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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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4.4 PCL and PCLATH

The Program Counter (PC) is 15 bits wide. The low byte
comes from the PCL register, which is a readable and
writable register. The high byte (PC<14:8>) is not directly
readable or writable and comes from PCLATH. On any
Reset, the PC is cleared. Figure 4-3 shows the five
situations for the loading of the PC. 

FIGURE 4-3: LOADING OF PC IN 
DIFFERENT SITUATIONS

4.4.1 MODIFYING PCL

Executing any instruction with the PCL register as the
destination simultaneously causes the Program
Counter PC<14:8> bits (PCH) to be replaced by the
contents of the PCLATH register. This allows the entire
contents of the program counter to be changed by writ-
ing the desired upper seven bits to the PCLATH regis-
ter. When the lower eight bits are written to the PCL
register, all 15 bits of the program counter will change
to the values contained in the PCLATH register and
those being written to the PCL register.

4.4.2 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to
the program counter (ADDWF PCL). When performing a
table read using a computed GOTO method, care should
be exercised if the table location crosses a PCL memory
boundary (each 256-byte block). Refer to Application
Note AN556, “Implementing a Table Read” (DS00556).

4.4.3 COMPUTED FUNCTION CALLS

A computed function CALL allows programs to maintain
tables of functions and provide another way to execute
state machines or look-up tables. When performing a
table read using a computed function CALL, care
should be exercised if the table location crosses a PCL
memory boundary (each 256-byte block).

If using the CALL instruction, the PCH<2:0> and PCL
registers are loaded with the operand of the CALL
instruction. PCH<6:3> is loaded with PCLATH<6:3>.

The CALLW instruction enables computed calls by
combining PCLATH and W to form the destination
address. A computed CALLW is accomplished by
loading the W register with the desired address and
executing CALLW. The PCL register is loaded with the
value of W and PCH is loaded with PCLATH.

4.4.4 BRANCHING

The branching instructions add an offset to the PC.
This allows relocatable code and code that crosses
page boundaries. There are two forms of branching,
BRW and BRA. The PC will have incremented to fetch
the next instruction in both cases. When using either
branching instruction, a PCL memory boundary may be
crossed.

If using BRW, load the W register with the desired
unsigned address and execute BRW. The entire PC will
be loaded with the address PC + 1 + W.

If using BRA, the entire PC will be loaded with
PC + 1 + the signed value of the operand of the BRA
instruction.
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FIGURE 9-7: CLOCK SWITCH ABANDONED

Note 1: CSWIF may be cleared before or after rewriting OSCCON1; CSWIF is not automatically cleared.
2: ORDY = 0 if OSCCON1 does not match OSCCON2; a new switch will begin.
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EXAMPLE 13-5: DEVICE ID ACCESS
; This write routine assumes the following:
; 1. A full row of data are loaded, starting at the address in DATA_ADDR
; 2. Each word of data to be written is made up of two adjacent bytes in DATA_ADDR,
; stored in little endian format
; 3. A valid starting address (the least significant bits = 00000) is loaded in ADDRH:ADDRL
; 4. ADDRH and ADDRL are located in common RAM (locations 0x70 - 0x7F)
; 5. NVM interrupts are not taken into account

BANKSEL NVMADRH
MOVF ADDRH,W
MOVWF NVMADRH ; Load initial address
MOVF ADDRL,W
MOVWF NVMADRL
MOVLW LOW DATA_ADDR ; Load initial data address
MOVWF FSR0L
MOVLW HIGH DATA_ADDR
MOVWF FSR0H
BCF NVMCON1,NVMREGS ; Set PFM as write location
BSF NVMCON1,WREN ; Enable writes
BSF NVMCON1,LWLO ; Load only write latches

LOOP
MOVIW FSR0++
MOVWF NVMDATL ; Load first data byte
MOVIW FSR0++
MOVWF NVMDATH ; Load second data byte

CALL UNLOCK_SEQ ; If not, go load latch
INCF NVMADRL,F ; Increment address
MOVF NVMADRL,W
XORLW 0x1F ; Check if lower bits of address are 00000
ANDLW 0x1F ; and if on last of 32 addresses
BTFSC STATUS,Z ; Last of 32 words?
GOTO START_WRITE ; If so, go write latches into memory

GOTO LOOP

START_WRITE
BCF NVMCON1,LWLO ; Latch writes complete, now write memory
CALL UNLOCK_SEQ ; Perform required unlock sequence
BCF NVMCON1,LWLO ; Disable writes

UNLOCK_SEQ
MOVLW 55h
BCF INTCON,GIE ; Disable interrupts
MOVWF NVMCON2 ; Begin unlock sequence
MOVLW AAh
MOVWF NVMCON2
BSF NVMCON1,WR
BSF INTCON,GIE ; Unlock sequence complete, re-enable interrupts
return
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 166
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20.2.5 ADC CONVERSION PROCEDURE

This is an example procedure for using the ADC to
perform an Analog-to-Digital conversion:

1. Configure Port:

• Disable pin output driver (Refer to the TRIS 
register)

• Configure pin as analog (Refer to the ANSEL 
register)

2. Configure the ADC module:

• Select ADC conversion clock

• Select voltage reference

• Select ADC input channel

• Turn on ADC module

3. Configure ADC interrupt (optional):

• Clear ADC interrupt flag 

• Enable ADC interrupt

• Enable peripheral interrupt

• Enable global interrupt(1)

4. Wait the required acquisition time(2).

5. Start conversion by setting the GO/DONE bit.

6. Wait for ADC conversion to complete by one of
the following:

• Polling the GO/DONE bit

• Waiting for the ADC interrupt

7. Read ADC Result.

8. Clear the ADC interrupt flag (required if interrupt
is enabled).

EXAMPLE 20-1: ADC CONVERSION

Note 1: The global interrupt can be disabled if the
user is attempting to wake-up from Sleep
and resume in-line code execution.

2: Refer to Section 20.3 “ADC Acquisi-
tion Requirements”.

;This code block configures the ADC
;for polling, Vdd and Vss references, ADCRC 
;oscillator and AN0 input.
;
;Conversion start & polling for completion ; 
are included.
;
BANKSEL ADCON1 ;
MOVLW B’11110000’ ;Right justify, ADCRC

;oscillator
MOVWF ADCON1 ;Vdd and Vss Vref
BANKSEL TRISA ;
BSF TRISA,0 ;Set RA0 to input
BANKSEL ANSELA ;
BSF ANSELA,0 ;Set RA0 to analog
BANKSEL ADCON0 ;
MOVLW B’00000001’ ;Select channel AN0
MOVWF ADCON0 ;Turn ADC On
CALL SampleTime ;Acquisiton delay
BSF ADCON0,ADGO ;Start conversion
BTFSC ADCON0,ADGO ;Is conversion done?
GOTO $-1 ;No, test again
BANKSEL ADRESH ;
MOVF ADRESH,W ;Read upper 2 bits
MOVWF RESULTHI ;store in GPR space
BANKSEL ADRESL ;
MOVF ADRESL,W ;Read lower 8 bits
MOVWF RESULTLO ;Store in GPR space
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 220
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22.2 FIXED DUTY CYCLE MODE

In Fixed Duty Cycle (FDC) mode, every time the
accumulator overflows (NCO_overflow), the output is
toggled at a frequency rate half of the FOVERFLOW. This
provides a 50% duty cycle, provided that the increment
value remains constant. For more information, see
Figure 22-2.

The FDC mode is selected by clearing the N1PFM bit
in the NCO1CON register.

22.3 PULSE FREQUENCY MODE

In Pulse Frequency (PF) mode, every time the
Accumulator overflows, the output becomes active for
one or more clock periods. Once the clock period
expires, the output returns to an inactive state. This
provides a pulsed output. The output becomes active
on the rising clock edge immediately following the
overflow event. For more information, see Figure 22-2.

The value of the active and inactive states depends on
the polarity bit, N1POL in the NCO1CON register.

The PF mode is selected by setting the N1PFM bit in
the NCO1CON register.

22.3.1 OUTPUT PULSE WIDTH CONTROL

When operating in PF mode, the active state of the out-
put can vary in width by multiple clock periods. Various
pulse widths are selected with the N1PWS<2:0> bits in
the NCO1CLK register.

When the selected pulse width is greater than the
Accumulator overflow time frame, then NCO1 output
does not toggle.

22.4 OUTPUT POLARITY CONTROL

The last stage in the NCO module is the output polarity.
The N1POL bit in the NCO1CON register selects the
output polarity. Changing the polarity while the
interrupts are enabled will cause an interrupt for the
resulting output transition.

The NCO output signal (NCO1_out) is available to the
following peripherals:

• CLC
• CWG
• Timer1
• Timer2
• CLKR

22.5 Interrupts

When the accumulator overflows (NCO_overflow), the
NCO Interrupt Flag bit, NCO1IF, of the PIR7 register is
set. To enable the interrupt event (NCO_interrupt), the
following bits must be set:

• N1EN bit of the NCO1CON register
• NCO1IE bit of the PIE7 register
• PEIE bit of the INTCON register
• GIE bit of the INTCON register

The interrupt must be cleared by software by clearing
the NCO1IF bit in the Interrupt Service Routine.

22.6 Effects of a Reset

All of the NCO registers are cleared to zero as the
result of a Reset.

22.7 Operation in Sleep

The NCO module operates independently from the
system clock and will continue to run during Sleep,
provided that the clock source selected remains active.

The HFINTOSC remains active during Sleep when the
NCO module is enabled and the HFINTOSC is
selected as the clock source, regardless of the system
clock source selected.

In other words, if the HFINTOSC is simultaneously
selected as the system clock and the NCO clock
source, when the NCO is enabled, the CPU will go idle
during Sleep, but the NCO will continue to operate and
the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 237
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23.2 Comparator Control

Each comparator has two control registers: CMxCON0
and CMxCON1.

The CMxCON0 register (see Register 23-1) contains
Control and Status bits for the following:

• Enable

• Output

• Output polarity

• Hysteresis enable

• Timer1 output synchronization

The CMxCON1 register (see Register 23-2) contains
Control bits for the following:

• Interrupt on positive/negative edge enables

• The CMxNSEL and CMxPSEL (Register 23-3 and 
Register 23-4) contain control bits for the 
following:

- Positive input channel selection
- Negative input channel selection

23.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables
the comparator for operation. Clearing the CxON bit
disables the comparator resulting in minimum current
consumption.

23.2.2 COMPARATOR OUTPUT 

The output of the comparator can be monitored by
reading either the CxOUT bit of the CMxCON0 register
or the MCxOUT bit of the CMOUT register.

The comparator output can also be routed to an
external pin through the RxyPPS register
(Register 15-2). The corresponding TRIS bit must be
clear to enable the pin as an output. 

23.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally
equivalent to swapping the comparator inputs. The
polarity of the comparator output can be inverted by
setting the CxPOL bit of the CMxCON0 register.
Clearing the CxPOL bit results in a non-inverted output.

Table 23-2 shows the output state versus input
conditions, including polarity control. 

Note 1: The internal output of the comparator is
latched with each instruction cycle.
Unless otherwise specified, external out-
puts are not latched.

TABLE 23-2: COMPARATOR OUTPUT 
STATE VS. INPUT 
CONDITIONS

Input Condition CxPOL CxOUT

CxVN > CxVP 0 0

CxVN < CxVP 0 1

CxVN > CxVP 1 1

CxVN < CxVP 1 0
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 246
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TABLE 28-5: SUMMARY OF REGISTERS ASSOCIATED WITH CCPx

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register 
on Page

INTCON GIE PEIE — — — — — INTEDG 121

PIR4 — — — — — — TMR2IF TMR1IF 134

PIE4 — — — — — — TMR2IE TMR1IE 126

CCP1CON EN — OUT FMT MODE<3:0> 306

CCP1CAP — — — — — CTS<2:0> 308

CCPR1L Capture/Compare/PWM Register 1 (LSB) 308

CCPR1H Capture/Compare/PWM Register 1 (MSB) 309

CCP2CON EN — OUT FMT MODE<3:0> 306

CCP2CAP — — — — — CTS<2:0> 308

CCPR2L Capture/Compare/PWM Register 1 (LSB) 308

CCPR2H Capture/Compare/PWM Register 1 (MSB) 308

CCP1PPS — — CCP1PPS<5:0> 191

CCP2PPS — — CCP2PPS<5:0> 191

RxyPPS — — — RxyPPS<4:0> 192

ADACT — — — ADACT<4:0> 225

CLCxSELy — — — LCxDyS<4:0> 352

CWG1ISM — — — — IS<3:0> 341

Legend: — = Unimplemented location, read as ‘0’. Shaded cells are not used by the CCP module.
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 310
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30.3 Selectable Input Sources

The CWG generates the output waveforms from the
input sources in Table 30-2.

TABLE 30-2: SELECTABLE INPUT 
SOURCES

The input sources are selected using the CWG1ISM
register.

30.4 Output Control

30.4.1 POLARITY CONTROL

The polarity of each CWG output can be selected
independently. When the output polarity bit is set, the
corresponding output is active-high. Clearing the
output polarity bit configures the corresponding output
as active-low. However, polarity does not affect the
override levels. Output polarity is selected with the
POLx bits of the CWG1CON1. Auto-shutdown and
steering options are unaffected by polarity.

Source Peripheral Signal Name

CWG input PPS pin CWG1IN PPS

CCP1 CCP1_out

CCP2 CCP2_out

PWM3 PWM3_out

PWM4 PWM4_out

PWM5 PWM5_out

PWM6 PWM6_out

NCO NCO1_out

Comparator C1 C1OUT_sync

Comparator C2 C2OUT_sync

CLC1 LC1_out

CLC2 LC2_out

CLC3 LC3_out

CLC4 LC4_out
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 324
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30.10 Auto-Shutdown

Auto-shutdown is a method to immediately override the
CWG output levels with specific overrides that allow for
safe shutdown of the circuit. The shutdown state can be
either cleared automatically or held until cleared by
software. The auto-shutdown circuit is illustrated in
Figure 30-12.

30.10.1 SHUTDOWN

The shutdown state can be entered by either of the
following two methods:

• Software generated

• External Input

30.10.1.1 Software Generated Shutdown

Setting the SHUTDOWN bit of the CWG1AS0 register
will force the CWG into the shutdown state.

When the auto-restart is disabled, the shutdown state
will persist as long as the SHUTDOWN bit is set.

When auto-restart is enabled, the SHUTDOWN bit will
clear automatically and resume operation on the next
rising edge event.

30.10.2 EXTERNAL INPUT SOURCE

External shutdown inputs provide the fastest way to
safely suspend CWG operation in the event of a Fault
condition. When any of the selected shutdown inputs
goes active, the CWG outputs will immediately go to the
selected override levels without software delay. Several
input sources can be selected to cause a shutdown con-
dition. All input sources are active-low. The sources are:

• Comparator C1OUT_sync

• Comparator C2OUT_sync

• Timer2 – TMR2_postscaled

• CWG1IN input pin

Shutdown inputs are selected using the CWG1AS1
register (Register 30-6).

30.11 Operation During Sleep

The CWG module operates independently from the 
system clock and will continue to run during Sleep, 
provided that the clock and input sources selected 
remain active.

The HFINTOSC remains active during Sleep when all
the following conditions are met:

• CWG module is enabled

• Input source is active

• HFINTOSC is selected as the clock source, 
regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously
selected as the system clock and the CWG clock
source, when the CWG is enabled and the input source
is active, then the CPU will go idle during Sleep, but the
HFINTOSC will remain active and the CWG will con-
tinue to operate. This will have a direct effect on the
Sleep mode current.

Note: Shutdown inputs are level sensitive, not
edge sensitive. The shutdown state can-
not be cleared, except by disabling auto-
shutdown, as long as the shutdown input
level persists.
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 331
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32.2.6 SPI OPERATION IN SLEEP MODE

In SPI Master mode, module clocks may be operating
at a different speed than when in Full-Power mode; in
the case of the Sleep mode, all clocks are halted.

In SPI Master mode, when the Sleep mode is selected,
all module clocks are halted and the
transmission/reception will remain in that state until the
device wakes. After the device returns to Run mode,
the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift
register operates asynchronously to the device. This
allows the device to be placed in Sleep mode and data
to be shifted into the SPI Transmit/Receive Shift
register. When all eight bits have been received, the
MSSP interrupt flag bit will be set and if enabled, will
wake the device.

32.3 I2C MODE OVERVIEW

The Inter-Integrated Circuit (I2C) bus is a multi-master
serial data communication bus. Devices communicate
in a master/slave environment where the master
devices initiate the communication. A slave device is
controlled through addressing.

The I2C bus specifies two signal connections:

• Serial Clock (SCL)

• Serial Data (SDA)

Figure 32-11 shows the block diagram of the MSSP
module when operating in I2C mode.

Both the SCL and SDA connections are bidirectional
open-drain lines, each requiring pull-up resistors for the
supply voltage. Pulling the line to ground is considered
a logical zero and letting the line float is considered a
logical one.

Figure 32-11 shows a typical connection between two
processors configured as master and slave devices.

The I2C bus can operate with one or more master
devices and one or more slave devices. 

There are four potential modes of operation for a given
device:

• Master Transmit mode
(master is transmitting data to a slave)

• Master Receive mode
(master is receiving data from a slave)

• Slave Transmit mode
(slave is transmitting data to a master)

• Slave Receive mode
(slave is receiving data from the master)

To begin communication, a master device starts out in
Master Transmit mode. The master device sends out a
Start bit followed by the address byte of the slave it
intends to communicate with. 

This is followed by a single Read/Write bit, which deter-
mines whether the master intends to transmit to or
receive data from the slave device.

If the requested slave exists on the bus, it will respond
with an Acknowledge bit, otherwise known as an ACK.
The master then continues in either Transmit mode or
Receive mode and the slave continues in the comple-
ment, either in Receive mode or Transmit mode,
respectively.

FIGURE 32-11: I2C MASTER/
SLAVE CONNECTION

The Acknowledge bit (ACK) is an active-low signal,
which holds the SDA line low to indicate to the transmit-
ter that the slave device has received the transmitted
data and is ready to receive more.

The transition of a data bit is always performed while
the SCL line is held low. Transitions that occur while the
SCL line is held high are used to indicate Start and Stop
bits.

On the last byte of data communicated, the master
device may end the transmission by sending a Stop bit.
If the master device is in Receive mode, it sends the
Stop bit in place of the last ACK bit. A Stop bit is
indicated by a low-to-high transition of the SDA line
while the SCL line is held high.

In some cases, the master may want to maintain
control of the bus and re-initiate another transmission.
If so, the master device may send another Start bit in
place of the Stop bit. 

Master

SCL

SDA

SCL

SDA

Slave
VDD

VDD
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 370




 2

0
1

7
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

P
relim

in
ary

D
S

4
0

0
0

1
8

9
7

A
-p

a
g

e
 3

7
6

P
IC

16(L
)F

15313/23

FIG

Data ACK = 1

3 D2 D1 D0
S

S

S

B

S

6 7 8 9

 not sent.

V set because
BUF is still full.

 software
SSP1IF set on 9th
falling edge of 
SCL

P

Bus Master sends 
Stop condition
URE 32-14: I2C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 0, DHEN = 0)

Receiving Address

ACK

Receiving Data

ACK

Receiving 

A7 A6 A5 A4 A3 A2 A1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D
DA

CL

SP1IF

F

SPOV

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 59 9

 ACK is

SSPO
SSP1

Cleared by

First byte
 of data is
 available
 in SSP1BUF

SSP1BUF is read

Cleared by software

S

From Slave to Master



PIC16(L)F15313/23
32.5.8 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I2C bus is such that
the first byte after the Start condition usually deter-
mines which device will be the slave addressed by the
master device. The exception is the general call
address which can address all devices. When this
address is used, all devices should, in theory, respond
with an acknowledge.

The general call address is a reserved address in the
I2C protocol, defined as address 0x00. When the
GCEN bit of the SSP1CON2 register is set, the slave
module will automatically ACK the reception of this
address regardless of the value stored in SSP1ADD.
After the slave clocks in an address of all zeros with
the R/W bit clear, an interrupt is generated and slave
software can read SSP1BUF and respond.
Figure 32-24 shows a general call reception
sequence.

In 10-bit Address mode, the UA bit will not be set on
the reception of the general call address. The slave
will prepare to receive the second byte as data, just as
it would in 7-bit mode.

If the AHEN bit of the SSP1CON3 register is set, just
as with any other address reception, the slave hard-
ware will stretch the clock after the eighth falling edge
of SCL. The slave must then set its ACKDT value and
release the clock with communication progressing as it
would normally.

FIGURE 32-24: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE

32.5.9 SSP MASK REGISTER

An SSP Mask (SSP1MSK) register (Register 32-5) is
available in I2C Slave mode as a mask for the value
held in the SSP1SR register during an address
comparison operation. A zero (‘0’) bit in the SSP1MSK
register has the effect of making the corresponding bit
of the received address a “don’t care”.

This register is reset to all ‘1’s upon any Reset
condition and, therefore, has no effect on standard
SSP operation until written with a mask value.

The SSP Mask register is active during:

• 7-bit Address mode: address compare of A<7:1>.

• 10-bit Address mode: address compare of A<7:0> 
only. The SSP mask has no effect during the 
reception of the first (high) byte of the address.

SDA

SCL

S

SSP1IF

BF (SSP1STAT<0>)

Cleared by software

SSP1BUF is read

R/W = 0

ACKGeneral Call Address

Address is compared to General Call Address

Receiving Data ACK

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

D7 D6 D5 D4 D3 D2 D1 D0

after ACK, set interrupt

GCEN (SSP1CON2<7>)

’1’
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ledge sequence
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EN, start Acknowledge sequence
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matically
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URE 32-29: I2C MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)         
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ACK
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SSP1IF

BF 
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Write to SSP1BUF occurs here,
ACK from Slave
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Cleared by software

start XMIT
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ACKEN
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REGISTER 32-5: SSP1MSK: SSP1 MASK REGISTER

R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1

SSP1MSK<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-1 SSP1MSK<7:1>: Mask bits
1 = The received address bit n is compared to SSP1ADD<n> to detect I2C address match
0 = The received address bit n is not used to detect I2C address match

bit 0 SSP1MSK<0>: Mask bit for I2C Slave mode, 10-bit Address
I2C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):
1 = The received address bit 0 is compared to SSP1ADD<0> to detect I2C address match
0 = The received address bit 0 is not used to detect I2C address match
I2C Slave mode, 7-bit address:
MSK0 bit is ignored.

REGISTER 32-6: SSP1ADD: MSSP1 ADDRESS AND BAUD RATE REGISTER (I2C MODE)

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

SSP1ADD<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

Master mode:

bit 7-0 SSP1ADD<7:0>: Baud Rate Clock Divider bits
SCL pin clock period = ((ADD<7:0> + 1) *4)/FOSC

10-Bit Slave mode – Most Significant Address Byte:

bit 7-3 Not used: Unused for Most Significant Address Byte. Bit state of this register is a “don’t care”. Bit 
pattern sent by master is fixed by I2C specification and must be equal to ‘11110’. However, those bits 
are compared by hardware and are not affected by the value in this register.

bit 2-1 SSP1ADD<2:1>: Two Most Significant bits of 10-bit address

bit 0 Not used: Unused in this mode. Bit state is a “don’t care”.

10-Bit Slave mode – Least Significant Address Byte:

bit 7-0 SSP1ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 7-1 SSP1ADD<7:1>: 7-bit address

bit 0 Not used: Unused in this mode. Bit state is a “don’t care”.
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FIGURE 33-10: SYNCHRONOUS TRANSMISSION       

FIGURE 33-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)        

33.4.1.5 Synchronous Master Reception

Data is received at the RX/DT pin. The RX/DT pin
output driver is automatically disabled when the
EUSART is configured for synchronous master receive
operation.

In Synchronous mode, reception is enabled by setting
either the Single Receive Enable bit (SREN of the
RC1STA register) or the Continuous Receive Enable
bit (CREN of the RC1STA register).

When SREN is set and CREN is clear, only as many
clock cycles are generated as there are data bits in a
single character. The SREN bit is automatically cleared
at the completion of one character. When CREN is set,
clocks are continuously generated until CREN is
cleared. If CREN is cleared in the middle of a character
the CK clock stops immediately and the partial charac-
ter is discarded. If SREN and CREN are both set, then
SREN is cleared at the completion of the first character
and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is
sampled at the RX/DT pin on the trailing edge of the
TX/CK clock pin and is shifted into the Receive Shift
Register (RSR). When a complete character is
received into the RSR, the RX1IF bit is set and the
character is automatically transferred to the two char-
acter receive FIFO. The Least Significant eight bits of
the top character in the receive FIFO are available in
RC1REG. The RX1IF bit remains set as long as there
are unread characters in the receive FIFO.

 bit 0  bit 1  bit 7

Word 1

 bit 2  bit 0  bit 1  bit 7
RX/DT

Write to
TXxREG Reg

TXxIF bit
(Interrupt Flag)

TXEN bit
‘1’ ‘1’

 Word 2

TRMT bit

Write Word 1 Write Word 2

Note: Sync Master mode, SPxBRGL = 0, continuous transmission of two 8-bit words.

pin

TX/CK pin

TX/CK pin

(SCKP = 0)

(SCKP = 1)

RX/DT pin

TX/CK pin

Write to
TXxREG reg

TXxIF bit

TRMT bit

bit 0 bit 1 bit 2 bit 6 bit 7

TXEN bit

Note: If the RX/DT function is on an analog pin,
the corresponding ANSEL bit must be
cleared for the receiver to function.
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REGISTER 33-3: BAUD1CON: BAUD RATE CONTROL REGISTER

R/W-0/0 R-1/1 U-0 R/W-0/0 R/W-0/0 U-0 R/W-0/0 R/W-0/0

ABDOVF RCIDL — SCKP BRG16 — WUE ABDEN

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 ABDOVF: Auto-Baud Detect Overflow bit

Asynchronous mode:
1 = Auto-baud timer overflowed
0 = Auto-baud timer did not overflow
Synchronous mode:
Don’t care

bit 6 RCIDL: Receive Idle Flag bit

Asynchronous mode:
1 = Receiver is Idle
0 = Start bit has been received and the receiver is receiving
Synchronous mode:
Don’t care

bit 5 Unimplemented: Read as ‘0’

bit 4 SCKP: Clock/Transmit Polarity Select bit

Asynchronous mode:

1 = Idle state for transmit (TX) is a low level
0 = Idle state for transmit (TX) is a high level

Synchronous mode:
1 = Idle state for clock (CK) is a high level
0 = Idle state for clock (CK) is a low level

bit 3 BRG16: 16-bit Baud Rate Generator bit

1 = 16-bit Baud Rate Generator is used
0 = 8-bit Baud Rate Generator is used

bit 2 Unimplemented: Read as ‘0’

bit 1 WUE: Wake-up Enable bit

Asynchronous mode:

1 = USART will continue to sample the Rx pin – interrupt generated on falling edge; bit cleared in 
hardware on following rising edge.

0 = RX pin not monitored nor rising edge detected
Synchronous mode:

Unused in this mode – value ignored

bit 0 ABDEN: Auto-Baud Detect Enable bit

Asynchronous mode:

1 = Enable baud rate measurement on the next character – requires reception of a SYNCH field
(55h);
cleared in hardware upon completion

0 = Baud rate measurement disabled or completed
Synchronous mode:
Unused in this mode – value ignored
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TABLE 37-11: RESET, WDT, OSCILLATOR START-UP TIMER, POWER-UP TIMER, BROWN-OUT 
RESET AND LOW-POWER BROWN-OUT RESET SPECIFICATIONS

TABLE 37-12: ANALOG-TO-DIGITAL CONVERTER (ADC) ACCURACY SPECIFICATIONS(1,2):

Standard Operating Conditions (unless otherwise stated)

Param. 
No.

Sym. Characteristic Min. Typ† Max. Units Conditions

RST01* TMCLR MCLR Pulse Width Low to ensure Reset 2 — — s

RST02* TIOZ I/O high-impedance from Reset detection — — 2 s

RST03 TWDT Watchdog Timer Time-out Period — 16 — ms 16 ms Nominal Reset Time

RST04* TPWRT Power-up Timer Period — 65 — ms

RST05 TOST Oscillator Start-up Timer Period(1,2) — 1024 — TOSC

RST06 VBOR Brown-out Reset Voltage(4) 2.55
2.30
1.80

2.70
2.45
1.90

2.85
2.60
2.10

V
V
V

BORV = 0
BORV = 1 (F devices)
BORV = 1 (LF devices)

RST07 VBORHYS Brown-out Reset Hysteresis — 40 — mV

RST08 TBORDC Brown-out Reset Response Time — 3 — s

RST09 VLPBOR Low-Power Brown-out Reset Voltage 1.8 1.9 2.2 V LF Devices Only

* These parameters are characterized but not tested.
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not 

tested.
Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.

2: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 
0.1 F and 0.01 F values in parallel are recommended.

Standard Operating Conditions (unless otherwise stated)
VDD = 3.0V, TA = 25°C

Param. 
No.

Sym. Characteristic Min. Typ† Max. Units Conditions

AD01 NR Resolution — — 10 bit

AD02 EIL Integral Error — ±0.1 ±1.0 LSb ADCREF+ = 3.0V, ADCREF-= 0V

AD03 EDL Differential Error — ±0.1 ±1.0 LSb ADCREF+ = 3.0V, ADCREF-= 0V

AD04 EOFF Offset Error — 0.5 2.0 LSb ADCREF+ = 3.0V, ADCREF-= 0V

AD05 EGN Gain Error — ±0.2 ±1.0 LSb ADCREF+ = 3.0V, ADCREF-= 0V

AD06 VADREF ADC Reference Voltage 
(ADREF+ - ADREF-)

1.8 — VDD V

AD07 VAIN Full-Scale Range ADREF- — ADREF+ V

AD08 ZAIN Recommended Impedance of 
Analog Voltage Source

— 10 — k

AD09 RVREF ADC Voltage Reference Ladder 
Impedance

— 50 — k Note 3

* These parameters are characterized but not tested.
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not 

tested.
Note 1: Total Absolute Error is the sum of the offset, gain and integral non-linearity (INL) errors.

2: The ADC conversion result never decreases with an increase in the input and has no missing codes.
3: This is the impedance seen by the VREF pads when the external reference pads are selected.
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39.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code
development in a PC-hosted environment by simulat-
ing the PIC MCUs and dsPIC DSCs on an instruction
level. On any given instruction, the data areas can be
examined or modified and stimuli can be applied from
a comprehensive stimulus controller. Registers can be
logged to files for further run-time analysis. The trace
buffer and logic analyzer display extend the power of
the simulator to record and track program execution,
actions on I/O, most peripherals and internal registers. 

The MPLAB X SIM Software Simulator fully supports
symbolic debugging using the MPLAB XC Compilers,
and the MPASM and MPLAB Assemblers. The soft-
ware simulator offers the flexibility to develop and
debug code outside of the hardware laboratory envi-
ronment, making it an excellent, economical software
development tool. 

39.7 MPLAB REAL ICE In-Circuit 
Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is
Microchip’s next generation high-speed emulator for
Microchip Flash DSC and MCU devices. It debugs and
programs all 8, 16 and 32-bit MCU, and DSC devices
with the easy-to-use, powerful graphical user interface of
the MPLAB X IDE.

The emulator is connected to the design engineer’s
PC using a high-speed USB 2.0 interface and is
connected to the target with either a connector
compatible with in-circuit debugger systems (RJ-11)
or with the new high-speed, noise tolerant, Low-
Voltage Differential Signal (LVDS) interconnection
(CAT5). 

The emulator is field upgradeable through future firm-
ware downloads in MPLAB X IDE. MPLAB REAL ICE
offers significant advantages over competitive emulators
including full-speed emulation, run-time variable
watches, trace analysis, complex breakpoints, logic
probes, a ruggedized probe interface and long (up to
three meters) interconnection cables.

39.8 MPLAB ICD 3 In-Circuit Debugger 
System

The MPLAB ICD 3 In-Circuit Debugger System is
Microchip’s most cost-effective, high-speed hardware
debugger/programmer for Microchip Flash DSC and
MCU devices. It debugs and programs PIC Flash
microcontrollers and dsPIC DSCs with the powerful,
yet easy-to-use graphical user interface of the MPLAB
IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is
connected to the design engineer’s PC using a high-
speed USB 2.0 interface and is connected to the target
with a connector compatible with the MPLAB ICD 2 or
MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3
supports all MPLAB ICD 2 headers.

39.9 PICkit 3 In-Circuit Debugger/
Programmer

The MPLAB PICkit 3 allows debugging and program-
ming of PIC and dsPIC Flash microcontrollers at a most
affordable price point using the powerful graphical user
interface of the MPLAB IDE. The MPLAB PICkit 3 is
connected to the design engineer’s PC using a full-
speed USB interface and can be connected to the tar-
get via a Microchip debug (RJ-11) connector (compati-
ble with MPLAB ICD 3 and MPLAB REAL ICE). The
connector uses two device I/O pins and the Reset line
to implement in-circuit debugging and In-Circuit Serial
Programming™ (ICSP™).

39.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal,
CE compliant device programmer with programmable
voltage verification at VDDMIN and VDDMAX for
maximum reliability. It features a large LCD display
(128 x 64) for menus and error messages, and a mod-
ular, detachable socket assembly to support various
package types. The ICSP cable assembly is included
as a standard item. In Stand-Alone mode, the MPLAB
PM3 Device Programmer can read, verify and program
PIC devices without a PC connection. It can also set
code protection in this mode. The MPLAB PM3
connects to the host PC via an RS-232 or USB cable.
The MPLAB PM3 has high-speed communications and
optimized algorithms for quick programming of large
memory devices, and incorporates an MMC card for file
storage and data applications.
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Note: For the most current package drawings, please see the Microchip Packaging Specification located at 
http://www.microchip.com/packaging
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