

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Betans	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 5x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15313t-i-rf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IADLL -	-10. SI LOI	ALTONCTION	IN EQUOTEIN		DANKS 0-	03 (0014111					
Address	Name	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0						Value on: POR, BOR	V <u>alue o</u> n: MCLR		
Bank 1											
	CPU CORE REGISTERS; see Table 4-3 for specifics										
08Ch 09Ah	_		Unimplemented								—
09Bh	ADRESL	ADC Result Register I	LOW							XXXX XXXX	uuuu uuuu
09Ch	ADRESH	ADC Result Register H	High							XXXX XXXX	uuuu uuuu
09Dh	ADCON0		CHS<5:0> GO/DONE ADON							0000 0000	0000 0000
09Eh	ADCON1	ADFM	DFM ADCS<2:0> — — ADPREF<1:0>						000000	000000	
09Fh	ADACT	_	— — — ADACT<4:0>							0 0000	0 0000

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 6											
						see Table 4-3 for	specifics				
					CE REGIOTERO,		specifics				
30Ch	CCPR1L Capture/Compare/PWM Register 1 (LSB)									xxxx xxxx	սսսս սսսս
30Dh	CCPR1H	Capture/Compare/PWM Register 1 (MSB)									սսսս սսսս
30Eh	CCP1CON	EN	—	OUT	FMT		МО	DE<3:0>		0-00 0000	0-00 0000
30Fh	CCP1CAP	—	—	—	—	—		CTS<2:0>		000	000
310h	CCPR2L	Capture/Compare/P\	NM Register 2 (LS	SB)						xxxx xxxx	սսսս սսսս
311h	CCPR2H	Capture/Compare/P\	NM Register 2 (M	SB)						xxxx xxxx	սսսս սսսս
312h	CCP2CON	EN	—	OUT	FMT	MODE<3:0>				0-00 0000	0-00 0000
313h	CCP2CAP	—	—	—	—	—		CTS<2:0>		000	000
314h	PWM3DCL	DC<1:	0>	—	—	—	—	—	_	xx	uu
315h	PWM3DCH				DC<	9:0>				xxxx xxxx	uuuu uuuu
316h	PWM3CON	EN	—	OUT	POL	—	—	—	—	0-00	0-00
317h	—				Unimple	mented				—	—
318h	PWM4DCL	DC<1:	0>	—	—	—	—	—	_	xx	uu
319h	PWM4DCH				DC<	9:0>				xxxx xxxx	uuuu uuuu
31Ah	PWM4CON	EN	—	OUT	POL	—	—	—	—	0-00	0-00
31Bh	—				Unimple	mented				—	—
31Ch	PWM5DCL	5DCL DC<1:0> — — — — — — —									uu
31Dh	PWM5DCH				DC<	9:0>				xxxx xxxx	uuuu uuuu
31Eh	PWM5CON	EN	—	OUT	POL	—	-	—	—	0-00	0-00
31Fh	—				Unimple	mented				-	_

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 14			•				•	•			
				CPU COF	RE REGISTERS;	see Table 4-3 for	r specifics				
70Ch	PIR0	_	_	TMR0IF	IOCIF	_	_	_	INTE	000	000
70Dh	PIR1	OSFIF	CSWIF				_		ADIF	0000	000
70Eh	PIR2	_	ZCDIF	_	_	_	_	C2IF ⁽¹⁾	C1IF	-000	-000
70Fh	PIR3	_	_	RC1IF	TX1IF	_	_	BCL1IF	SSP1IF	0000	000
710h	PIR4	_	_	—	_	_	_	TMR2IF	TMR1IF	00	0
711h	PIR5	CLC4IF	CLC3IF	CLC2IF	CLC1IF	_	_	-	TMR1GIF	00000	0000
712h	PIR6	_	_	_	_	_	_	CCP2IF	CCP1IF	00	0
713h	PIR7	_	—	NVMIF	NCO1IF	—	—	—	CWG1IF	000	00
714h	_				Unimple	mented				-	—
715h	—				Unimple	mented				—	—
716h	PIE0	—	—	TMR0IE	IOCIE	—	—	—	INTE	000	00
717h	PIE1	OSFIE	CSWIE	—	—	—	—	—	ADIE	0000	0000
718h	PIE2	—	ZCDIE	—	—	—	—	C2IE ⁽¹⁾	C1IE	-000	-00
719h	PIE3	—	_	RC1IE	TX1IE	_	_	BCL1IE	SSP1IE	0000	000
71Ah	PIE4	_	_	_	_	_	_	TMR2IE	TMR1IE	00	0
71Bh	PIE5	CLC4IE	CLC3IE	CLC2IE	CLC1IE	_	—	—	TMR1GIE	00000	0000
71Ch	PIE6	—	—	_	_	_		CCP2IE	CCP1IE	00	0
71Dh	PIE7	_	—	NVMIE	NCO1IE	—	—	_	CWG1IE	000	00
71Eh	—				Unimple	mented				—	_
71Fh	—				Unimple	mented				-	_

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Present only on PIC16(L)F15323.

Address	Name	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on: POR, BOR Value on: MCLR								V <u>alue o</u> n: MCLR
Bank 21-59	9										
	CPU CORE REGISTERS; see Table 4-3 for specifics										
x0Ch/ x8Ch 	<pre>k8Ch Unimplemented</pre>										
Legend:											

PIC16(L)F15313/23

IRE 4-5:	ACCI		-		
					Rev. 10-000438 7/30/2013
			0x0F]
			0x0F		-
			0x0L		-
			0x0C		-
			0x0C		
			0x0A		
			0x09		This figure shows the stack configuration
			0x08		after the first CALL or a single interrupt.
			0x07		If a RETURN instruction is executed, the return address will be placed in the
			0x06		Program Counter and the Stack Pointer decremented to the empty state (0x1F).
			0x05		
			0x04		
			0x03		
			0x02		
		4	0x01		
	TOSL		0x00	Return Address	STKPTR = 0x00
тозн: IRE 4-6:	ACCI	ESSING TH	IE STA	CK EXAMPLE :	3
	ACCI	ESSING TH	IE STA	CK EXAMPLE :	3 Rev: 10-00043C 7/9/2013
	ACCI	ESSING TH	IE STA	CK EXAMPLE :	
	ACCI	ESSING TH	IE STA	CK EXAMPLE :	
	ACCI	ESSING TH		CK EXAMPLE :	
	ACCI	ESSING TH	0x0F	CK EXAMPLE :	
	ACCI	ESSING TH	0x0F 0x0E	CK EXAMPLE :	
	ACCI	ESSING TH	0x0F 0x0E 0x0D 0x0C 0x0B	CK EXAMPLE :	After seven CALLs or six CALLs and an interrupt, the stack looks like the figure on
	ACCI	ESSING TH	0x0F 0x0E 0x0D 0x0C 0x0B 0x0A	CK EXAMPLE :	After seven CALLs or six CALLs and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into
	ACCI	ESSING TH	0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x0A		After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will
	ACCI	ESSING TH	0x0F 0x0E 0x0D 0x0C 0x0B 0x0B 0x0A 0x09 0x08		After seven CALLs or six CALLs and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into
IRE 4-6:		ESSING TH	0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07		After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
IRE 4-6:	ACCI	ESSING TH	0x0F 0x0E 0x0D 0x0C 0x0B 0x0B 0x0A 0x09 0x08 0x07	Return Address	After seven CALLs or six CALLs and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into
IRE 4-6:		<u>ESSING TH</u>	0x0F 0x0D 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06 0x05	Return Address Return Address	After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
IRE 4-6:		<u>ESSING TH</u>	0x0F 0x0E 0x0D 0x0C 0x0B 0x0B 0x08 0x09 0x08 0x07 0x06 0x05 0x04	Return Address Return Address Return Address	After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
IRE 4-6:		<u>ESSING T</u>	0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06 0x05 0x04 0x03	Return Address Return Address Return Address Return Address Return Address	After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
IRE 4-6:		<u>ESSING T</u>	0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06 0x05 0x04 0x03 0x02	Return Address Return Address Return Address Return Address Return Address Return Address	After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
IRE 4-6:		<u>ESSING T</u>	0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06 0x05 0x04 0x03	Return Address Return Address Return Address Return Address Return Address	After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.

INPUT SIGNAL	Innut Desister Norma	Default Location	Reset Value	Remappable to Pins of PORTx		
NAME	Input Register Name	at POR	(xxxPPS<4:0>)	PIC16(L)F15313		
				PORTA		
INT	INTPPS	RA2	00010	•		
TOCKI	T0CKIPPS	RA2	00010	•		
T1CKI	T1CKIPSS	RA5	00101	•		
T1G	T1GPPS	RA4	00100	•		
T2IN	T2INPPS	RA5	00101	•		
CCP1	CCP1PPS	RA5	00101	•		
CCP2	CCP2PPS	RA5	00101	•		
CWG1IN	CWG1INPPS	RA2	00010	•		
CLCIN0	CLCIN0PPS	RA3	00011	•		
CLCIN1	CLCIN1PPS	RA5	00101	•		
CLCIN2	CLCIN2PPS	RA1	00001	•		
CLCIN3	CLCIN3PPS	RA0	00000	•		
ADACT	ADACTPPS	RA5	00101	•		
SCK1/SCL1	SSP1CLKPPS	RA1	00001	•		
SDI1/SDA1	SSP1DATPPS	RA2	00010	•		
SS1	SSP1SS1PPS	RA3	00011	•		
RX1/DT1	RX1PPS	RA1	00001	•		
CK1	TX1PPS	RA0	00000	•		

TABLE 15-1: PPS INPUT SIGNAL ROUTING OPTIONS (PIC16(L)F15313)

15.3 Bidirectional Pins

PPS selections for peripherals with bidirectional signals on a single pin must be made so that the PPS input and PPS output select the same pin. Peripherals that have bidirectional signals include:

- EUSART (synchronous operation)
- MSSP (I²C)
- The I²C SCLx and SDAx functions can be Note: remapped through PPS. However, only the RB1, RB2, RC3 and RC4 pins have the I²C and SMBus specific input buffers implemented (I²C mode disables INLVL and sets thresholds that are specific for I^2C). If the SCLx or SDAx functions are mapped to some other pin (other than RB1, RB2, RC3 or RC4), the general purpose TTL or ST input buffers (as configured based on INLVL register setting) will be used instead. In most applications, it is therefore recommended only to map the SCLx and SDAx pin functions to the RB1, RB2, RC3 or RC4 pins.

15.4 PPS Lock

The PPS includes a mode in which all input and output selections can be locked to prevent inadvertent changes. PPS selections are locked by setting the PPSLOCKED bit of the PPSLOCK register. Setting and clearing this bit requires a special sequence as an extra precaution against inadvertent changes. Examples of setting and clearing the PPSLOCKED bit are shown in Example 15-1.

EXAMPLE 15-1: PPS LOCK/UNLOCK SEQUENCE

;	suspend interrupts
	BCF INTCON, GIE
;	BANKSEL PPSLOCK ; set bank
;	required sequence, next 5 instructions
	MOVLW 0x55
	MOVWF PPSLOCK
	MOVLW 0xAA
	MOVWF PPSLOCK
;	Set PPSLOCKED bit to disable writes or
;	Clear PPSLOCKED bit to enable writes
	BSF PPSLOCK, PPSLOCKED
;	restore interrupts
	BSF INTCON, GIE

15.5 PPS Permanent Lock

The PPS can be permanently locked by setting the PPS1WAY Configuration bit. When this bit is set, the PPSLOCKED bit can only be cleared and set one time after a device Reset. This allows for clearing the PPSLOCKED bit so that the input and output selections can be made during initialization. When the PPSLOCKED bit is set after all selections have been made, it will remain set and cannot be cleared until after the next device Reset event.

15.6 Operation During Sleep

PPS input and output selections are unaffected by Sleep.

15.7 Effects of a Reset

A device Power-on-Reset (POR) clears all PPS input and output selections to their default values (Permanent Lock Removed). All other Resets leave the selections unchanged. Default input selections are shown in Table 15-1 and Table 15-2.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
PMD0	SYSCMD	FVRMD	-	—	-	NVMMD	CLKRMD	IOCMD	195
PMD1	NCO1MD	—	_	_	_	TMR2MD	TMR1MD	TMR0MD	196
PMD2	—	DAC1MD	ADCMD	_	_	CMP2MD	CMP1MD	ZCDMD	197
PMD3	—	—	PWM6MD	PWM5MD	PWM4MD	PWM3MD	CCP2MD	CCP1MD	198
PMD4	_	UART1MD	_	MSSP1MD	—	—	—	CWG1MD	199
PMD5	—	—		CLC4MD	CLC3MD	CLC2MD	CLC1MD		200

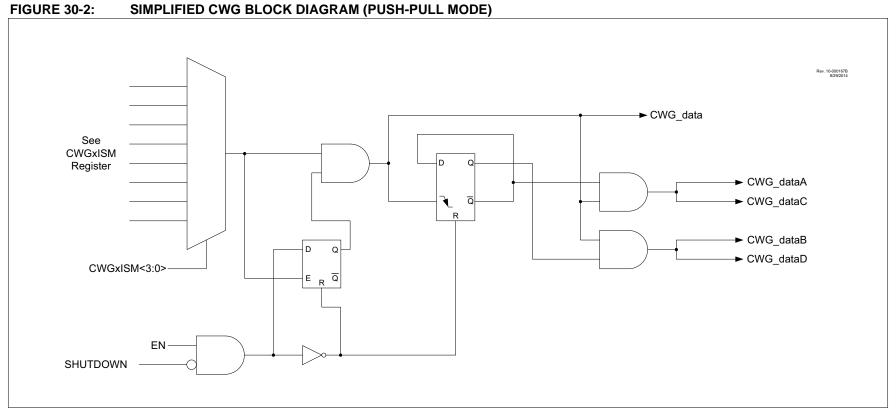
 TABLE 16-1:
 SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the PPS module.

20.4 Register Definitions: ADC Control

REGISTER 20-1: ADCON0: ADC CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
		CHS<	5:0>			GO/DONE	ADON
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpleme	nted bit, read as '	ʻ0'	
u = Bit is unch	anged	x = Bit is unknow	vn	-n/n = Value at F	POR and BOR/Va	alue at all other Re	sets
'1' = Bit is set		'0' = Bit is cleare	d				
bit 7-2		Analog Channel Sele	(-)				
	111111 =	FVR Buffer 2 refere					
	111110 = 111101 =	FVR 1Buffer 1 refer DAC1 output voltag					
	111101 =	Temperature senso	(m)				
	1110011 =	AVss (Analog Grou					
	010111 =	Reserved	iu)				
	010110 =	Reserved					
	010101 =	RC5 ⁽⁴⁾					
	010100 =	RC4 ⁽⁴⁾					
	010011 =	RC3 ⁽⁴⁾					
	010010 =	RC2 ⁽⁴⁾					
	010001 =	RC1 ⁽⁴⁾					
	010000 =	RC0 ⁽⁴⁾					
	001111 =	Reserved					
	•						
	•						
	•						
	000110 =	Reserved					
	000101 =	RA5 ⁽⁵⁾					
	000100 =	RA4 ⁽⁵⁾					
	000011 = 000010 =	RA3 RA2					
	000010 =	RAZ RA1					
	0000001 -	RA1 RA0					
bit 1	GO/DONE: /	ADC Conversion Stat	us bit				
	1 = ADC cor	version cycle in prog	ress. Setting this	bit starts an ADC	conversion cycle		
	This bit is	s automatically cleare	d by hardware w	hen the ADC conv	version has comp	leted.	
	0 = ADC cor	version completed/ne	ot in progress				
bit 0	ADON: ADC	Enable bit					
	1 = ADC is e						
	0 = ADC is d	lisabled and consume	es no operating o	current			
Note 1: S	ee Section 21 0	"5-Bit Digital-to-Ana	alog Converter	(DAC1) Module" f	or more informati	ion	
		"Fixed Voltage Refe	•	. ,			
		"Temperature Indic	• •				


- 4: Present only on the PIC16(L)F15323.
- 5: The analog functionality on the channels RA4 and RA5 is disabled when the system clock source is an external oscillator.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_	_	—	—	—	INTEDG	121
PIE1	OSFIE	CSWIE	_	_	—	—	—	ADIE	123
PIR1	OSFIF	CSWIF	_	_	_	_	_	ADIF	131
TRISA	_	_	TRISA5	TRISA4	—	TRISA2	TRISA1	TRISA0	175
ANSELC ⁽¹⁾	_		ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	182
ADCON0			CHS<	5:0>			GO/DONE	ADON	223
ADCON1	ADFM		ADCS<2:0>		_	—	ADPREF	224	
ADACT	—	—	_			ADACT<4	:0>		225
ADRESH				ADRE	SH<7:0>				226
ADRESL				ADRE	SL<7:0>				226
FVRCON	FVREN	FVRRDY	TSEN	TSRNG CDAFVR<1:0> ADFVR<1:0>				210	
DAC1CON1	_	—		DAC1R<4:0>			232		
OSCSTAT1	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR		PLLR	112

TABLE 20-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: – = unimplemented read as '0'. Shaded cells are not used for the ADC module.

Note 1: Present on PIC16(L)F15323PIC16(L)F15323 only.

SIMPLIFIED CWG BLOCK DIAGRAM (PUSH-PULL MODE)

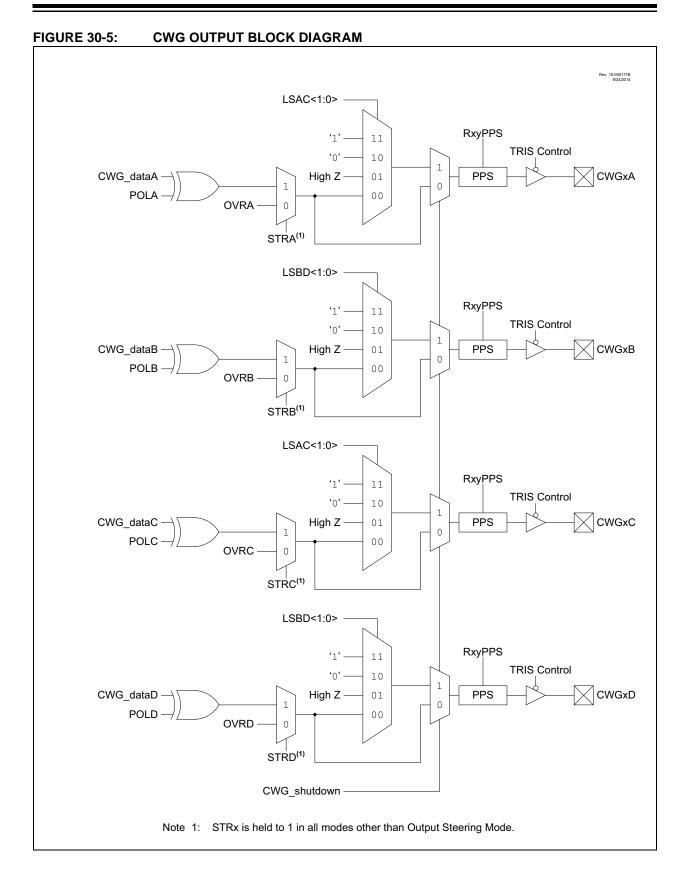
PIC16(L)F15313/23

30.3 Selectable Input Sources

The CWG generates the output waveforms from the input sources in Table 30-2.

TABLE 30-2: SELECTABLE INPUT SOURCES

Source Peripheral	Signal Name
CWG input PPS pin	CWG1IN PPS
CCP1	CCP1_out
CCP2	CCP2_out
PWM3	PWM3_out
PWM4	PWM4_out
PWM5	PWM5_out
PWM6	PWM6_out
NCO	NCO1_out
Comparator C1	C1OUT_sync
Comparator C2	C2OUT_sync
CLC1	LC1_out
CLC2	LC2_out
CLC3	LC3_out
CLC4	LC4_out


The input sources are selected using the CWG1ISM register.

30.4 Output Control

30.4.1 POLARITY CONTROL

The polarity of each CWG output can be selected independently. When the output polarity bit is set, the corresponding output is active-high. Clearing the output polarity bit configures the corresponding output as active-low. However, polarity does not affect the override levels. Output polarity is selected with the POLx bits of the CWG1CON1. Auto-shutdown and steering options are unaffected by polarity.

PIC16(L)F15313/23

TABLE 30-3:SUMMARY OF REGISTERS ASSOCIATED WITH CWG

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CWG1CLKCON	-	_	-	_	_	-	-	CS	341
CWG1ISM	_	_	_	_		341			
CWG1DBR	_	_	DBR<5:0>						337
CWG1DBF	_	_	DBF<5:0>						337
CWG1CON0	EN	LD	— — — MODE<2:0>					340	
CWG1CON1	_	_	IN	_	POLD	POLC	POLB	POLA	336
CWG1AS0	SHUTDOWN	REN	LSBD<1:0>		LSAC	<1:0>	—	_	338
CWG1AS1	_	_	_	AS4E	AS3E	AS2E	AS1E	AS0E	339
CWG1STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	340

Legend: -= unimplemented locations read as '0'. Shaded cells are not used by CWG.

33.4 EUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

33.4.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART for synchronous master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TX1STA register configures the device for synchronous operation. Setting the CSRC bit of the TX1STA register configures the device as a master. Clearing the SREN and CREN bits of the RC1STA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RC1STA register enables the EUSART.

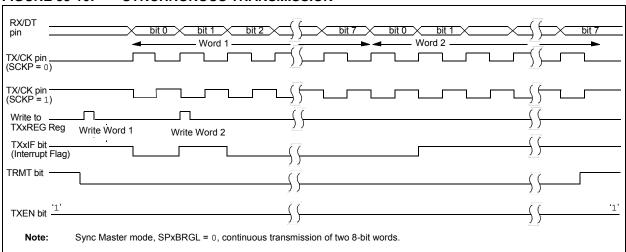
33.4.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TX/CK line. The TX/CK pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

33.4.1.2 Clock Polarity

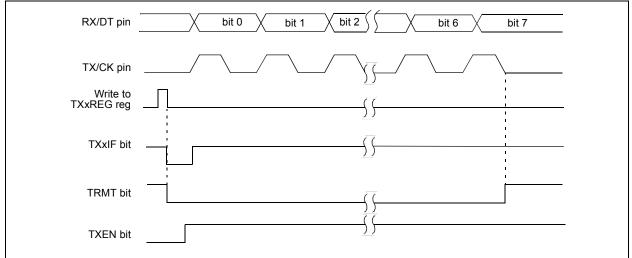
A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the SCKP bit of the BAUD1CON register. Setting the SCKP bit sets the clock Idle state as high. When the SCKP bit is set, the data changes on the falling edge of each clock. Clearing the SCKP bit sets the Idle state as low. When the SCKP bit is cleared, the data changes on the rising edge of each clock.

33.4.1.3 Synchronous Master Transmission


Data is transferred out of the device on the RX/DT pin. The RX/DT and TX/CK pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation.

A transmission is initiated by writing a character to the TX1REG register. If the TSR still contains all or part of a previous character the new character data is held in the TX1REG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TX1REG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TX1REG.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.


Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

- 33.4.1.4 Synchronous Master Transmission Set-up:
- Initialize the SP1BRGH, SP1BRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 33.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Disable Receive mode by clearing bits SREN and CREN.
- 4. Enable Transmit mode by setting the TXEN bit.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. If interrupts are desired, set the TX1IE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 8. Start transmission by loading data to the TX1REG register.

FIGURE 33-10: SYNCHRONOUS TRANSMISSION

33.4.1.5 Synchronous Master Reception

Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RC1STA register) or the Continuous Receive Enable bit (CREN of the RC1STA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence. To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RX1IF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RC1REG. The RX1IF bit remains set as long as there are unread characters in the receive FIFO.

Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

38.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

Unless otherwise noted, all graphs apply to both the L and LF devices.

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum", "Max.", "Minimum" or "Min." represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.

Charts and graphs are not available at this time.

39.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

39.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

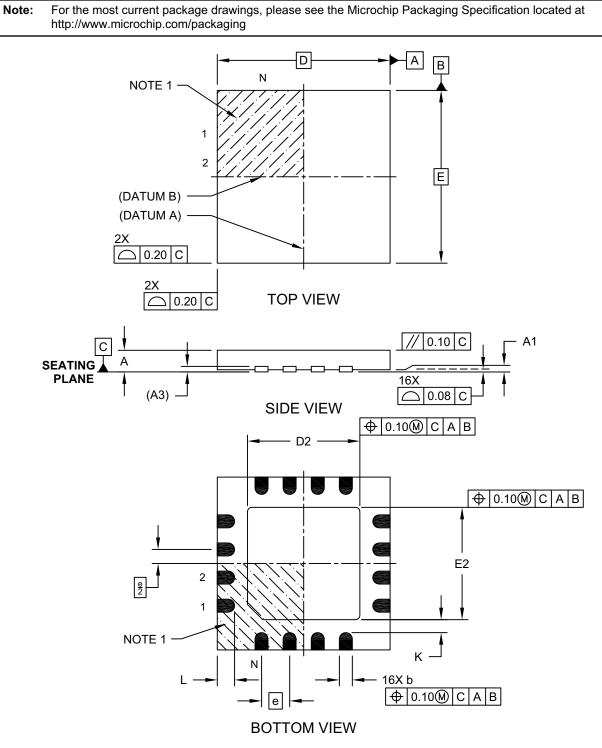
- Integration into MPLAB X IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

39.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:


- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

39.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body [UQFN]

Microchip Technology Drawing C04-257A Sheet 1 of 2

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	·	Emperature Range	/XX Package	XXX Pattern		amples PIC16 Exten	
Package: ⁽²⁾ Package:	E = -40°C JQ = 16-lea MF = 8-leaa P = 8-leaa SL = 14-lea SN = 8-leaa	to +125°C (I ad UQFN 4x4x0. I DFN 3x3mm I 14-lead PDIP ad SOIC I SOIC I SOIC ad TSSOP	Extended) 5mm		Not	e 1: 2:	Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option. Small form-factor packaging options may be available. Check www.microchip.com/packaging for small-form factor package availability, or contact your local Sales Office.
							contact your local sales Office.