

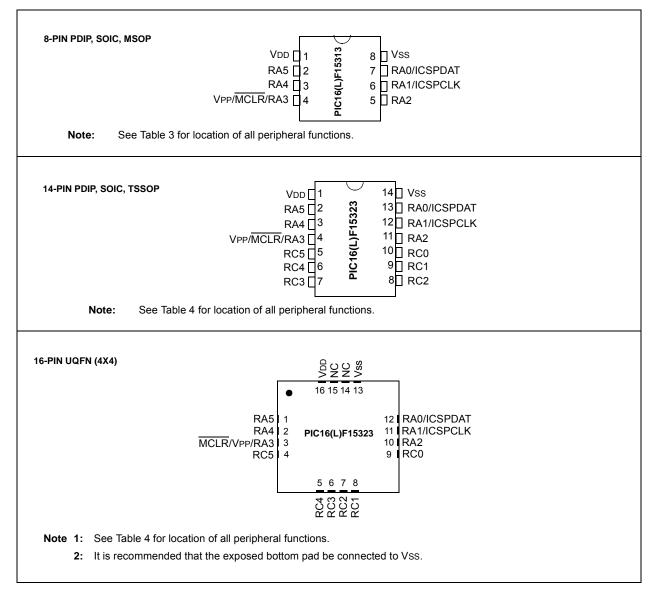
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

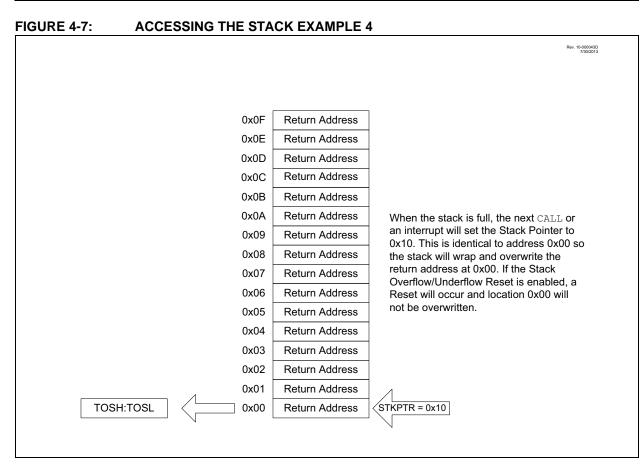
Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15323t-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN DIAGRAMS

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)


Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 21-59	Bank 21-59										
CPU CORE REGISTERS; see Table 4-3 for specifics											
x0Ch/ x8Ch Unimplemented									_		
Legend:											

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 60											
				CPU COF	RE REGISTERS;	see Table 4-3 for	specifics				
1E0Ch	_				Unimpler	mented				_	—
1E0Dh	_				Unimpler	mented				-	_
1E0Eh	_				Unimpler	mented				_	_
1E0Fh	CLCDATA	—	_	_	_	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT	xxxx	uuuu
1E10h	CLCCON	LC1EN	_	LC10UT	LC1INTP	LC1INTN		LC1MODE<2:0)>	0-00 0000	0-00 0000
1E11h	CLC1POL	LC1POL	_	_	_	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	0 xxxx	0 uuuu
1E12h	CLC1SEL0	—	_			LC1E	01S<5:0>			xx xxxx	uu uuuu
1E13h	CLC1SEL1	_	_			LC1E)2S<5:0>			xx xxxx	uu uuuu
1E14h	CLC1SEL2	_	_			LC1E	03S<5:0>			xx xxxx	uu uuu
1E15h	CLC1SEL3	—	_			LC1D)4S<5:0>			xx xxxx	uu uuu
1E16h	CLC1GLS0	LC1G1D4T	LC1G4D3N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	XXXX XXXX	uuuu uuu
1E17h	CLC1GLS1	LC1G2D4T	LC1G4D3N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	XXXX XXXX	นนนน นนนเ
1E18h	CLC1GLS2	LC1G3D4T	LC1G4D3N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	XXXX XXXX	uuuu uuu
1E19h	CLC1GLS3	LC1G4D4T	LC1G4D3N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	XXXX XXXX	uuuu uuu
1E1Ah	CLC2CON	LC2EN	_	LC2OUT	LC2INTP	LC2INTN		LC2MODE<2:0>			0-00 000
1E1Bh	CLC2POL	LC2POL	_	_		LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	0 xxxx	0 uuu
1E1Ch	CLC2SEL0	_	_		•	LC2	D1S<5:0>			xx xxxx	uu uuu
1E1Dh	CLC2SEL1	_	_			LC2)2S<5:0>			xx xxxx	uu uuu
1E1Eh	CLC2SEL2	—	_			LC2E	03S<5:0>			xx xxxx	uu uuu
1E1Fh	CLC2SEL3	—	_			LC2E)4S<5:0>			xx xxxx	uu uuu
1E20h	CLC2GLS0	LC2G1D4T	LC2G4D3N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	XXXX XXXX	นนนน นนนเ
1E21h	CLC2GLS1	LC2G2D4T	LC2G4D3N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	XXXX XXXX	นนนน นนนเ
1E22h	CLC2GLS2	LC2G3D4T	LC2G4D3N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	xxxx xxxx	นนนน นนนเ
1E23h	CLC2GLS3	LC2G4D4T	LC2G4D3N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	xxxx xxxx	นนนน นนนเ
1E24h	CLC3CON	LC3EN	—	LC3OUT	LC3INTP	LC3INTN		LC3MODE		0-00 0000	0-00 000
1E25h	CLC3POL	LC3POL	_	_	_	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	0 xxxx	0 uuu
1E26h	CLC3SEL0	—	—			LC3E	01S<5:0>			xx xxxx	uu uuuu
1E27h	CLC3SEL1	—	—			LC3E)2S<5:0>			xx xxxx	uu uuu
1E28h	CLC3SEL2	_	—			LC3E	03S<5:0>			xx xxxx	uu uuu
1E29h	CLC3SEL3	—	—			LC3E	04S<5:0>			xx xxxx	uu uuuu
1E2Ah	CLC3GLS0	LC3G1D4T	LC3G4D3N	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	xxxx xxxx	นนนน นนนเ

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

DS40001897A-page 61

PIC16(L)F15313/23

4.5.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Words (Register 5-2) is programmed to '1', the device will be Reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

4.6 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

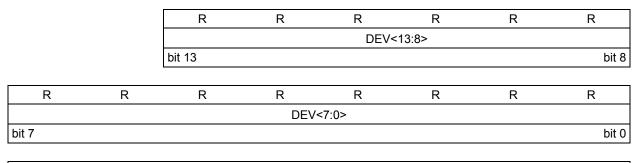
- Traditional/Banked Data Memory
- Linear Data Memory
- Program Flash Memory

REGISTER 5-3: CONFIGURATION WORD 3: WINDOWED WATCHDOG (CONTINUED)

bit 4-0 WDTCPS<4:0>: WDT Period Select bits

WDTCPS	Value	Divider R	r Ratio Typical Time Out (FIN = 31 kHz)		- Software Control of WDTPS?
11111 (1)	01011	1:65536	2 ¹⁶	2 s	Yes
11110	11110		_		
 10011	 10011	1:32	2 ⁵	1 ms	No
10010	10010	1:8388608	2 ²³	256 s	
10001	10001	1:4194304	2 ²²	128 s	
10000	10000	1:2097152	2 ²¹	64 s	
01111	01111	1:1048576	2 ²⁰	32 s	
01110	01110	1:524299	2 ¹⁹	16 s	
01101	01101	1:262144	2 ¹⁸	8 s	
01100	01100	1:131072	2 ¹⁷	4 s	
01011	01011	1:65536	2 ¹⁶	2 s	
01010	01010	1:32768	2 ¹⁵	1 s	
01001	01001	1:16384	2 ¹⁴	512 ms	No
01000	01000	1:8192	2 ¹³	256 ms	
00111	00111	1:4096	2 ¹²	128 ms	
00110	00110	1:2048	2 ¹¹	64 ms	
00101	00101	1:1024	2 ¹⁰	32 ms	
00100	00100	1:512	2 ⁹	16 ms]
00011	00011	1:256	2 ⁸	8 ms]
00010	00010	1:128	27	4 ms]
00001	00001	1:64	2 ⁶	2 ms]
00000	00000	1:32	2 ⁵	1 ms	

Note 1: 0b11111 is the default value of the WDTCPS bits.


5.6 Device ID and Revision ID

The 14-bit Device ID word is located at 8006h and the 14-bit Revision ID is located at 8005h. These locations are read-only and cannot be erased or modified.

Development tools, such as device programmers and debuggers, may be used to read the Device ID, Revision ID and Configuration Words. These locations can also be read from the NVMCON register.

5.7 Register Definitions: Device and Revision

REGISTER 5-6: DEVID: DEVICE ID REGISTER

Legend:

R = Readable bit

'1' = Bit is set '0' = Bit is cleared

bit 13-0 **DEV<13:0>:** Device ID bits

Device	DEVID<13:0> Values						
PIC16F15313	11 0000 1011 1110 (30BEh)						
PIC16LF15313	11 0000 1011 1111 (30BFh)						
PIC16F15323	11 0000 1100 0000 (30C0h)						
PIC16LF15323	11 0000 1100 0001 (30C1h)						

8.11 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. Oscillator start-up timer runs to completion (if required for oscillator source).
- 3. MCLR must be released (if enabled).

The total time-out will vary based on oscillator configuration and Power-up Timer Configuration. See Section 9.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for more information.

The Power-up Timer runs independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer and oscillator start-up timer will expire. This is useful for testing purposes or to synchronize more than one device operating in parallel. See Figure 8-3.

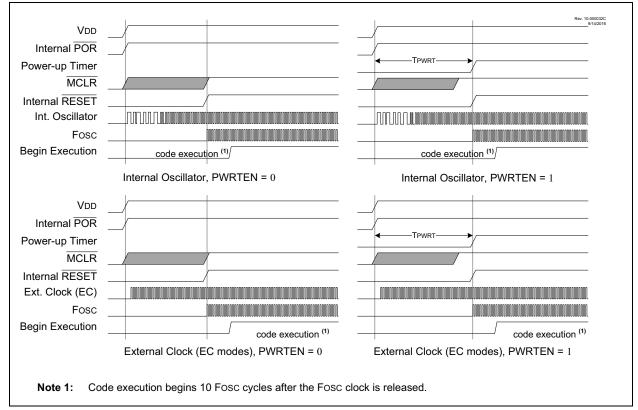


FIGURE 8-3: RESET START-UP SEQUENCE

12.1 Independent Clock Source

The WDT can derive its time base from either the 31 kHz LFINTOSC or 31.25 kHz MFINTOSC internal oscillators, depending on the value of either the WDTCCS<2:0> Configuration bits or the WDTCS<2:0> bits of WDTCON1. Time intervals in this chapter are based on a minimum nominal interval of 1 ms. See **Section 37.0 "Electrical Specifications"** for LFINTOSC and MFINTOSC tolerances.

12.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Words. See Table 12-1.

12.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Words are set to '11', the WDT is always on.

WDT protection is active during Sleep.

12.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Words are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

12.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Words are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON0 register.

12.2.4 WDT IS OFF

When the WDTE bits of the Configuration Word are set to '00', the WDT is always OFF.

WDT protection is unchanged by Sleep. See Table 12-1 for more details.

WDTE<1:0>	SWDTEN	Device Mode	WDT Mode
11	Х	Х	Active
10	37	Awake	Active
TO	Х	Sleep	Disabled
0.1	1	Х	Active
01	0	Х	Disabled
00	х	Х	Disabled

TABLE 12-1: WDT OPERATING MODES

12.3 Time-Out Period

The WDTPS bits of the WDTCON0 register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds.

12.4 Watchdog Window

The Watchdog Timer has an optional Windowed mode that is controlled by the WDTCWS<2:0> Configuration bits and WINDOW<2:0> bits of the WDTCON1 register. In the Windowed mode, the CLRWDT instruction must occur within the allowed window of the WDT period. Any CLRWDT instruction that occurs outside of this window will trigger a window violation and will cause a WDT Reset, similar to a WDT time out. See Figure 12-2 for an example.

The window size is controlled by the WDTCWS<2:0> Configuration bits, or the WINDOW<2:0> bits of WDTCON1, if WDTCWS<2:0> = 111.

In the event of a <u>window</u> violation, a Reset will be generated and the WDTWV bit of the PCON register will be cleared. This bit is set by a POR or can be set in firmware.

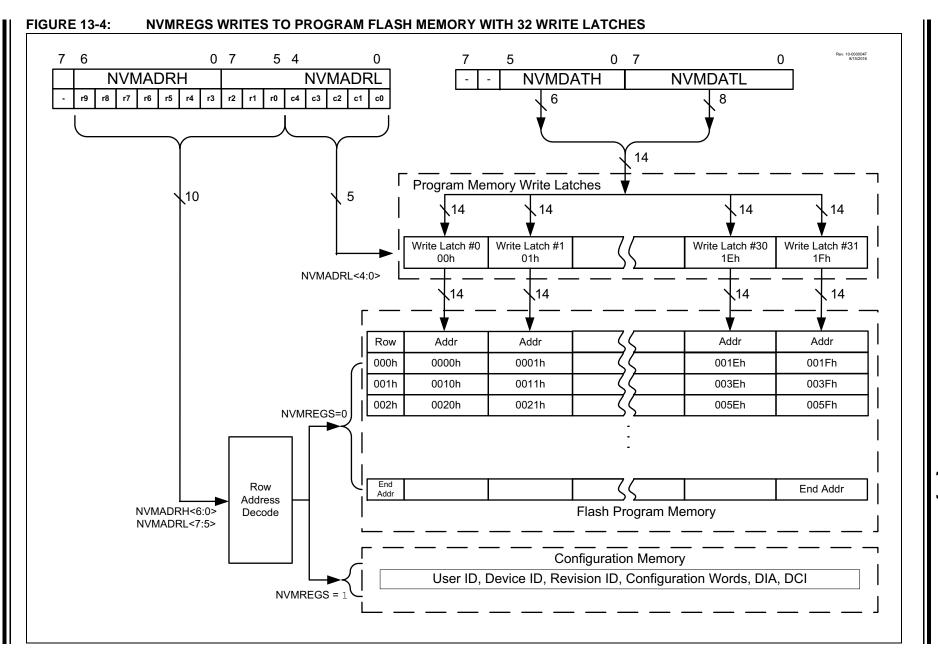
12.5 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- Valid CLRWDT instruction is executed
- · Device enters Sleep
- · Device wakes up from Sleep
- · WDT is disabled
- Oscillator Start-up Timer (OST) is running
- Any write to the WDTCON0 or WDTCON1 registers

12.5.1 CLRWDT CONSIDERATIONS (WINDOWED MODE)

When in Windowed mode, the WDT must be armed before a CLRWDT instruction will clear the timer. This is performed by reading the WDTCON0 register. Executing a CLRWDT instruction without performing such an arming action will trigger a window violation.


See Table 12-2 for more information.

12.6 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting. When the device exits Sleep, the WDT is cleared again.

The WDT remains clear until the OST, if enabled, completes. See Section 9.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for more information on the OST.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. The RWDT bit in the PCON register can also be used. See Section 4.3.2.1 "STATUS Register" for more information.

PIC16(L)F15313/23

14.0 I/O PORTS

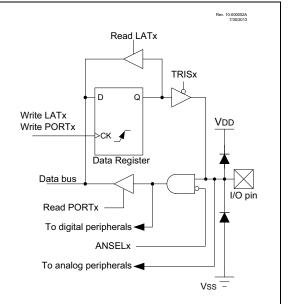
TABLE 14-1: PORT AVAILABILITY PER DEVICE

Device	PORTA	PORTC
PIC16(L)F15313	•	
PIC16(L)F15323	•	•

Each port has standard registers for its operation. These registers are:

- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)
- TRISx registers (data direction)
- ANSELx registers (analog select)
- WPUx registers (weak pull-up)
- INLVLx (input level control)
- SLRCONx registers (slew rate)
- ODCONx registers (open-drain)

Most port pins share functions with device peripherals, both analog and digital. In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output; however, the pin can still be read.


The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports that support analog inputs have an associated ANSELx register. When an ANSEL bit is set, the digital input buffer associated with that bit is disabled.

Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 14-1.

FIGURE 14-1: GENERIC I/O PORT OPERATION

14.1 I/O Priorities

Each pin defaults to the PORT data latch after Reset. Other functions are selected with the peripheral pin select logic. See **Section 15.0** "**Peripheral Pin Select** (**PPS**) **Module**" for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx register. Digital output functions may continue to control the pin when it is in Analog mode.

Analog outputs, when enabled, take priority over the digital outputs and force the digital output driver to the high-impedance state.

20.4 Register Definitions: ADC Control

REGISTER 20-1: ADCON0: ADC CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
		CHS<	5:0>			GO/DONE	ADON
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpleme	nted bit, read as '	ʻ0'	
u = Bit is unch	anged	x = Bit is unknow	vn	-n/n = Value at F	POR and BOR/Va	alue at all other Re	sets
'1' = Bit is set		'0' = Bit is cleare	d				
bit 7-2		Analog Channel Sele	(-)				
	111111 =	FVR Buffer 2 refere					
	111110 = 111101 =	FVR 1Buffer 1 refer DAC1 output voltag					
	111101 =	Temperature senso	(m)				
	1110011 =	AVss (Analog Grou					
	010111 =	Reserved	iu)				
	010110 =	Reserved					
	010101 =	RC5 ⁽⁴⁾					
	010100 =	RC4 ⁽⁴⁾					
	010011 =	RC3 ⁽⁴⁾					
	010010 =	RC2 ⁽⁴⁾					
	010001 =	RC1 ⁽⁴⁾					
	010000 =	RC0 ⁽⁴⁾					
	001111 =	Reserved					
	•						
	•						
	•						
	000110 =	Reserved					
	000101 =	RA5 ⁽⁵⁾					
	000100 =	RA4 ⁽⁵⁾					
	000011 = 000010 =	RA3 RA2					
	000010 =	RAZ RA1					
	0000001 -	RA1 RA0					
bit 1	GO/DONE: /	ADC Conversion Stat	us bit				
	1 = ADC cor	version cycle in prog	ress. Setting this	bit starts an ADC	conversion cycle		
	This bit is	s automatically cleare	d by hardware w	hen the ADC conv	version has comp	leted.	
	0 = ADC cor	version completed/ne	ot in progress				
bit 0	ADON: ADC	Enable bit					
	1 = ADC is e						
	0 = ADC is d	lisabled and consume	es no operating o	current			
Note 1: S	ee Section 21 0	"5-Bit Digital-to-Ana	alog Converter	(DAC1) Module" f	or more informati	ion	
		"Fixed Voltage Refe	•	. ,			
		"Temperature Indic	• •				

- 4: Present only on the PIC16(L)F15323.
- 5: The analog functionality on the channels RA4 and RA5 is disabled when the system clock source is an external oscillator.

REGISTER 23-3: CMxNSEL: COMPARATOR Cx NEGATIVE INPUT SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	_	_	_		NCH<2:0>	
bit 7							bit 0

Legend:

Logonal		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3	Unimplemented: Read as '0'
bit 2-0	NCH<2:0>: Comparator Negative Input Channel Select bits
	111 = CxVN connects to AVss
	110 = CxVN connects to FVR Buffer 2
	101 = CxVN unconnected
	100 = CxVN unconnected

- 011 = CxVN connects to CxIN3- pin
- 010 = CxVN connects to CxIN2- pin
- 001 = CxVN connects to CxIN1- pin
- 000 = CxVN connects to CxIN0- pin

REGISTER 23-4: CMxPSEL: COMPARATOR Cx POSITIVE INPUT SELECT REGISTER

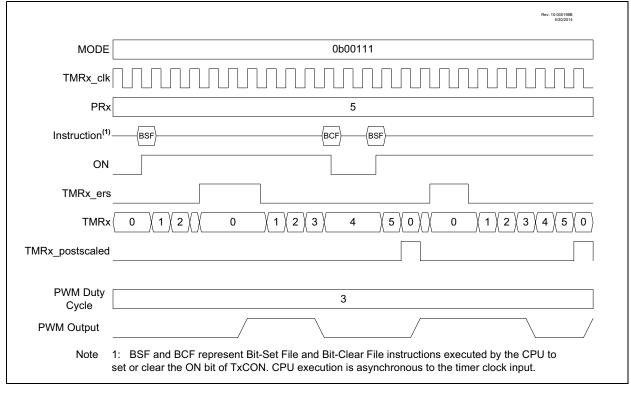
U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	_	—	—		PCH<2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented: Read as '0'

bit 2-0 PCH<2:0>: Comparator Positive Input Channel Select bits

- 111 = CxVP connects to AVss
- 110 = CxVP connects to FVR Buffer 2
- 101 = CxVP connects to DAC output
- 100 = CxVP unconnected
- 011 = CxVP unconnected
- 010 = CxVP unconnected
- 001 = CxVP connects to CxIN1+ pin
- 000 = CxVP connects to CxIN0+ pin


27.5.4 LEVEL-TRIGGERED HARDWARE LIMIT MODE

In the Level-Triggered Hardware Limit Timer modes the counter is reset by high or low levels of the external signal TMRx_ers, as shown in Figure 27-7. Selecting MODE<4:0> = 0.0110 will cause the timer to reset on a low level external signal. Selecting MODE<4:0> = 0.0111 will cause the timer to reset on a high level external signal. In the example, the counter is reset while TMRx_ers = 1. ON is controlled by BSF and BCF instructions. When ON = 0 the external signal is ignored.

When the CCP uses the timer as the PWM time base then the PWM output will be set high when the timer starts counting and then set low only when the timer count matches the CCPRx value. The timer is reset when either the timer count matches the PRx value or two clock periods after the external Reset signal goes true and stays true.

The timer starts counting, and the PWM output is set high, on either the clock following the PRx match or two clocks after the external Reset signal relinquishes the Reset. The PWM output will remain high until the timer counts up to match the CCPRx pulse width value. If the external Reset signal goes true while the PWM output is high then the PWM output will remain high until the Reset signal is released allowing the timer to count up to match the CCPRx value.

28.3.4 TIMER2 TIMER RESOURCE

This device has a newer version of the Timer2 module that has many new modes, which allow for greater customization and control of the PWM signals than on older parts. Refer to **Section 27.5** "**Operation Examples**" for examples of PWM signal generation using the different modes of Timer2. The CCP operation requires that the timer used as the PWM time base has the FOSC/4 clock source selected

28.3.5 PWM PERIOD

The PWM period is specified by the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 28-1.

EQUATION 28-1: PWM PERIOD

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$ (TMR2 Prescale Value)

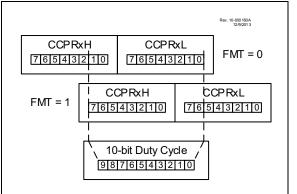
Note 1: Tosc = 1/Fosc

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCPx pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is transferred from the CCPRxL/H register pair into a 10-bit buffer.

Note:	The Timer postscaler (see Section 27.4
	"Timer2 Interrupt") is not used in the
	determination of the PWM frequency.

28.3.6 PWM DUTY CYCLE


The PWM duty cycle is specified by writing a 10-bit value to the CCPRxH:CCPRxL register pair. The alignment of the 10-bit value is determined by the CCPRxFMT bit of the CCPxCON register (see Figure 28-5). The CCPRxH:CCPRxL register pair can be written to at any time; however the duty cycle value is not latched into the 10-bit buffer until after a match between PR2 and TMR2.

Equation 28-2 is used to calculate the PWM pulse width.

Equation 28-3 is used to calculate the PWM duty cycle ratio.

FIGURE 28-5: PWM

PWM 10-BIT ALIGNMENT

EQUATION 28-2: PULSE WIDTH

Pulse Width = (CCPRxH:CCPRxL register pair) •

TOSC • (TMR2 Prescale Value)

EQUATION 28-3: DUTY CYCLE RATIO

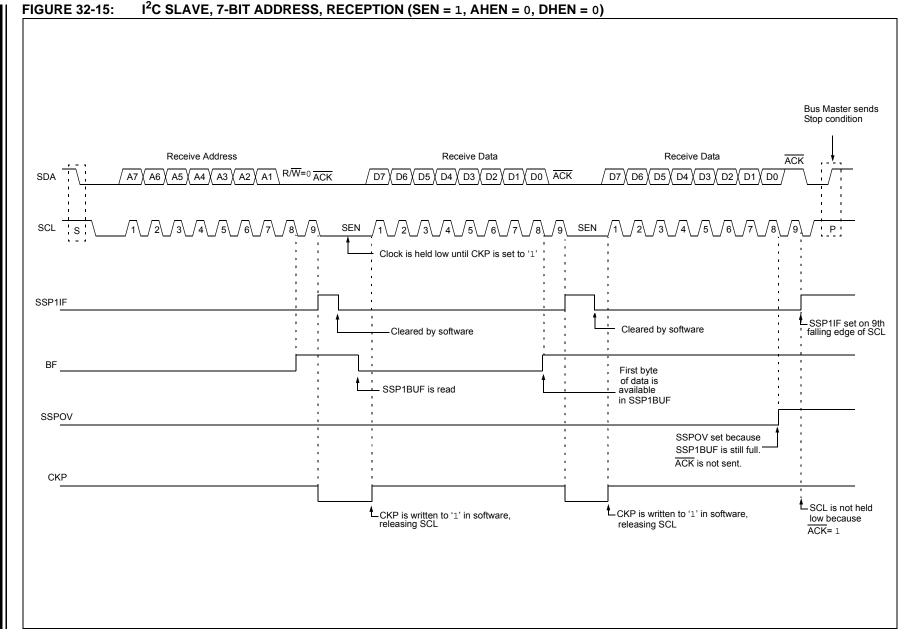
Duty Cycle Ratio =
$$\frac{(CCPRxH:CCPRxL register pair)}{4(PR2 + 1)}$$

CCPRxH:CCPRxL register pair are used to double buffer the PWM duty cycle. This double buffering provides for glitchless PWM operation.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (Fosc), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

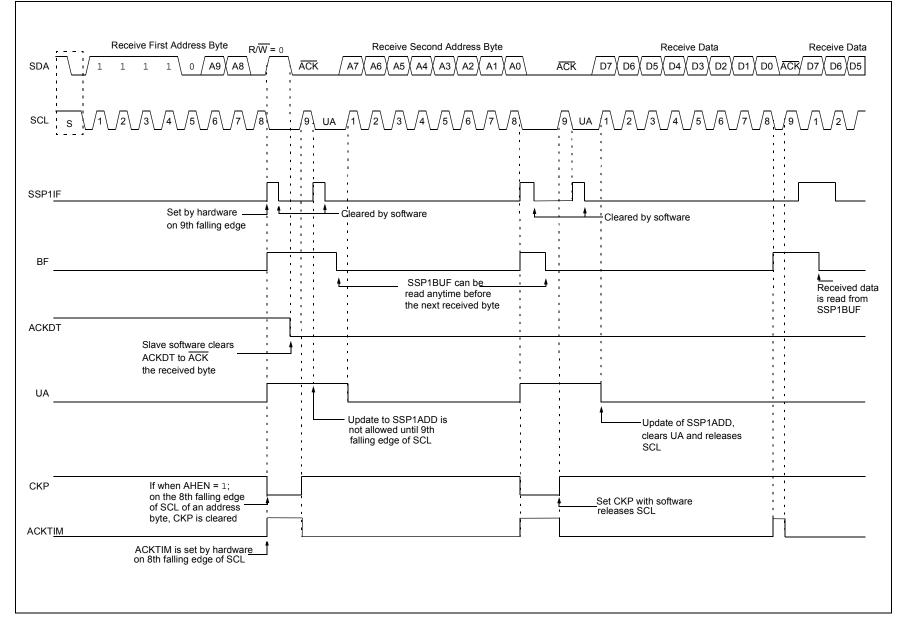
When the 10-bit time base matches the CCPRxH:CCPRxL register pair, then the CCPx pin is cleared (see Figure 28-4).

28.3.7 PWM RESOLUTION


The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 28-4.

EQUATION 28-4: PWM RESOLUTION


Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

FIGURE 32-15:

PIC16(L)F15313/23

FIGURE 32-21: I²C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 0)

Preliminary

PIC16(L)F15313/23

33.4.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TX1STA register configures the device for synchronous operation. Clearing the CSRC bit of the TX1STA register configures the device as a slave. Clearing the SREN and CREN bits of the RC1STA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RC1STA register enables the EUSART.

33.4.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see **Section 33.4.1.3 "Synchronous Master Transmission")**, except in the case of the Sleep mode.

If two words are written to the TX1REG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in the TX1REG register.
- 3. The TX1IF bit will not be set.
- After the first character has been shifted out of TSR, the TX1REG register will transfer the second character to the TSR and the TX1IF bit will now be set.
- 5. If the PEIE and TX1IE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.
- 33.4.2.2 Synchronous Slave Transmission Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for the CK pin (if applicable).
- 3. Clear the CREN and SREN bits.
- 4. If interrupts are desired, set the TX1IE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TX1REG register.

37.3 **DC Characteristics**

37.3		aracteristics					\wedge			
TABLE 37-1: SUPPLY VOLTAGE										
PIC16LF15313/23			Standard Operating Conditions (unless otherwise stated)							
PIC16F15313/23										
Param. No.	Sym.	Characteristic	Min.	n. Typ.† Max. Units Conditions						
Supply Voltage										
D002	Vdd		1.8 2.5		3.6 3.6	∨ ★	Fosc ≤ 16 MHz Fosc > 16 MHz			
D002	Vdd		2.3 2.5		5.5 5.5	√ √ √	Fosc ≤ 16 MHz Føsç ≥ 16 MHz			
RAM Data Retention ⁽¹⁾							~_~			
D003	Vdr		1.5	_	$\langle \rangle$	V \	Device in Sleep mode			
D003	Vdr		1.7	-~		Y	Device in Sleep mode			
Power-on Reset Release Voltage ⁽²⁾										
D004	VPOR		—	/1,6	$\overline{/}$	V	BOR or LPBOR disabled ⁽³⁾			
D004	VPOR			1.6	Ń	> V	BOR or LPBOR disabled ⁽³⁾			
Power-o	on Reset	Rearm Voltage ⁽²⁾		$\langle \ \rangle$	$\langle \ \rangle$	·				
D005	VPORR		$ \neq \ell$	8.0	\searrow	V	BOR or LPBOR disabled ⁽³⁾			
D005	VPORR			1,5	> -	V	BOR or LPBOR disabled ⁽³⁾			
VDD Rise Rate to ensure internal Power-on Reset signal ⁽²⁾										
D006	SVDD	\land	0.05	\searrow		V/ms	BOR or LPBOR disabled ⁽³⁾			
D006	SVDD		0.05	\rangle –	—	V/ms	BOR or LPBOR disabled ⁽³⁾			

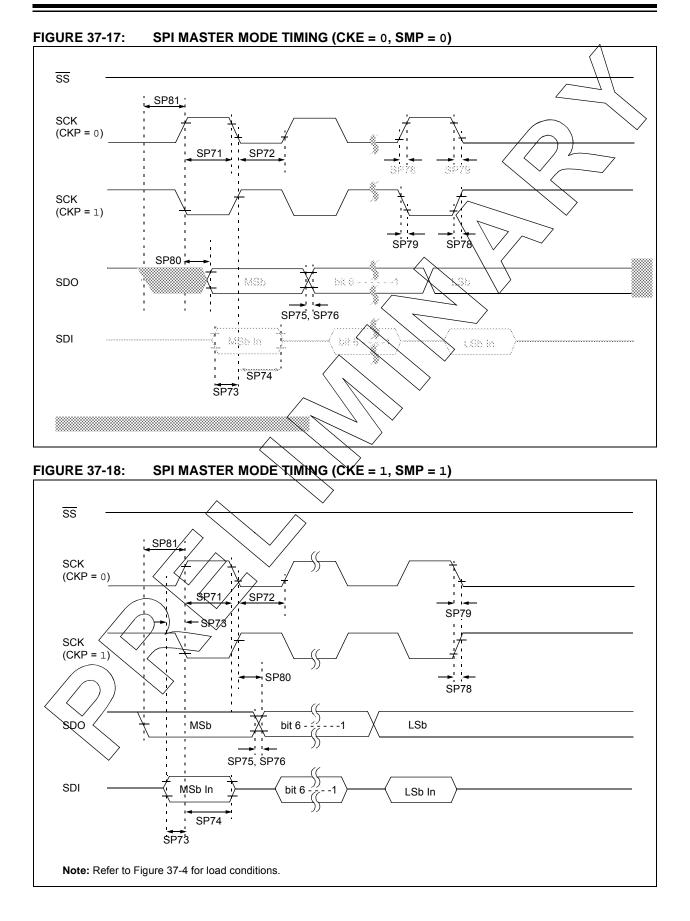
† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: See Figure 37-3, POR and POR REARM with Slow Rising VDD.

3: See Table 37-11 for BQR and LPBOR trip point information. = F device

4:


TABLE 37-18:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
--------------	---

	Standard Operating Conditions (unless otherwise stated)								
	ng Temperatur			e stateu)			-		$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$
Param. No.	Sym.		Characteristic	Min.	Тур†	Max.	Units	Conditions	
40*	T⊤0H	T0CKI High I	T0CKI High Pulse Width No Presc		0.5 Tcy + 20	1	—	ns	
				With Prescaler	10	_	—	/ ns	
41*	TT0L	T0CKI Low F	ulse Width	No Prescaler	0.5 TCY + 20	_	_/	/ns /	
				With Prescaler	10	_		NS	
42*	TT0P	T0CKI Period	ł	Greater of:	_	_	ns <	N = prescale value	
				20 or <u>Tcy + 40</u> N	\square			\searrow	
45*	T⊤1H	T1CKI High	Synchronous, No Prescaler		0.5 TCY + 20	_/	\sim	ns	
		Time	Synchronous, v	vith Prescaler	15	— /	\bigvee	715	
			Asynchronous		30 🔨	_	$\setminus - \langle$	ns	
46*	TT1L	T1CKI Low Time	Synchronous, N	lo Prescaler	0.5 Tcy + 20		$\langle - \rangle$	ns	
			Synchronous, with Prescaler		15		\rightarrow	ns	
			Asynchronous		< 30	1	>-	ns	
47*	TT1P	T1CKI Input	Synchronous		Greater of.		/ _	ns	N = prescale value
		Period			30 or <u>Tcy + 40</u> N	\geq			
			Asynchronous		60	~_		ns	
49*	TCKEZTMR1	Delay from E Increment	elay from External Clock Edge to Timer 2 Tosc				7 Tosc	_	Timers in Sync mode

*

These parameters are characterized but not tested. Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not † tested.

PIC16(L)F15313/23

