

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	3.5КВ (2К х 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 5x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15313-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Program Flash Memory
 - Device Information Area (DIA)
 - Device Configuration Information (DCI)
 - Revision ID
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing
- NVMREG access

TABLE 4-1: DEVICE SIZES AND ADDRESSES

Device	Program Memory Size (Words)	Last Program Memory Address
PIC16(L)F15313/23	2048	07FFh

4.1 **Program Memory Organization**

The enhanced mid-range core has a 15-bit program counter capable of addressing $32K \times 14$ program memory space. Table 4-1 shows the memory sizes implemented. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 4-1).

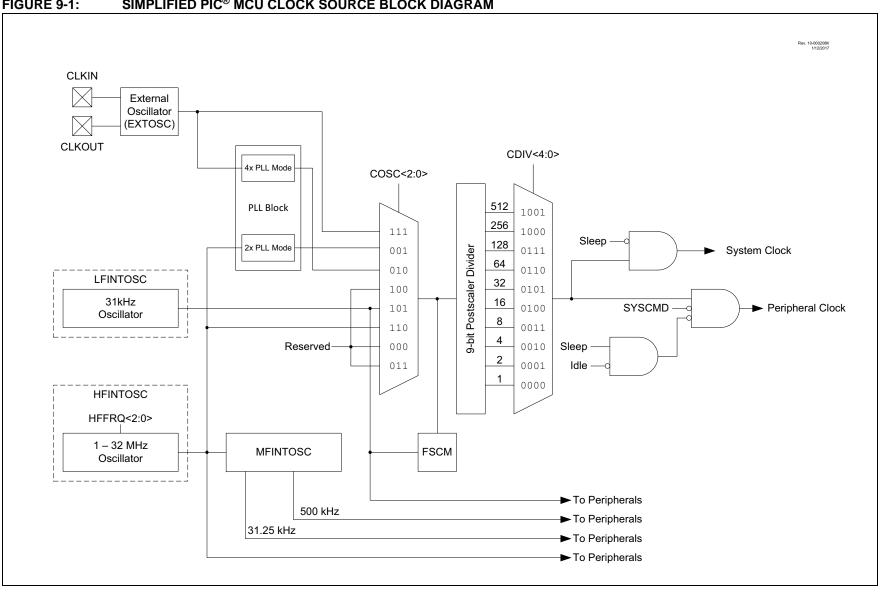
5.2 Register Definitions: Configuration Words

REGISTER	5-1: CO	NFIGURATIO	N WORD 1:	OSCILLATO	DRS		
		R/P-1	U-1	R/P-1	U-1	U-1	R/P-1
		FCMEN	_	CSWEN	_	_	CLKOUTEN
		bit 13					bit 8
U-1	R/P-1	R/P-1	R/P-1	U-1	R/P-1	R/P-1	R/P-1
	RSTOSC2	RSTOSC1	RSTOSC0		FEXTOSC2	FEXTOSC1	FEXTOSC0
bit 7	K310302	K310301	K310300	—	FEAT0302	FEXIOSCI	bit
Legend:							
R = Readable	e bit	P = Programma	able bit	x = Bit is unkn	own	U = Unimpleme '1'	nted bit, read as
'0' = Bit is cle	ared	'1' = Bit is set		W = Writable b	bit	n = Value when Erase	blank or after Bul
bit 13	FCMEN: Fail- 1 = FSCM ti 0 = FSCM ti		or Enable bit				
bit 12	Unimplemen	ted: Read as '1'					
bit 11	1 = Writing to	ck Switch Enable o NOSC and NDI SC and NDIV bits	/ is allowed	nged by user sof	tware		
bit 10-9	Unimplemen	ted: Read as '1'					
bit 8	<u>lf FEXTOSC</u> 1 = CLKOUT	Clock Out Enable = EC (high, mid ou function is disable function is enable pred.	<u>· low) or Not En</u> ed; I/O or oscill	ator function on			
bit 7	-	ted: Read as '1'					
bit 6-4	This value is 1 111 = EXTO 110 = HFIN 101 = LFIN 100 = Rese 011 = Rese 010 = EXTO 001 = EXTO	DSC operating pe TOSC with HFFR TOSC rved	value for COSC FEXTOSC bits Q = 3 ' b010 with EXTOSC of with EXTOSC of	C and selects the s (device manufa operating per FE operating per FE	acturing default) XTOSC bits	ed by user softwa	re.
bit 3	Unimplemen	ted: Read as '1'					
bit 2-0	111 = EC (I 110 = EC (I 101 = EC (I 100 = Oscil 011 = Rese 010 = HS (I 001 = XT (C	0>:FEXTOSC Ex External Clock) at External Clock) fo External Clock) be lator not enabled rved (do not use) Crystal oscillator) Crystal oscillator) Crystal oscillator)	ove 8 MHz; PF 100 kHz to 8 M low 100 kHz above 4 MHz; F above 100 kHz,	M set to high po MHz; PFM set to PFM set to high below 4 MHz; F	wer (device manumedium power	ıfacturing default) n power	

REGISTER 5-1: CONFIGURATION WORD 1: OSCILLATORS

8.14 Power Control (PCONx) Registers

The Power Control (PCONx) registers contain flag bits to differentiate between a:


- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Watchdog Timer Window Violation Reset
 (WDTWV)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)
- Memory Violation Reset (MEMV)

The PCON0 register bits are shown in Register 8-2. The PCON1 register bits are shown in Register 8-3.

Hardware will change the corresponding register bit during the Reset process; if the Reset was not caused by the condition, the bit remains unchanged (Table 8-4).

Software should reset the bit to the inactive state after the restart (hardware will not reset the bit).

Software may also set any PCON bit to the active state, so that user code may be tested, but no reset action will be generated.

SIMPLIFIED PIC[®] MCU CLOCK SOURCE BLOCK DIAGRAM FIGURE 9-1:

PIC16(L)F15313/23

U-0	R/W ⁽³⁾ -q/q ⁽¹⁾	R/W ⁽³⁾ -q/q ⁽¹⁾ R/W ⁽³⁾ -q	/q ⁽¹⁾ U-0	R/W ⁽⁴⁾ -q/q ⁽²⁾	R/W ⁽⁴⁾ -q/q ⁽²⁾	R/W ⁽⁴⁾ -q/q ⁽²⁾	
-	WDTCS<2:0>		-		WINDOW<2:0>		
bit 7						bit 0	
Legend:							
R = Readable bit W = Writable bit		U = Unimple	emented bit, read	as '0'			
u = Bit is unchanged x = Bit is unknown		-n/n = Value	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is se	<u>e</u> t	'0' = Bit is cleared	q = Value depends on condition				

ʻ0'
•

bit 6-4 WDTCS<2:0>: Watchdog Timer Clock Select bits

111 = Reserved

•

- •
- 010 = Reserved

001 = MFINTOSC 31.25 kHz

- 000 = LFINTOSC 31 kHz
- bit 3 Unimplemented: Read as '0'
- bit 2-0 WINDOW<2:0>: Watchdog Timer Window Select bits

WINDOW<2:0>	Window delay Percent of time	Window opening Percent of time
111	N/A	100
110	12.5	87.5
101	25	75
100	37.5	62.5
011	50	50
010	62.5	37.5
001	75	25
000	87.5	12.5

Note 1: If WDTCCS <2:0> in CONFIG3 = 111, the Reset value of WDTCS<2:0> is 000.

2: The Reset value of WINDOW<2:0> is determined by the value of WDTCWS<2:0> in the CONFIG3 register.

3: If WDTCCS<2:0> in CONFIG3 \neq 111, these bits are read-only.

4: If WDTCWS<2:0> in CONFIG3 \neq 111, these bits are read-only.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTA	_		RA5	RA4	RA3	RA2	RA1	RA0	175
TRISA	_	_	TRISA5	TRISA4	_	TRISA2	TRISA1	TRISA0	175
LATA	_	_	LATA5	LATA4	_	LATA2	LATA1	LATA0	176
ANSELA	_	_	ANSA5	ANSA4	_	ANSA2	ANSA1	ANSA0	176
WPUA		_	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	177
ODCONA		_	ODCA5	ODCA4	—	ODCA2	ODCA1	ODCA0	177
SLRCONA			SLRA5	SLRA4	—	SLRA2	SLRA1	SLRA0	178
INLVLA	_	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	178

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

REGISTER	R 16-2: PMC	D1: PMD CON	TROL REGIS	STER 1			
R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
NCO1MD		_	_	—	TMR2MD	TMR1MD	TMR0MD
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is un	ichanged	x = Bit is unk	nown	-n/n = Value a	t POR and BO	R/Value at all o	other Resets
'1' = Bit is s	et	'0' = Bit is cle	eared	q = Value dep	ends on condit	ion	
bit 7 bit 6-3	1 = NCO1 r 0 = NCO1 r	Disable Numeric nodule disablec nodule enabled					
bit 6-3 Unimplemented: Read as '0' bit 2 TMR2MD: Disable Timer TMR2 bit 1 = Timer2 module disabled 0 = Timer2 module enabled							
bit 1	t 1 TMR1MD: Disable Timer TMR1 bit 1 = Timer1 module disabled 0 = Timer1 module enabled						
bit 0	TMR0MD: Disable Timer TMR0 bit 1 = Timer0 module disabled 0 = Timer0 module enabled						

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
—	—	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	
bit 7		•					bit 0	
Legend:								
R = Readable b	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
u = Bit is uncha	it is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

REGISTER 17-4: IOCCP: INTERRUPT-ON-CHANGE PORTC POSITIVE EDGE REGISTER⁽¹⁾

bit 7-6 Unimplemented: read as '0'

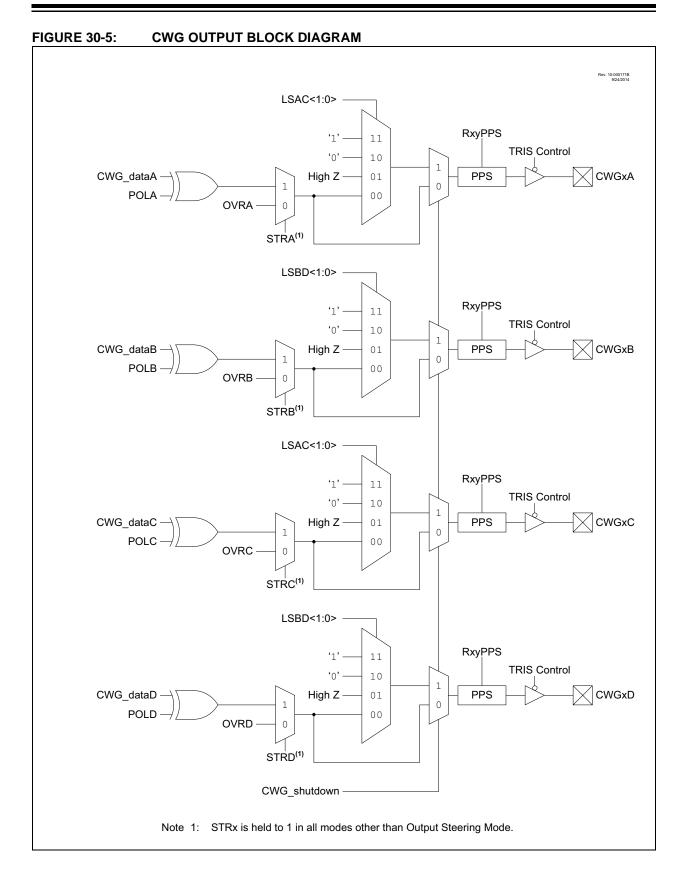
bit 5-0 **IOCCP<5:0>:** Interrupt-on-Change PORTC Positive Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin

Note 1: Present only in PIC16(L)F15323.

REGISTER 17-5: IOCCN: INTERRUPT-ON-CHANGE PORTC NEGATIVE EDGE REGISTER⁽¹⁾

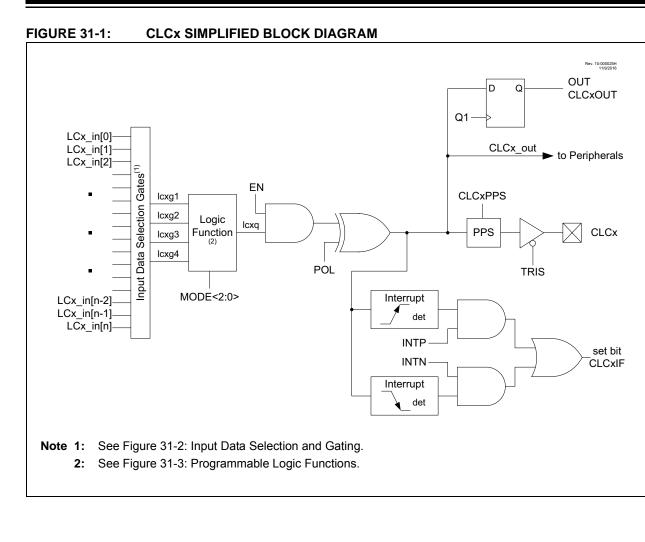
U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0
bit 7							bit 0


Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 5-0

IOCCN<5:0>: Interrupt-on-Change PORTC Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative-going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin


Note 1: Present only in PIC16(L)F15323.

R/W/HS-0/0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	U-0	U-0
SHUTDOWN ^(1, 2)	REN	LSBE)<1:0>	LSAC	<1:0>	_	_
bit 7							bit 0
Legend:							
HC = Bit is cleared	by hardware			HS = Bit is se	et by hardware		
R = Readable bit		W = Writable	e bit	U = Unimplei	mented bit, rea	d as '0'	
u = Bit is unchange	ed	x = Bit is unk	nown	-n/n = Value a	at POR and BC	R/Value at al	l other Resets
'1' = Bit is set		'0' = Bit is cle	eared	q = Value de	pends on condi	ition	
L:1 7			Event Ote	4			
bit 7		I: Auto-Shutdo		tus bit ^(1, 2)			
		-Shutdown sta -shutdown eve		be			
bit 6		estart Enable		cu			
	1 = Auto-res		DIL				
	0 = Auto-res						
bit 5-4	LSBD<1:0>:	CWG1B and	CWG1D Auto	-Shutdown Sta	te Control bits		
	11 =A logic '	1' is placed or	n CWG1B/D w	hen an auto-sh	nutdown event i	is present	
				hen an auto-sh			
				an auto-shutdo			
	band in		e pin, includin	g polarity, is pla	iced on CWG II	B/D after the r	equired dead-
bit 3-2			CWG1C Auto	-Shutdown Sta	te Control hits		
				hen an auto-sh		is present	
				hen an auto-sh			
				an auto-shutdo			
	00 =The inac band in		e pin, includin	g polarity, is pla	iced on CWG1/	A/C after the r	equired dead-
bit 1-0	Unimplemen	nted: Read as	· '0'				
Note 1: This b configu	it may be wri [.] uration.	tten while EN	= 0 (CWG1	CON0 register) to place the	outputs into	the shutdown
							e

REGISTER 30-5: CWG1AS0: CWG1 AUTO-SHUTDOWN CONTROL REGISTER 0

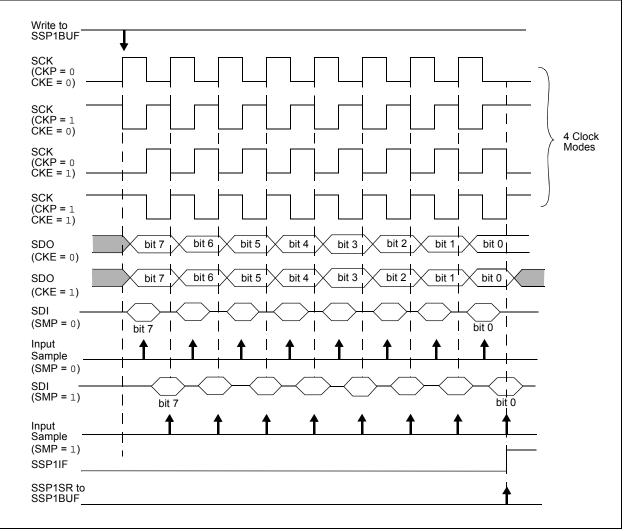
2: The outputs will remain in auto-shutdown state until the next rising edge of the input signal after this bit is cleared.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG4D4T	LCxG4D4N	LCxG4D3T	LCxG4D3N	LCxG4D2T	LCxG4D2N	LCxG4D1T	LCxG4D1N
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unknown		-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7		Gate 3 Data 4 T					
		(true) is gated i (true) is not gat					
bit 6		Gate 3 Data 4 I					
		(inverted) is ga	•	,			
		(inverted) is ga					
bit 5		Sate 3 Data 3 T	•				
		(true) is gated i	,				
	0 = CLCIN2 ((true) is not gat	ted into CLCx	Gate 3			
bit 4	LCxG4D3N:	Gate 3 Data 3 I	Negated (inver	rted) bit			
		(inverted) is ga					
		(inverted) is no	0				
bit 3		Gate 3 Data 2 T		,			
		(true) is gated i (true) is not gat					
bit 2		Gate 3 Data 2 I					
		(inverted) is ga	•				
		(inverted) is ga					
bit 1		Sate 4 Data 1 T					
		(true) is gated i					
	0 = CLCIN0	(true) is not gat	ted into CLCx	Gate 3			
bit 0	LCxG4D1N:	Gate 3 Data 1 I	Negated (inver	rted) bit			
		(inverted) is ga					
	0 = CLCIN0	(inverted) is no	t gated into CL	_Cx Gate 3			

REGISTER 31-10: CLCxGLS3: GATE 3 LOGIC SELECT REGISTER

32.2.3 SPI MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK line. The master determines when the slave (Processor 2, Figure 32-5) is to broadcast data by the software protocol.


In Master mode, the data is transmitted/received as soon as the SSP1BUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSP1SR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSP1BUF register as if a normal received byte (interrupts and Status bits appropriately set). The clock polarity is selected by appropriately programming the CKP bit of the SSP1CON1 register and the CKE bit of the SSP1STAT register. This then, would give waveforms for SPI communication as shown in Figure 32-6, Figure 32-8, Figure 32-9 and Figure 32-10, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

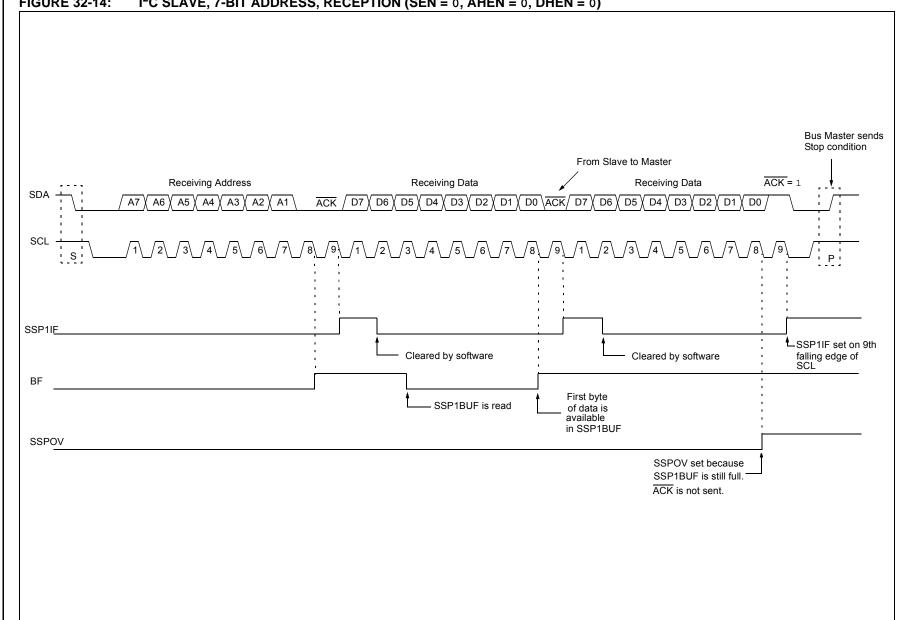

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 * Tcy)
- Fosc/64 (or 16 * Tcy)
- Timer2 output/2
- Fosc/(4 * (SSP1ADD + 1))

Figure 32-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSP1BUF is loaded with the received data is shown.

I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 0, DHEN = 0) FIGURE 32-14:

32.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSP1CON3 register enables additional clock stretching and interrupt generation after the eighth falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSP1IF interrupt is set.

Figure 32-19 displays a standard waveform of a 7-bit address slave transmission with AHEN enabled.

- 1. Bus starts Idle.
- Master sends Start condition; the S bit of SSP1STAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the eighth falling edge of the SCL line the CKP bit is cleared and SSP1IF interrupt is generated.
- 4. Slave software clears SSP1IF.
- 5. Slave software reads ACKTIM bit of SSP1CON3 register, and R/\overline{W} and D/\overline{A} of the SSP1STAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSP1BUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets the ACKDT bit of the SSP1CON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCL.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSP1IF after the ACK if the R/W bit is set.
- 11. Slave software clears SSP1IF.
- 12. Slave loads value to transmit to the master into SSP1BUF setting the BF bit.

Note: <u>SSP1BUF</u> cannot be loaded until after the ACK.

13. Slave sets the CKP bit releasing the clock.

- 14. Master clocks out the data from the slave and sends an ACK value on the ninth SCL pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSP1CON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not \overline{ACK} the slave releases the bus allowing the master to send a Stop and end the communication.

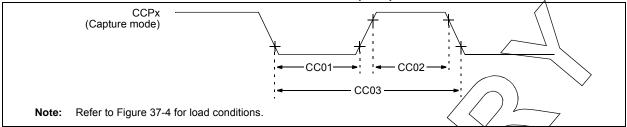
Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCL line to receive a Stop.

RETLW	Return with literal in W					
Syntax:	[<i>label</i>] RETLW k					
Operands:	$0 \le k \le 255$					
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC					
Status Affected:	None					
Description:	The W register is loaded with the 8-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.					
Words:	1					
Cycles:	2					
Example:	CALL TABLE;W contains table ;offset value • ;W now has table value					
TABLE	• • ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; • • • RETLW kn ; End of table					
	Before Instruction W = 0x07					

DEIDIE	instructio	л	
	W =	= (0x07
After Ins	struction		
	W =	= ۱	value of k8

RETURN Return from Subroutine

Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS \rightarrow PC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruction.


RLF	Rotate Left f through Carry							
Syntax:	[<i>label</i>] RLF f,d							
Operands:	$0 \le f \le 127$ $d \in [0,1]$							
Operation:	See description below							
Status Affected:	С							
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.							
Words:	1							
Cycles:	1							
Example:	RLF REG1,0							
	Before Instruction							
	REG1 = 1110 0110							
	C = 0							
	After Instruction							
	REG1 = 1110 0110							
	$W = 1100 \ 1100$							
	C = 1							
RRF	Rotate Right f through Carry							

RRF	Rotate Right f through Carry
Syntax:	[label] RRF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

© 2017 Microchip Technology Inc.

FIGURE 37-13: **CAPTURE/COMPARE/PWM TIMINGS (CCP)**

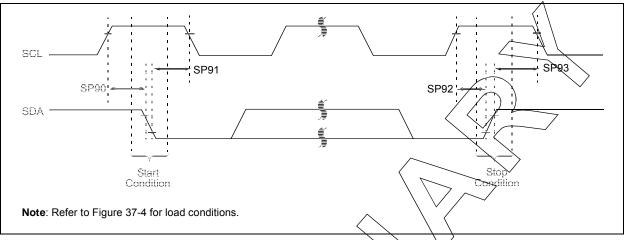


TABLE 37-19: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

	Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C ≤ TA ≤ +125°C							
Param. No.	Sym.	Characteri	stic	Min.	Typt	Max	Units	Conditions
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5Tcy + 20	X	<u> </u>	\ ns	
			With Prescaler	20/	-	$\overline{\mathcal{A}}$	ns	
CC02*	TccH	CCPx Input High Time	No Prescaler	0.5Tcy + 20		/	ns	
			With Prescaler	20	$\langle \mathcal{A} \rangle$	—	ns	
CC03*	TccP	CCPx Input Period		<u>3Toy + 40</u> N		> -	ns	N = prescale value

These parameters are characterized but not tested. Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not † tested.

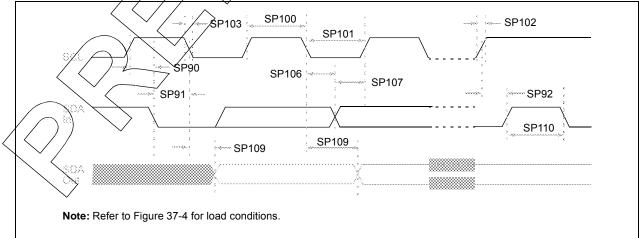
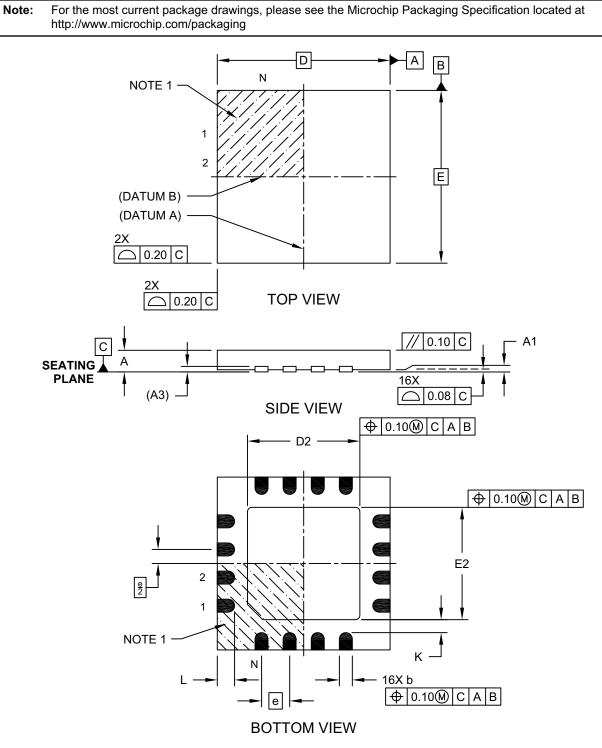


TABLE 37-24: I²C BUS START/STOP BITS REQUIREMENTS


Standard Operating Conditions (unless otherwise stated)									
Param. No.	Symbol	Characteristic		Min.	Тур	Max.	Units	Conditions	
SP90*	TSU:STA	Start condition	100 kHz mode	4700	\searrow	_	ns	Only relevant for Repeated Start	
		Setup time	400 kHz mode	600	_	_		condition	
SP91*	THD:STA	Start condition	100 kHzmode	4000	_	_	ns	After this period, the first clock	
		Hold time	400 kHz modę	600	—	_		pulse is generated	
SP92*	TSU:STO	Stop condition	100 kHz mode	4700	_	_	ns		
		Setup time	400 kHz mode	600	_	_			
SP93	THD:STO	Stop condition	100 kHz mode	4000	_	_	ns		
		Hold time	400 kHz mode	600	_				

* These parameters are characterized but not tested.

FIGURE 37-22: /I²C BUS DATA TIMING

16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body [UQFN]

Microchip Technology Drawing C04-257A Sheet 1 of 2

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830 Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820