Microchip Technology - PIC16F15323-I/P Datasheet

E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	14-DIP (0.300", 7.62mm)
Supplier Device Package	14-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15323-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN ALLOCATION TABLES

TABLE 3: 8-PIN ALLOCATION TABLE (PIC16(L)F15313)

I/O ⁽²⁾	8-Pin PDIP/SOIC/ MSOP	ADC	Reference	Comparator	NCO	DAC	Timers	ССР	MWG	CWG	MSSP	ZCD	EUSART	CLC	CLKR	Interrupt	Pull-up	Basic
RA0	7	ANA0		C1IN0+	-	DAC1OUT	—	—	—		—	—	TX1/ CK1 ⁽¹⁾	CLCIN3 ⁽¹⁾		IOCA0	Y	ICSPDAT
RA1	6	ANA1	VREF+	C1IN0-	-	DAC1REF+	T0CKI ⁽¹⁾	—	-	-	SCK1 ⁽⁴⁾ SCL1 ^(1,4)	—	RX1/ DT1 ⁽¹⁾	CLCIN2 ⁽¹⁾	-	IOCA1	Y	ICSPCLK
RA2	5	ANA2	-	—	-	-	—	-	-	CWG1IN ⁽¹⁾	SDA1 ^(1,4) SDI1 ⁽¹⁾	ZCD1	-	-	-	INT ⁽¹⁾ IOCA2	Y	Ι
RA3	4	-	_	—	_	-	_	_	-	_	SS1 ⁽¹⁾	_	_	CLCIN0 ⁽¹⁾	_	IOCA3	Y	MCLR VPP
RA4	3	ANA4	_	C1IN1-	_	-	T1G ⁽¹⁾	_	-	_	-	_	_	—	_	IOCA4	Y	CLKOUT OSC2
RA5	2	ANA5 ADACT ⁽¹⁾	-	_	_	_	T1CKI ⁽¹⁾ T2IN ⁽¹⁾	CCP1 ⁽¹⁾ CCP2 ⁽¹⁾	—	_	—	-	_	CLCIN1 ⁽¹⁾		IOCA5	Y	CLKIN OSC1 EIN
VDD	1	_		—	—	_	—	—	—		_	-		_		_	_	Vdd
Vss	8	—	-	—	—	—	—	—	—	_	—	—	-	—	-		-	Vss
	_	_	_	C10UT	NCO10UT	_	TMR0	CCP1	PWM3OUT	CWG1A	SDO1	_	DT1 ⁽³⁾	CLC10UT	CLKR	_	—	_
OUT(2)	_	_	_	_	_	—	_	CCP2	PWM4OUT	CWG1B	SCK1	_	CK1	CLC2OUT	_	_	—	_
00107	—	_	_		—	_		_	PWM5OUT	CWG1C	SCL1 ^(3,4)	_	TX1	CLC3OUT	_		—	_
	-	—	—	—	—	—	—	—	PWM6OUT	CWG1D	SDA1 ^(3,4)	—	—	CLC4OUT	—	_	—	—

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.

2: All digital output signals shown in this row are PPS re-mappable. These signals may be mapped to output onto one of several PORTx pin options.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUS input buffer thresholds.

Name	Function	Input Type	Output Type	Description
OUT ⁽²⁾	C10UT		CMOS/OD	Comparator 1 output.
	C2OUT	_	CMOS/OD	Comparator 2 output.
	SDO1	_	CMOS/OD	MSSP1 SPI serial data output.
	SCK1	_	CMOS/OD	MSSP1 SPI serial clock output.
	DT1 ⁽³⁾	_	CMOS/OD	EUSART Synchronous mode data output.
	TX1	_	CMOS/OD	EUSART1 Asynchronous mode transmitter data output.
	CK1	_	CMOS/OD	EUSART1 Synchronous mode clock output.
	SCL1 ^(3,4)	-	CMOS/OD	MSSP1 I ² C output.
	SDA1 ^(3,4)	_	CMOS/OD	MSSP1 I ² C output.
	TMR0	_	CMOS/OD	Timer0 output.
	CCP1	_	CMOS/OD	CCP1 output (compare/PWM functions).
	CCP2	_	CMOS/OD	CCP2 output (compare/PWM functions).
	PWM3OUT	_	CMOS/OD	PWM3 output.
	PWM4OUT	-	CMOS/OD	PWM4 output.
	PWM5OUT	-	CMOS/OD	PWM5 output.
	PWM6OUT	_	CMOS/OD	PWM6 output.
	CWG1A	_	CMOS/OD	Complementary Waveform Generator 1 output A.
	CWG1B	_	CMOS/OD	Complementary Waveform Generator 1 output B.
	CWG1C	_	CMOS/OD	Complementary Waveform Generator 1 output C.
	CWG1D	_	CMOS/OD	Complementary Waveform Generator 1 output D.
	CLC1OUT	-	CMOS/OD	Configurable Logic Cell 1 output.
	CLC2OUT	_	CMOS/OD	Configurable Logic Cell 2 output.
	CLC3OUT	-	CMOS/OD	Configurable Logic Cell 3 output.
	CLC4OUT	-	CMOS/OD	Configurable Logic Cell 4 output.
	NCO10UT	_	CMOS/OD	Numerically Controller Oscillator output.
	CLKR	_	CMOS/OD	Clock Reference module output.

TABLE 1-3: PIC16(L)F15323 PINOUT DESCRIPTION (CONTINUED)

egend halog input or outpu TTL = TTL compatible input = Schmitt Trigger input with CMOS levels 1²C ST

= Schmitt Trigger input with I²C

HV = High Voltage XTAL = Crystal levels This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx Note 1: pins. Refer to Table 15-3 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 15-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds. 4:

		R/W-1	U-1	R/W-1	U-1	R/W-1	R/W-1		
		LVP	_	WRTSAF ⁽¹⁾	_	WRTC ⁽¹⁾	WRTB ⁽¹⁾		
		bit 13	12	11	10	9	bit 8		
R/W-1	U-1	U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
WRTAPP ⁽¹⁾	_	_	SAFEN ⁽¹⁾	BBEN ⁽¹⁾	BBSIZE2	BBSIZE1	BBSIZE0		
bit 7	6	5	4	3	2	1	bit 0		
Legend:									
R = Readable	bit	P = Programma	able bit	x = Bit is unknor	wn	U = Unimpleme as '1'	nted bit, read		
'0' = Bit is clea	red	'1' = Bit is set		W = Writable bit	t	n = Value when Bulk Erase	blank or after		
bit 13	bit 13 LVP: Low Voltage Programming Enable bit 1 = Low voltage programming enabled. MCLR/VPP pin function is MCLR. MCLRE Configuration bit is ignored. 0 = HV on MCLR/VPP must be used for programming. The LVP bit cannot be written (to zero) while operating from the LVP programming interface. The purpose of this rule is to prevent the user from dropping out of LVP mode while programming from LVP mode, or accidentally eliminating LVP mode from the configuration state. The preconditioned (erased) state for this bit is critical.								
bit 12	Unimplement	ed: Read as '1'							
bit 11	WRTSAF: Sto	orage Area Flash V	Vrite Protection I	oit					
	1 = SAF NO 0 = SAF writ Unimplemente	T write-protected e-protected ed, if SAF is not su	pported in the d	evice family and o	only applicable if	SAFEN = 0.			
bit 10	Unimplement	ed: Read as '1'							
bit 9	WRTC: Configu 1 = Configu 0 = Configu	guration Register N ration Register NC ration Register wri	Nrite Protection I DT write-protecte te-protected	bit d					
bit 8	WRTB: Boot Blo 1 = Boot Blo 0 = Boot Blo Only applicable	Block Write Protect ock NOT write-pro ock write-protected le if BBEN = 0.	tion bit tected						
bit 7	WRTAPP: Ap 1 = Applicat 0 = Applicat	plication Block Wr ion Block NOT wr ion Block write-pro	ite Protection bit ite-protected otected						
bit 6-5	Unimplement	ted: Read as '1'							
bit 4	SAFEN: SAF Enable bit 1 = SAF disabled 0 = SAF enabled								
bit 3	BBEN: Boot Bl 1 = Boot Bl 0 = Boot Bl	Block Enable bit ock disabled ock enabled							
bit 2-0	BBSIZE<2:0> BBSIZE is use BBSIZ bits car	: Boot Block Size ed only when BBE n only be written w	Selection bits (S N = 0 /hile BBEN = 1; ;	ee Table 5-1) after \overline{BBEN} = 0, E	BSIZ is write-pr	otected.			
Note 1: Bit	ts are implemen	ted as sticky bits.	Once protection	is enabled, it can	only be reset th	rough a Bulk Eras	se.		

REGISTER 5-4: CONFIGURATION WORD 4: MEMORY

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
_	_	RC1IE	TX1IE	_	_	BCL1IE	SSP1IE
bit 7		•					bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplemen	ted: Read as ')'				
bit 5	RC1IE: USAF	RT Receive Inte	errupt Enable	bit			
	1 = Enables t	the USART rec	eive interrupt				
	0 = Enables f	the USART rec	eive interrupt				
bit 4	TX1IE: USAR	T Transmit Inte	errupt Enable	bit			
	1 = Enables 10 = Disables	the USART trai the USART tra	nsmit interrup nsmit interrup	t ot			
bit 3-2	Unimplemen	ted: Read as ')'				
bit 1	BCL1IE: MSS	SP1 Bus Collisi	on Interrupt E	nable bit			
	1 = MSSP bu	is collision inte	rrupt enabled				
	0 = MSSP bu	is collision inte	rrupt disabled				
bit 0	bit 0 SSP1IE: Synchronous Serial Port (MSSP1) Interrupt Enable bit						
	1 = Enables t	the MSSP inter	rupt				
	0 = Disables	the MSSP inte	rrupt				

REGISTER 10-5: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

Note:	Bit PEIE of the INTCON register must be
	set to enable any peripheral interrupt
	controlled by PIE1-PIE7.

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0	
—	—	NVMIE	NCO1IE	—	—	—	CWG1IE	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'		
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is cle	ared	HS = Hardwa	are set			
bit 7-6	bit 7-6 Unimplemented: Read as '0'.							
bit 5	NVMIE: NVM	Interrupt Enab	ole bit					
	1 = NVM tas 0 = NVM int	sk complete int errupt not enal	errupt enable bled	d				
bit 4	NCO1IE: NCO	O Interrupt Ena	able bit					
	1 = NCO rol	llover interrupt	enabled					
	0 = NCO rol	llover interrupt	disabled					
bit 3-1	Unimplemen	ted: Read as '	0'.					
bit 0	CWG1IE: Cor	mplementary V	Vaveform Ger	erator (CWG)	2 Interrupt Enat	ole bit		
	1 = CWG1	nterrupt is enal	bled					
			. u					
Note: Bit			must be					
Se	t to enable ar	ny peripheral	interrupt					
CO	ntrolled by regis	ters PIE1-PIE7	· ·					

REGISTER 10-9: PIE7: PERIPHERAL INTERRUPT ENABLE REGISTER 7

U-0	U-0	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	_	SLRA5	SLRA4	—	SLRA2	SLRA1	SLRA0
bit 7							bit 0

REGISTER 14-7: SLRCONA: PORTA SLEW RATE CONTROL REGISTER

Legend:

bit 5-0

3		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-4	SLRA<5:4>: PORTA Slew Rate Enable bits For RA<5:4> pins, respectively 1 = Port pin slew rate is limited 0 = Port pin slews at maximum rate
bit 3	Unimplemented: Read as '0'

REGISTER 14-8: INLVLA: PORTA INPUT LEVEL CONTROL REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
—	—	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
---------	----------------------------

INLVLA<5:0>: PORTA Input Level Select bits

For RA<5:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

Register Definitions: DAC Control 21.6

	_		-			-	
R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
DAC1EN	—	DAC10E1	DAC10E2	DAC1P	SS<1:0>	—	DAC1NSS
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 6 bit 5	DACIEN: DACI Enable bit 1 = DAC is enabled 0 = DAC is disabled Unimplemented: Read as '0'						
Sit 0	 1 = DAC voltage level is an output on the DAC1OUT1 pin 0 = DAC voltage level is disconnected from the DAC1OUT1 pin 						
bit 4	DAC1OE2: D 1 = DAC volt 0 = DAC volt	AC1 Voltage C age level is an age level is dis	Output 1 Enabl output on the connected fro	e bit DAC1OUT2 pi m the DAC1Ol	n JT2 pin		
bit 3-2	DAC1PSS<1:0>: DAC1 Positive Source Select bits 11 = Reserved, do not use 10 = FVR output 01 = VREF+ pin						

REGISTER 21-1: DAC1CON0: VOLTAGE REFERENCE CONTROL REGISTER 0

bit 1	Unimplemented: Read as '0'
1.1.0	DAGINGO DULLU (al

00 = VDD

bit 0 DAC1NSS: Read as '0'

REGISTER 21-2: DAC1CON1: VOLTAGE REFERENCE CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			DAC1R<4:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 DAC1R<4:0>: DAC1 Voltage Output Select bits VOUT = (VSRC+ - VSRC-)*(DAC1R<4:0>/32) + VSRC

REGISTER 22-6: NCO1INCL: NCO1 INCREMENT REGISTER – LOW BYTE^(1,2)

R/W-0/0	R/W-1/1						
			NCO1I	NC<7:0>			
bit 7							bit 0

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCO1INC<7:0>: NCO1 Increment, Low Byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.

2: DDSINC is double-buffered as INCBUF; INCBUF is updated on the next falling edge of NCOCLK after writing to NCO1INCL; NCO1INCU and NCO1INCH should be written prior to writing NCO1INCL.

REGISTER 22-7: NCO1INCH: NCO1 INCREMENT REGISTER – HIGH BYTE⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			NCO1IN	IC<15:8>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCO1INC<15:8>: NCO1 Increment, High Byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.

REGISTER 22-8: NCO1INCU: NCO1 INCREMENT REGISTER – UPPER BYTE⁽¹⁾

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—		NCO1IN	C<19:16>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 NCO1INC<19:16>: NCO1 Increment, Upper Byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.

REGISTER 27-4:	T2RST: TIMER2 EXTERNAL RESET SIGNAL SELECTION REGISTER
----------------	--

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
_	_				RSEL	.<3:0>		
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets	
'1' = Bit is set		'0' = Bit is cle	ared					
L								
bit 7-4	Unimplemen	ted: Read as '	0'					
bit 3-0	RSEL<3:0>:	Timer2 Externa	al Reset Signal	Source Select	tion bits			
	1111 = Rese	rved	-					
	1101 = LC4_	out						
	1100 = LC3_	out						
	1011 = LC2	out						
	1010 = LC1_	out						
	1001 = ZCD 1	1_output						
	1000 = C2Ol	JT_sync ⁽¹⁾						
	0111 = C1Ol	JT_sync						
	0110 = PWM	l6_out						
	0101 = PWM	l5_out						
	0100 = PWM	l4_out						
	0011 = PWM	I3_out						
	0010 = CCP2	2_out						
	0001 = CCP	1_out						
	0000 = 12INI	PPS -						

Note 1: Present on PIC16(L)F15323 only. Reserved for the PIC16(L)F15313.

PIC16(L)F15313/23

REGISTER 28-4: CCPRxH REGISTER: CCPx REGISTER HIGH BYTE

| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | CCPRx | <15:8> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

CCPxMODE = Capture mode
CCPRxH<7:0>: Captured value of TMR1H
CCPxMODE = Compare mode
CCPRxH<7:0>: MS Byte compared to TMR1H
CCPxMODE = PWM modes when CCPxFMT = 0:
CCPRxH<7:2>: Not used
CCPRxH<1:0>: Pulse-width Most Significant two bits
CCPxMODE = PWM modes when CCPxFMT = 1:
CCPRxH<7:0>: Pulse-width Most Significant eight bits

FIGURE 30-1: SIMPLIFIED CWG BLOCK DIAGRAM (HALF-BRIDGE MODE)

PIC16(L)F15313/23

30.3 Selectable Input Sources

The CWG generates the output waveforms from the input sources in Table 30-2.

TABLE 30-2: SELECTABLE INPUT SOURCES

Source Peripheral	Signal Name
CWG input PPS pin	CWG1IN PPS
CCP1	CCP1_out
CCP2	CCP2_out
PWM3	PWM3_out
PWM4	PWM4_out
PWM5	PWM5_out
PWM6	PWM6_out
NCO	NCO1_out
Comparator C1	C1OUT_sync
Comparator C2	C2OUT_sync
CLC1	LC1_out
CLC2	LC2_out
CLC3	LC3_out
CLC4	LC4_out

The input sources are selected using the CWG1ISM register.

30.4 Output Control

30.4.1 POLARITY CONTROL

The polarity of each CWG output can be selected independently. When the output polarity bit is set, the corresponding output is active-high. Clearing the output polarity bit configures the corresponding output as active-low. However, polarity does not affect the override levels. Output polarity is selected with the POLx bits of the CWG1CON1. Auto-shutdown and steering options are unaffected by polarity.

31.2 CLCx Interrupts

An interrupt will be generated upon a change in the output value of the CLCx when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in each CLC for this purpose.

The CLCxIF bit of the associated PIR5 register will be set when either edge detector is triggered and its associated enable bit is set. The LCxINTP enables rising edge interrupts and the LCxINTN bit enables falling edge interrupts. Both are located in the CLCxCON register.

To fully enable the interrupt, set the following bits:

- · CLCxIE bit of the PIE5 register
- LCxINTP bit of the CLCxCON register (for a rising edge detection)
- LCxINTN bit of the CLCxCON register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The CLCxIF bit of the PIR5 register, must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

31.3 Output Mirror Copies

Mirror copies of all LCxCON output bits are contained in the CLCxDATA register. Reading this register reads the outputs of all CLCs simultaneously. This prevents any reading skew introduced by testing or reading the LCxOUT bits in the individual CLCxCON registers.

31.4 Effects of a Reset

The CLCxCON register is cleared to zero as the result of a Reset. All other selection and gating values remain unchanged.

31.5 Operation During Sleep

The CLC module operates independently from the system clock and will continue to run during Sleep, provided that the input sources selected remain active.

The HFINTOSC remains active during Sleep when the CLC module is enabled and the HFINTOSC is selected as an input source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and as a CLC input source, when the CLC is enabled, the CPU will go idle during Sleep, but the CLC will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

31.6 CLCx Setup Steps

The following steps should be followed when setting up the CLCx:

- Disable CLCx by clearing the LCxEN bit.
- Select desired inputs using CLCxSEL0 through CLCxSEL3 registers (See Table 31-2).
- · Clear any associated ANSEL bits.
- Enable the chosen inputs through the four gates using CLCxGLS0, CLCxGLS1, CLCxGLS2, and CLCxGLS3 registers.
- Select the gate output polarities with the LCxGyPOL bits of the CLCxPOL register.
- Select the desired logic function with the LCxMODE<2:0> bits of the CLCxCON register.
- Select the desired polarity of the logic output with the LCxPOL bit of the CLCxPOL register. (This step may be combined with the previous gate output polarity step).
- If driving a device pin, set the desired pin PPS control register and also clear the TRIS bit corresponding to that output.
- If interrupts are desired, configure the following bits:
 - Set the LCxINTP bit in the CLCxCON register for rising event.
 - Set the LCxINTN bit in the CLCxCON register for falling event.
 - Set the CLCxIE bit of the PIE5 register.
 - Set the GIE and PEIE bits of the INTCON register.
- Enable the CLCx by setting the LCxEN bit of the CLCxCON register.

FIGURE 35-2: PICkit[™] PROGRAMMER STYLE CONNECTOR INTERFACE

Mnemonic,		Description	Cycles	14-Bit Opcode				Status	Notos
Oper	ands	Description	Cycles				LSb	Affected	Notes
CONTROL OPER									
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	_	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CALLW	_	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
		INHERENT OPERA	TIONS						
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	_	No Operation	1	00	0000	0000	0000		
RESET	_	Software device Reset	1	00	0000	0000	0001		
SLEEP	-	Go into Standby or IDLE mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
		C-COMPILER OPT	IMIZED						
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm							
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	kkkk	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	1nmm		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk	kkkk		2

TABLE 36-3: INSTRUCTION SET (CONTINUED)

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

39.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- · Flexible macro language
- MPLAB X IDE compatibility

39.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

39.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

39.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

ALTERNATE LEAD DESIGN (VENDOR DEPENDENT)

	INCHES					
Dimension	MIN	NOM	MAX			
Number of Pins	N	8				
Pitch	е		.100 BSC			
Top to Seating Plane	Α	-	-	.210		
Molded Package Thickness	A2	.115	.130	.195		
Base to Seating Plane	A1	.015	-	-		
Shoulder to Shoulder Width	E	.290	.310	.325		
Molded Package Width	E1	.240	.250	.280		
Overall Length	D	.348	.365	.400		
Tip to Seating Plane	L	.115	.130	.150		
Lead Thickness	С	.008	.010	.015		
Upper Lead Width	b1	.040	.060	.070		
Lower Lead Width	b	.014	.018	.022		
Overall Row Spacing §	eB	-	-	.430		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-018D Sheet 2 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

http://www.microchip.com/packaging

Note:

For the most current package drawings, please see the Microchip Packaging Specification located at

Microchip Technology Drawing No. C04-057C Sheet 1 of 2

14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimensio	on Limits	MIN	NOM	MAX
Number of Pins	Ν		14	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	Е	.290	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.735	.750	.775
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located with the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-005B

16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	Ν		16		
Pitch	е		0.65 BSC		
Overall Height	Α	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.127 REF			
Overall Width	E	4.00 BSC			
Exposed Pad Width	E2	2.50 2.60 2.70			
Overall Length	D	4.00 BSC			
Exposed Pad Length	D2	2.50	2.60	2.70	
Terminal Width	b	0.25 0.30 0.35			
Terminal Length	L	0.30 0.40 0.50			
Terminal-to-Exposed-Pad	ĸ	0.20			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-257A Sheet 2 of 2