------------|---------------------------------------------------------------------|--|--|
| Syntax:          | [ label ] BSF f,b                                                   |  |  |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$ |  |  |
| Operation:       | $1 \rightarrow (f \le b >)$                                         |  |  |
| Status Affected: | None                                                                |  |  |
| Description:     | Bit 'b' in register 'f' is set.                                     |  |  |





# TABLE 37-20: CONFIGURABLE LOGIC CELL (CLC) CHARACTERISTICS

| Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ |         |                                             |               |          |      |          |                          |  |
|----------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------|---------------|----------|------|----------|--------------------------|--|
| Param.<br>No.                                                                                                        | Sym.    | Characteristic                              | Min.          | Typt     | Max. | Units    | Conditions               |  |
| CLC01*                                                                                                               | TCLCIN  | CLC input time                              | $\rightarrow$ | 7        | 105  | ns       | (Note 1)                 |  |
| CLC02*                                                                                                               | TCLC    | CLC module input to output propagation time | $\searrow$    | 24<br>12 |      | ns<br>ns | VDD = 1.8V<br>VDD > 3.6V |  |
| CLC03*                                                                                                               | TCLCOUT | CLC output time Rise Tione                  | —             | 107      |      | —        | (Note 1)                 |  |
|                                                                                                                      |         | Fall Time                                   | _             | 108      |      | _        | (Note 1)                 |  |
| CLC04*                                                                                                               | FCLCMAX | CLC maximum switching frequency             | —             | 32       | Fosc | MHz      |                          |  |

- \* These parameters are characterized but not/tested.
- † Data in "Typ" column is at 3.0%, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: See Table 37-10 for 105, 107 and 108 rise and fall times.

# 40.0 PACKAGING INFORMATION

40.1 Package Marking Information



characters for customer-specific information.

be carried over to the next line, thus limiting the number of available



## 8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

http://www.microchip.com/packaging

Note:

For the most current package drawings, please see the Microchip Packaging Specification located at

Microchip Technology Drawing No. C04-057C Sheet 1 of 2