

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 5x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15313-e-sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-2: MEMORY ACCESS PARTITION

			Par	tition					
REG	Address	<u>BBEN</u> = 1 SAFEN = 1	BBEN = 1 SAFEN = 0	<u>BBEN</u> = 0 SAFEN = 1	<u>BBEN</u> = 0 SAFEN = 0				
	00 0000h ••• Last Boot Block Memory Address			BOOT BLOCK ⁽⁴⁾	BOOT BLOCK ⁽⁴⁾				
PFM	Last Boot Block Memory Address + 1 ⁽¹⁾ ••• Last Program Memory Address - 80h	APPLICATION BLOCK ⁽⁴⁾	BLOCK ⁽⁴⁾	APPLICATION	APPLICATION BLOCK ⁽⁴⁾				
	Last Program Memory Address - 7Fh ⁽²⁾ ••• Last Program Memory Address		SAF ⁽⁴⁾	BLOCK ⁽⁴⁾	SAF ⁽⁴⁾				
CONFIG	Config Memory Address ⁽³⁾	CONFIG							

Note 1: Last Boot Block Memory Address is based on BBSIZE<2:0> given in .

2: Last Program Memory Address is the Flash size given in Table 4-1.

3: Config Memory Address are the address locations of the Configuration Words given in Table 13-2.

4: Each memory block has a corresponding write protection fuse defined by the WRTAPP, WRTB and WRTC bits in the Configuration Word (Register 5-4).

TABLE 4-10:	SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63	(CONTINUED)
-------------	--	-------------

							,				
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 5											
	CPU CORE REGISTERS; see Table 4-3 for specifics										
28Ch	T2TMR	Aolding Register for the 8-bit TMR2 Register								0000 0000	0000 0000
28Dh	T2PR	TMR2 Period Registe	r							1111 1111	1111 1111
28Eh	T2CON	ON		CKPS<2:0>			OUT	PS<3:0>		0000 0000	0000 0000
28Fh	T2HLT	PSYNC	CKPOL	CKSYNC			MODE<4:0>			0000 0000	0000 0000
290h	T2CLKCON	-					CS	S<3:0>		0000	0000
291h	T2RST	_					RSI	EL<3:0>		0000	0000
292h — 29Fh	_		Unimplemented								_

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 19											
	CPU CORE REGISTERS; see Table 4-3 for specifics										
98Ch										_	_
98Dh	—		Unimplemented								—
98Eh	—	Unimplemented								—	—
98Fh	CMOUT	—	_	_	—	—		MC2OUT	MC1OUT	00	00
990h	CM1CON0	EN	OUT	_	POL	—		HYS	SYNC	00-000	00-000
991h	CM1CON1	—	—	—	—	—	_	INTP	INTN	00	00
992h	CM1NCH	—	_	_	—	—		NCH<2:0>		000	000
993h	CM1PCH	—	_	_	—	—		PCH<2:0>		000	000
994h	CM2CON0 ⁽¹⁾	EN	OUT	_	POL	—		HYS	SYNC	00-000	00-000
995h	CM2CON1 ⁽¹⁾	—	—	—	—	—	_	INTP	INTN	00	00
996h	CM2NCH ⁽¹⁾	—	—	—	—	—	NCH<2:0>			000	000
997h	CM2PCH ⁽¹⁾	—			<u> </u>	—	PCH<2:0>00000				000
994h 99Fh	_				Unimple	nented				_	_

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Present only on PIC16(L)F15323.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 61											
				CPU COF	RE REGISTERS:	see Table 4-3 fo	specifics				
					,						
1E8Ch	Ch — Unimplemented									_	_
1E8Dh		Unimplemented									
1E8Eh	_				Unimpler	mented	•	•	-	_	_
1E8Fh	PPSLOCK				—				PPSLOCKED	0	0
1E90h	INTPPS					INTF	PS<5:0>			00 1000	uu uuuu
1E91h	TOCKIPPS					TOCK	PPS<5:0>			00 0100	uu uuuu
1E92h	T1CKIPPS	_	_			T1CK	PPS<5:0>			01 0000	uu uuuu
1E93h	T1GPPS	_	_			T1GF	PS<5:0>			00 1101	uu uuuu
1E94h											
1E9Bh	_				Onimplei	nenteu				_	_
1E9Ch	T2INPPS	— — T2INPPS<5:0>						01 0011	uu uuuu		
1E9Dh											
1EA0h	—		Unimplemented							_	—
1EA1h	CCP1PPS	_	—			CCP1	PPS<5:0>			01 0010	uu uuuu
1EA2h	CCP2PPS	_	—			CCP2	PPS<5:0>			01 0001	uu uuuu
1EA3h					L la incur la c	en e un de la d					
1EB0h	—				Unimpier	nented				_	_
1EB1h	CWG1PPS	_	_			CWG1	PPS<5:0>			00 1000	uu uuuu
1EB2h											
 1EBAh	_				Unimpler	nented				_	_
1EBBh	CLCIN0PPS	—	_			CLCIN	0PPS<5:0>			00 0000	uu uuuu
1EBCh	CLCIN1PPS	_	_			CLCIN	1PPS<5:0>			00 0001	uu uuuu
1EBDh	CLCIN2PPS	_	_			CLCIN	2PPS<5:0>			00 1110	uu uuuu
1EBEh	CLCIN3PPS	_	CLCIN3PPS<5:0>							00 1111	uu uuuu
1EBFh											
 1EC2h	_				Unimpler	nented				—	-
1EC3h	ADACTPPS	_	—			CLCIN	3PPS<5:0>			001100	uuuuuu
1EC4h	_				Unimpler	mented				—	—

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

PIC16(L)F15313/23

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

8.14 Power Control (PCONx) Registers

The Power Control (PCONx) registers contain flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Watchdog Timer Window Violation Reset
 (WDTWV)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)
- Memory Violation Reset (MEMV)

The PCON0 register bits are shown in Register 8-2. The PCON1 register bits are shown in Register 8-3.

Hardware will change the corresponding register bit during the Reset process; if the Reset was not caused by the condition, the bit remains unchanged (Table 8-4).

Software should reset the bit to the inactive state after the restart (hardware will not reset the bit).

Software may also set any PCON bit to the active state, so that user code may be tested, but no reset action will be generated.

FIGURE 9-3: QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Application Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

FIGURE 9-4:

CERAMIC RESONATOR OPERATION (XT OR HS MODE)

9.2.1.3 Oscillator Start-up Timer (OST)

If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR), Brown-out Reset (BOR) or a wake-up from Sleep. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
	—			_	<u> </u>	CCP2IE	CCP1IE
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimpler	mented bit, read	as '0'	
u = Bit is unchanged x = Bit is unknown				-n/n = Value	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is	set	'0' = Bit is cle	ared	HS = Hardwa	are set		
bit 7-2	Unimplemen	ted: Read as '	0'.				
bit 1	CCP2IE: CCF	P2 Interrupt En	able bit				
	1 = CCP2 in	terrupt is enab	led				
	0 = CCP2 In	iterrupt is disat	oled				
bit 0	CCP1IE: CCF	P1 Interrupt En	able bit				
	1 = CCP1 in	iterrupt is enab	led				
	0 = CCP1 in	terrupt is disab	led				
Note:	Bit PEIE of the IN	TCON register	must be				
	set to enable an	ny peripheral	interrupt				
	controlled by regis	ters PIE1-PIE7					

REGISTER 10-8: PIE6: PERIPHERAL INTERRUPT ENABLE REGISTER 6

13.4 Register Definitions: Flash Program Memory Control

REGISTER 13-1: NVMDATL: NONVOLATILE MEMORY DATA LOW BYTE REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
NVMDAT<7:0>										
bit 7							bit 0			
Legend:										
R = Readable bi	t	W = Writable bit		U = Unimplem	ented bit, read as	ʻ0'				
u = Bit is unchan	nged	x = Bit is unknow	vn	-n/n = Value at	POR and BOR/V	/alue at all other I	Resets			
'1' = Bit is set		'0' = Bit is cleare	d							

bit 7-0 NVMDAT<7:0>: Read/write value for Least Significant bits of program memory

REGISTER 13-2: NVMDATH: NONVOLATILE MEMORY DATA HIGH BYTE REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			NVMDA	AT<13:8>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
---------	----------------------------

bit 5-0 NVMDAT<13:8>: Read/write value for Most Significant bits of program memory

REGISTER 13-3: NVMADRL: NONVOLATILE MEMORY ADDRESS LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
NVMADR<7:0>									
bit 7 bit 0									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NVMADR<7:0>: Specifies the Least Significant bits for program memory address

REGISTER 13-4: NVMADRH: NONVOLATILE MEMORY ADDRESS HIGH BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
(1)				NVMADR<14:8	}>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '1'

bit 6-0 NVMADR<14:8>: Specifies the Most Significant bits for program memory address

Note 1: Bit is undefined while WR = 1

PIC16(L)F15313/23

REGISTER 2	5-1: TOCON	0: TIMER0		REGISTER 0				
R/W-0/0	U-0	R-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
T0EN	—	TOOUT	T016BIT		TOOUTI	PS<3:0>		
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets	
'1' = Bit is set		'0' = Bit is cle	ared					
bit 7	T0EN: Timer0 1 = The mode 0 = The mode) Enable bit ule is enabled ule is disablec	and operating I and in the lov) vest power mo	de			
bit 6	Unimplement	ted: Read as	ʻ0'					
bit 5	T0OUT: Timer Timer0 output	T0OUT: Timer0 Output bit (read-only) Timer0 output bit						
bit 4	T016BIT: Time 1 = Timer0 is 0 = Timer0 is	er0 Operating a 16-bit timer an 8-bit timer	as 16-bit Tim	er Select bit				
bit 3-0	TOOUTPS<3: 1111 = 1:16 F 1110 = 1:15 F 1101 = 1:14 F 1001 = 1:14 F 1001 = 1:12 F 1010 = 1:11 F 1001 = 1:10 F 1000 = 1:9 P 0111 = 1:8 P 0100 = 1:7 P 0101 = 1:6 P 0100 = 1:5 P 0011 = 1:4 P 0001 = 1:2 P 0000 = 1:1 P	0>: Timer0 ou Postscaler	itput postscale	r (divider) sele	ct bits			

27.5.2 HARDWARE GATE MODE

The Hardware Gate modes operate the same as the Software Gate mode except the TMRx_ers external signal gates the timer. When used with the CCP the gating extends the PWM period. If the timer is stopped when the PWM output is high then the duty cycle is also extended.

When MODE<4:0> = 00001 then the timer is stopped when the external signal is high. When MODE<4:0> = 00010 then the timer is stopped when the external signal is low.

Figure 27-5 illustrates the Hardware Gating mode for MODE<4:0> = 00001 in which a high input level starts the counter.

	Rev. 10.000 1998 \$500/2014	
MODE	0b00001	
TMRx_clk		
TMRx_ers_		
PRx	5	
TMRx(0 (1)(2)(3)(4)(5)(0)(1)(2)(3)(4)(5)(0)(1)	
TMRx_postscaled_		
PWM Duty Cycle PWM Output	3	

TABLE 28-2:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS ((Fosc = 20 MHz)
-------------	---	-----------------

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 28-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

28.3.8 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

28.3.9 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 9.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

28.3.10 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

30.13 Register Definitions: CWG Control

Long bit name prefixes for the CWG peripherals are shown in Section 1.1 "Register and Bit Naming Conventions".

REGISTER 30-1: CWG1CON0: CWG1 CONTROL REGISTER 0

R/W-0/0	R/W/HC-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
EN	LD ⁽¹⁾	—	—	—		MODE<2:0>	
bit 7							bit 0

Legend:		
HC = Bit is cleared by hardwa	are	HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	EN: CWG1 Enable bit
	1 = Module is enabled
	0 = Module is disabled
bit 6	LD: CWG1 Load Buffer bits ⁽¹⁾
	1 = Buffers to be loaded on the next rising/falling event
	0 = Buffers not loaded
bit 5-3	Unimplemented: Read as '0'
bit 2-0	MODE<2:0>: CWG1 Mode bits
	111 = Reserved
	110 = Reserved
	101 = CWG outputs operate in Push-Pull mode
	100 = CWG outputs operate in Half-Bridge mode
	011 = CWG outputs operate in Reverse Full-Bridge mode
	010 = CWG outputs operate in Forward Full-Bridge mode
	001 = CWG outputs operate in Synchronous Steering mode
	000 = CWG outputs operate in Steering mode

Note 1: This bit can only be set after EN = 1 and cannot be set in the same instruction that EN is set.

U-0	U-0	R-x	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	IN	—	POLD	POLC	POLB	POLA
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condit	ion	
bit 7-6	Unimplemen	ted: Read as '	כי				
bit 5	IN: CWG Inpu	ut Value bit					
bit 4	Unimplemen	ted: Read as '	כ'				
bit 3	POLD: CWG	1D Output Pola	rity bit				
	1 = Signal ou	utput is inverted	polarity				
	0 = Signal ou	utput is normal	polarity				
bit 2	POLC: CWG	1C Output Pola	rity bit				
	1 = Signal ou	Itput is inverted	l polarity				
		itput is normal	polarity				
bit 1	POLB: CWG	1B Output Pola	rity bit				
	1 = Signal or	Itput is inverted	l polarity				
1.11.0							
DITU	PULA: CWG	1A Output Pola	rity dit				
	1 = Signal out	Itput is inverted	l polarity				
	1 = Signal ou 0 = Signal ou	utput is inverted utput is normal	l polarity polarity				

REGISTER 30-2: CWG1CON1: CWG1 CONTROL REGISTER 1

REGISTER 30-8:	CWG1CLK: CWG1	CLOCK SELECTION REGISTER
----------------	---------------	--------------------------

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
_	_		_	—	—	_	CS
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

Dit 7-1 Unimplemented: Read as

bit 0

CS: CWG1 Clock Selection bit

1 = HFINTOSC 16 MHz is selected

0 = Fosc is selected

REGISTER 30-9: CWG1ISM: CWG1 INPUT SELECTION REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0				
—	—	—	—	IS<3:0>					
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-4	Unimple	mented: Read as '0'							
bit 3-0	IS<3:0>:	IS<3:0>: CWG1 Input Selection bits							
	1111 =	Reserved. No channel connected.							
	1110 =	Reserved. No channel connected.							
	1101 =	LC4_out							
	1100 =	LC3_out							
	1011 =	LC2_out							
	1010 =	LC1_out							
	1001 =	Comparator C2 out ⁽¹⁾							
	1000 =	Comparator C1 out							
	0111 =	NCO1 output							
	0110 =	PWM6_out							
	0101 =	PWM5_out							
	0100 =	PWM4_out							
	0011 =	PWM3_out							
	0010 =	CCP2_out							
	0001 =	CCP1_out							
	0000 =	CWG11CLK							

Note 1: Present on PIC16(L)F15323 only.

© 2017 Microchip Technology Inc.

31.1 CLCx Setup

Programming the CLCx module is performed by configuring the four stages in the logic signal flow. The four stages are:

- · Data selection
- · Data gating
- Logic function selection
- Output polarity

Each stage is setup at run time by writing to the corresponding CLCx Special Function Registers. This has the added advantage of permitting logic reconfiguration on-the-fly during program execution.

31.1.1 DATA SELECTION

There are 40 signals available as inputs to the configurable logic. Four 40-input multiplexers are used to select the inputs to pass on to the next stage.

Data selection is through four multiplexers as indicated on the left side of Figure 31-2. Data inputs in the figure are identified by a generic numbered input name.

Table 31-2 correlates the generic input name to the actual signal for each CLC module. The column labeled 'LCxDyS<4:0> Value' indicates the MUX selection code for the selected data input. LCxDyS is an abbreviation to identify specific multiplexers: LCxD1S<4:0> through LCxD4S<4:0>.

Data inputs are selected with CLCxSEL0 through CLCxSEL3 registers (Register 31-3 through Register 31-6).

TABLE 31-2: CLCx DATA INPUT SELECTION

LCxDyS<4:0> Value	CLCx Input Source
101000 to 111111 [40+]	Reserved
100111 [39]	CWG1B output
100110 [38]	CWG1A output
100101 [37]	Reserved
100100 [36]	Reserved
100011 [35]	MSSP1 SCK output
100010 [34]	MSSP1 SDO output
100001 [33]	Reserved
100000 [32]	Reserved
011111 [31]	EUSART1 (TX/CK) output
011110 [30]	EUSART1 (DT) output
011101 [29]	CLC4 output
011100 [28]	CLC3 output
011011 [27]	CLC2 output
011010 [26]	CLC1 output
011001 [25]	IOCIF
011000 [24]	ZCD output
010111 [23]	C2OUT ⁽¹⁾
010110 [22]	C1OUT
010101 [21]	NCO1 output
010100 [20]	PWM6 output
010011 [19]	PWM5 output
010010 [18]	PWM4 output
010001 [17]	PWM3 output
010000 [16]	CCP2 output
001111 [15]	CCP1 output
001110 [14]	Timer2 overflow
001101 [13]	Timer1 overflow
001100 [12]	Timer0 overflow
001011 [11]	CLKR
001010 [10]	ADCRC
001001 [9]	Reserved
001000 [8]	MFINTOSC (32 kHz)
000111 [7]	MFINTOSC (500 kHz)
000110 [6]	LFINTOSC
000101 [5]	HFINTOSC
000100 [4]	Fosc
000011 [3]	CLCIN3PPS
000010 [2]	CLCIN2PPS
000001 [1]	CLCIN1PPS

Note 1: Present on PIC16(L)F15323 only.

31.7 Register Definitions: CLC Control

R/W-0/0	U-0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
LCxEN	—	LCxOUT	LCxINTP	LCxINTN	N LCxMODE<2:0>					
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'				
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets			
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7	LCxEN: Conf	igurable Logic	Cell Enable b	it						
	1 = Configura 0 = Configura	able logic cell is able logic cell is	s enabled and s disabled and	l mixing input s I has logic zerc	ignals o output					
bit 6	Unimplemen	ted: Read as '	0'							
bit 5	LCxOUT: Cor	nfigurable Logi	c Cell Data Ou	utput bit						
	Read-only: log	gic cell output o	data, after LCI	POL; sampled	from CLCxOUT	-				
bit 4	LCxINTP: Co	nfigurable Log	ic Cell Positive	e Edge Going I	nterrupt Enable	e bit				
	1 = CLCxIF v 0 = CLCxIF v	vill be set wher vill not be set	n a rising edge	e occurs on CL	CxOUT					
bit 3	LCxINTN: Co	onfigurable Log	ic Cell Negativ	ve Edge Going	Interrupt Enab	le bit				
	1 = CLCxIFv $0 = CLCxIFv$	vill be set wher vill not be set	n a falling edg	e occurs on CL	CxOUT					
bit 2-0	LCxMODE<2	:0>: Configura	ble Logic Cell	Functional Mo	de bits					
	111 = Cell is	1-input transpa	arent latch wit	h S and R						
	110 = Cell is	J-K flip-flop wi	th R							
	101 = Cell is 100 = Cell is	2-input D flip-f	lop with R lop with S and	IR						
	011 = Cell is	S-R latch								
	010 = Cell is	4-input AND								
	001 = Cell is	OR-XOR								
		AND-UK								

REGISTER 31-1: CLCxCON: CONFIGURABLE LOGIC CELL CONTROL REGISTER

32.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSP1CON3 register enables additional clock stretching and interrupt generation after the eighth falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSP1IF interrupt is set.

Figure 32-19 displays a standard waveform of a 7-bit address slave transmission with AHEN enabled.

- 1. Bus starts Idle.
- Master sends Start condition; the S bit of SSP1STAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the eighth falling edge of the SCL line the CKP bit is cleared and SSP1IF interrupt is generated.
- 4. Slave software clears SSP1IF.
- 5. Slave software reads ACKTIM bit of SSP1CON3 register, and R/\overline{W} and D/\overline{A} of the SSP1STAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSP1BUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets the ACKDT bit of the SSP1CON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCL.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSP1IF after the ACK if the R/W bit is set.
- 11. Slave software clears SSP1IF.
- 12. Slave loads value to transmit to the master into SSP1BUF setting the BF bit.

Note: <u>SSP1BUF</u> cannot be loaded until after the ACK.

13. Slave sets the CKP bit releasing the clock.

- 14. Master clocks out the data from the slave and sends an ACK value on the ninth SCL pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSP1CON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not \overline{ACK} the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCL line to receive a Stop.

TABLE 33-3: BAUD RATE FORMULAS

(Configuration Bi	ts		Baud Pata Formula			
SYNC	BRG16	BRGH	BRG/EUSART Mode	Dauu Kate Formula			
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]			
0	0	1	8-bit/Asynchronous				
0	1	0	16-bit/Asynchronous	FOSC/[16 (n+1)]			
0	1	1	16-bit/Asynchronous				
1	0	x	8-bit/Synchronous	Fosc/[4 (n+1)]			
1	1	x	16-bit/Synchronous	1			

Legend: x = Don't care, n = value of SPxBRGH, SPxBRGL register pair.

TABLE 33-4: BAUD RATE FOR ASYNCHRONOUS MODES

	SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc	= 11.059	92 MHz
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300		_	_	—	_	_	_	_	_	_	_	_
1200		_	—	1221	1.73	255	1200	0.00	239	1200	0.00	143
2400	2404	0.16	207	2404	0.16	129	2400	0.00	119	2400	0.00	71
9600	9615	0.16	51	9470	-1.36	32	9600	0.00	29	9600	0.00	17
10417	10417	0.00	47	10417	0.00	29	10286	-1.26	27	10165	-2.42	16
19.2k	19.23k	0.16	25	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8
57.6k	55.55k	-3.55	3	—	_	_	57.60k	0.00	7	57.60k	0.00	2
115.2k		_	_	—	_	_	_	_	_	_	—	—

	SYNC = 0, BRGH = 0, BRG16 = 0												
BAUD	Fosc = 8.000 MHz) MHz	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fos	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	_	_	_	300	0.16	207	300	0.00	191	300	0.16	51	
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12	
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	—	—	
9600	9615	0.16	12	—	—	—	9600	0.00	5	—	—	—	
10417	10417	0.00	11	10417	0.00	5	—	_	_	—	_	_	
19.2k	—	_	—	—	_	—	19.20k	0.00	2	—	—	—	
57.6k	—	—	—	—	—	—	57.60k	0.00	0	—	—	—	
115.2k	_	_	_	—		—	_	_	_	—	_	—	

PIC16(L)F15313/23

REGISTER 34-2: CLKRCLK: CLOCK REFERENCE CLOCK SELECTION REGISTER									
U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
		_	_	CLKRCLK<3:0>					
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'					
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is cleared							
bit 7-4	Unimplemented: Read as '0'								
bit 3-0	CLKRCLK<3	:0>: CLKR Inp							
	Clock Selection	on							
1111 = Reserved									
	•								
	•								
1011 = Reserved									
	$1010 = LC4_{1001}$								
	$1001 - LC3_{1000}$								
	$1000 = LC2_{0111}$								
	$0110 = NCO^{-1}$	1 out							
	0101 = Rese	rved							
	0100 = MFIN	TOSC (31.25 k	(Hz)						
	0011 = MFIN	TOSC (500 kH	z)						
	0010 = LFIN	TOSC							
	0001 = HFIN	TOSC							
	0000 = Fosc								

TABLE 34-1: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK REFERENCE OUTPUT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CLKRCON	CLKREN	_	_	CLKRDC<1:0>			CLKRDIV<	441	
CLKRCLK	_	_	_	—	CLKRCLK<3:0>				442
CLCxSELy	—	_	LCxDyS<5:0>						352
RxyPPS	_	_		RxyPPS<4:0>					192

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the CLKR module.