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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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PIC16(L)F15313/23
1.1 Register and Bit Naming 
Conventions

1.1.1 REGISTER NAMES

When there are multiple instances of the same
peripheral in a device, the peripheral control registers
will be depicted as the concatenation of a peripheral
identifier, peripheral instance, and control identifier.
The control registers section will show just one
instance of all the register names with an ‘x’ in the place
of the peripheral instance number. This naming
convention may also be applied to peripherals when
there is only one instance of that peripheral in the
device to maintain compatibility with other devices in
the family that contain more than one.

1.1.2 BIT NAMES

There are two variants for bit names:

• Short name: Bit function abbreviation

• Long name: Peripheral abbreviation + short name

1.1.2.1 Short Bit Names

Short bit names are an abbreviation for the bit function.
For example, some peripherals are enabled with the
EN bit. The bit names shown in the registers are the
short name variant.

Short bit names are useful when accessing bits in C
programs. The general format for accessing bits by the
short name is RegisterNamebits.ShortName. For
example, the enable bit, EN, in the COG1CON0 regis-
ter can be set in C programs with the instruction
COG1CON0bits.EN = 1.

Short names are generally not useful in assembly
programs because the same name may be used by
different peripherals in different bit positions. When this
occurs, during the include file generation, all instances
of that short bit name are appended with an underscore
plus the name of the register in which the bit resides to
avoid naming contentions.

1.1.2.2 Long Bit Names

Long bit names are constructed by adding a peripheral
abbreviation prefix to the short name. The prefix is
unique to the peripheral thereby making every long bit
name unique. The long bit name for the COG1 enable
bit is the COG1 prefix, G1, appended with the enable
bit short name, EN, resulting in the unique bit name
G1EN.

Long bit names are useful in both C and assembly pro-
grams. For example, in C the COG1CON0 enable bit
can be set with the G1EN = 1 instruction. In assembly,
this bit can be set with the BSF COG1CON0,G1EN
instruction. 

1.1.2.3 Bit Fields

Bit fields are two or more adjacent bits in the same
register. Bit fields adhere only to the short bit naming
convention. For example, the three Least Significant
bits of the COG1CON0 register contain the mode
control bits. The short name for this field is MD. There
is no long bit name variant. Bit field access is only
possible in C programs. The following example
demonstrates a C program instruction for setting the
COG1 to the Push-Pull mode:

COG1CON0bits.MD = 0x5;

Individual bits in a bit field can also be accessed with
long and short bit names. Each bit is the field name
appended with the number of the bit position within the
field. For example, the Most Significant mode bit has
the short bit name MD2 and the long bit name is
G1MD2. The following two examples demonstrate
assembly program sequences for setting the COG1 to
Push-Pull mode:

Example 1:

MOVLW  ~(1<<G1MD1)
ANDWF  COG1CON0,F
MOVLW  1<<G1MD2 | 1<<G1MD0
IORWF  COG1CON0,F

Example 2:

BSF    COG1CON0,G1MD2
BCF    COG1CON0,G1MD1
BSF    COG1CON0,G1MD0

1.1.3 REGISTER AND BIT NAMING 
EXCEPTIONS

1.1.3.1 Status, Interrupt, and Mirror Bits

Status, interrupt enables, interrupt flags, and mirror bits
are contained in registers that span more than one
peripheral. In these cases, the bit name shown is
unique so there is no prefix or short name variant.

1.1.3.2 Legacy Peripherals

There are some peripherals that do not strictly adhere
to these naming conventions. Peripherals that have
existed for many years and are present in almost every
device are the exceptions. These exceptions were
necessary to limit the adverse impact of the new
conventions on legacy code. Peripherals that do
adhere to the new convention will include a table in the
registers section indicating the long name prefix for
each peripheral instance. Peripherals that fall into the
exception category will not have this table. These
peripherals include, but are not limited to, the following:

• EUSART

• MSSP
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 12



PIC16(L)F15313/23
2.5 External Oscillator Pins

Many microcontrollers have options for at least two
oscillators: a high-frequency primary oscillator and a
low-frequency secondary oscillator (refer to
Section 9.0 “Oscillator Module (with Fail-Safe
Clock Monitor)” for details). The PIC16(L)F15313/23
devices do not have a secondary oscillator.

The oscillator circuit should be placed on the same
side of the board as the device. Place the oscillator
circuit close to the respective oscillator pins with no
more than 0.5 inch (12 mm) between the circuit
components and the pins. The load capacitors should
be placed next to the oscillator itself, on the same side
of the board. 

Use a grounded copper pour around the oscillator cir-
cuit to isolate it from surrounding circuits. The
grounded copper pour should be routed directly to the
MCU ground. Do not run any signal traces or power
traces inside the ground pour. Also, if using a two-sided
board, avoid any traces on the other side of the board
where the crystal is placed. 

Layout suggestions are shown in Figure 2-3. In-line
packages may be handled with a single-sided layout
that completely encompasses the oscillator pins. With
fine-pitch packages, it is not always possible to com-
pletely surround the pins and components. A suitable
solution is to tie the broken guard sections to a mirrored
ground layer. In all cases, the guard trace(s) must be
returned to ground.

In planning the application’s routing and I/O assign-
ments, ensure that adjacent port pins, and other
signals in close proximity to the oscillator, are benign
(i.e., free of high frequencies, short rise and fall times,
and other similar noise).

For additional information and design guidance on
oscillator circuits, refer to these Microchip Application
Notes, available at the corporate website
(www.microchip.com):

• AN826, “Crystal Oscillator Basics and Crystal 
Selection for rfPIC™ and PICmicro® Devices”

• AN849, “Basic PICmicro® Oscillator Design”

• AN943, “Practical PICmicro® Oscillator Analysis 
and Design”

• AN949, “Making Your Oscillator Work”

2.6 Unused I/Os

Unused I/O pins should be configured as outputs and
driven to a logic low state. Alternatively, connect a 1 kΩ
to 10 kΩ resistor to VSS on unused pins and drive the
output to logic low.

FIGURE 2-3: SUGGESTED 
PLACEMENT OF THE 
OSCILLATOR CIRCUIT
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CPU CORE REGISTERS; see Table 4-3 for specifics
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PIC16(L)F15313/23
4.5 Stack

All devices have a 16-level x 15-bit wide hardware
stack (refer to Figure 4-4 through Figure 4-7). The
stack space is not part of either program or data space.
The PC is PUSHed onto the stack when CALL or
CALLW instructions are executed or an interrupt causes
a branch. The stack is POPed in the event of a
RETURN, RETLW or a RETFIE instruction execution.
PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer if the STVREN
bit is programmed to ‘0‘ (Configuration Words). This
means that after the stack has been PUSHed sixteen
times, the seventeenth PUSH overwrites the value that
was stored from the first PUSH. The eighteenth PUSH
overwrites the second PUSH (and so on). The
STKOVF and STKUNF flag bits will be set on an
Overflow/Underflow, regardless of whether the Reset is
enabled.

4.5.1 ACCESSING THE STACK

The stack is accessible through the TOSH, TOSL and
STKPTR registers. STKPTR is the current value of the
Stack Pointer. TOSH:TOSL register pair points to the
TOP of the stack. Both registers are read/writable. TOS
is split into TOSH and TOSL due to the 15-bit size of the
PC. To access the stack, adjust the value of STKPTR,
which will position TOSH:TOSL, then read/write to
TOSH:TOSL. STKPTR is five bits to allow detection of
overflow and underflow.

During normal program operation, CALL, CALLW and
interrupts will increment STKPTR while RETLW,
RETURN, and RETFIE will decrement STKPTR.
STKPTR can be monitored to obtain to value of stack
memory left at any given time. The STKPTR always
points at the currently used place on the stack.
Therefore, a CALL or CALLW will increment the
STKPTR and then write the PC, and a return will
unload the PC value from the stack and then
decrement the STKPTR.

Reference Figure 4-4 through Figure 4-7 for examples
of accessing the stack.

FIGURE 4-4: ACCESSING THE STACK EXAMPLE 1

Note 1: There are no instructions/mnemonics
called PUSH or POP. These are actions
that occur from the execution of the
CALL, CALLW, RETURN, RETLW and
RETFIE instructions or the vectoring to
an interrupt address.

Note: Care should be taken when modifying the
STKPTR while interrupts are enabled.

STKPTR = 0x1F
Stack Reset Disabled
(STVREN = 0)

Stack Reset Enabled
(STVREN = 1)

Initial Stack Configuration:

After Reset, the stack is empty. The
empty stack is initialized so the Stack
Pointer is pointing at 0x1F. If the Stack
Overflow/Underflow Reset is enabled, the
TOSH/TOSL register will return ‘0’. If the
Stack Overflow/Underflow Reset is
disabled, the TOSH/TOSL register will
return the contents of stack address
0x0F.

0x0000 STKPTR = 0x1F

TOSH:TOSL 0x0F

0x0E

0x0D

0x0C

0x0B

0x0A

0x09

0x08

0x07

0x06

0x04

0x05

0x03

0x02

0x01

0x00

0x1FTOSH:TOSL

Rev. 10-000043A
7/30/2013
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PIC16(L)F15313/23
REGISTER 10-8: PIE6: PERIPHERAL INTERRUPT ENABLE REGISTER 6

U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0

— — — — — — CCP2IE CCP1IE

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared HS = Hardware set

bit 7-2 Unimplemented: Read as ‘0’.

bit 1 CCP2IE: CCP2 Interrupt Enable bit
1 = CCP2 interrupt is enabled
0 = CCP2 interrupt is disabled

bit 0 CCP1IE: CCP1 Interrupt Enable bit
1 = CCP1 interrupt is enabled
0 =   CCP1 interrupt is disabled

Note: Bit PEIE of the INTCON register must be
set to enable any peripheral interrupt
controlled by registers PIE1-PIE7.
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 128
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REGISTER 10-17: PIR7: PERIPHERAL INTERRUPT REQUEST REGISTER 7

U-0 U-0 R/W/HS-0/0 R/W/HS-0/0 U-0 U-0 U-0 R/W/HS-0/0

— — NVMIF NCO1IF — — — CWG1IF

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared HS = Hardware set

bit 7-6 Unimplemented: Read as ‘0’

bit 5 NVMIF: Nonvolatile Memory (NVM) Interrupt Flag bit

1 = The requested NVM operation has completed 
0 = NVM interrupt not asserted

bit 4 NCO1IF: Numerically Controlled Oscillator (NCO) Interrupt Flag bit

1 = The NCO has rolled over
0 = No NCO interrupt event has occurred

bit 3-1 Unimplemented: Read as ‘0’

bit 0 CWG1IF: CWG1 Interrupt Flag bit

1 = CWG1 has gone into shutdown
0 = CWG1 is operating normally, or interrupt cleared

Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the Global
Enable bit, GIE, of the INTCON register.
User software should ensure the
appropriate interrupt flag bits are clear
prior to enabling an interrupt.
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 137
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11.1.2 INTERRUPTS DURING DOZE

If an interrupt occurs and the Recover-on-Interrupt bit
is clear (ROI = 0) at the time of the interrupt, the
Interrupt Service Routine (ISR) continues to execute at
the rate selected by DOZE<2:0>. Interrupt latency is
extended by the DOZE<2:0> ratio.

If an interrupt occurs and the ROI bit is set (ROI = 1) at
the time of the interrupt, the DOZEN bit is cleared and
the CPU executes at full speed. The prefetched
instruction is executed and then the interrupt vector
sequence is executed. In Figure 11-1, the interrupt
occurs during the 2nd instruction cycle of the Doze
period, and immediately brings the CPU out of Doze. If
the Doze-On-Exit (DOE) bit is set (DOE = 1) when the
RETFIE operation is executed, DOZEN is set, and the
CPU executes at the reduced rate based on the
DOZE<2:0> ratio.

11.2 Sleep Mode

Sleep mode is entered by executing the SLEEP
instruction, while the Idle Enable (IDLEN) bit of the
CPUDOZE register is clear (IDLEN = 0). If the SLEEP
instruction is executed while the IDLEN bit is set
(IDLEN = 1), the CPU will enter the IDLE mode
(Section 11.2.3 “Low-Power Sleep Mode”).

Upon entering Sleep mode, the following conditions
exist:

1. WDT will be cleared but keeps running if
enabled for operation during Sleep

2. The PD bit of the STATUS register is cleared

3. The TO bit of the STATUS register is set

4. CPU Clock and System Clock
5. 31 kHz LFINTOSC, HFINTOSC are unaffected

and peripherals using them may continue
operation in Sleep.

6. ADC is unaffected if the dedicated FRC
oscillator is selected the conversion will be left
abandoned if FOSC is selected and ADRES will
have an incorrect value

7. I/O ports maintain the status they had before
Sleep was executed (driving high, low, or
high-impedance). This does not apply in the
case of any asynchronous peripheral which is
active and may affect the I/O port value

8. Resets other than WDT are not affected by
Sleep mode

Refer to individual chapters for more details on
peripheral operation during Sleep.

To minimize current consumption, the following
conditions should be considered:

- I/O pins should not be floating
- External circuitry sinking current from I/O pins
- Internal circuitry sourcing current from I/O 

pins
- Current draw from pins with internal weak 

pull-ups
- Modules using any oscillator

I/O pins that are high-impedance inputs should be
pulled to VDD or VSS externally to avoid switching
currents caused by floating inputs.

Any module with a clock source that is not FOSC can be
enabled. Examples of internal circuitry that might be
sourcing current include modules such as the DAC and
FVR modules. See Section 21.0 “5-Bit Digi-
tal-to-Analog Converter (DAC1) Module”,
Section 18.0 “Fixed Voltage Reference (FVR)” for
more information on these modules.

11.2.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the
following events:

1. External Reset input on MCLR pin, if enabled.

2. BOR Reset, if enabled.

3. POR Reset.

4. Watchdog Timer, if enabled.

5. Any external interrupt.

6. Interrupts by peripherals capable of running
during Sleep (see individual peripheral for more
information).

The first three events will cause a device Reset. The
last three events are considered a continuation of
program execution. To determine whether a device
Reset or wake-up event occurred, refer to
Section 8.12 “Memory Execution Violation”.

When the SLEEP instruction is being executed, the next
instruction (PC + 1) is prefetched. For the device to
wake-up through an interrupt event, the corresponding
interrupt enable bit must be enabled. Wake-up will
occur regardless of the state of the GIE bit. If the GIE
bit is disabled, the device continues execution at the
instruction after the SLEEP instruction. If the GIE bit is
enabled, the device executes the instruction after the
SLEEP instruction, the device will then call the Interrupt
Service Routine. In cases where the execution of the
instruction following SLEEP is not desirable, the user
should have a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes-up from
Sleep, regardless of the source of wake-up.
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 140
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EXAMPLE 13-5: DEVICE ID ACCESS
; This write routine assumes the following:
; 1. A full row of data are loaded, starting at the address in DATA_ADDR
; 2. Each word of data to be written is made up of two adjacent bytes in DATA_ADDR,
; stored in little endian format
; 3. A valid starting address (the least significant bits = 00000) is loaded in ADDRH:ADDRL
; 4. ADDRH and ADDRL are located in common RAM (locations 0x70 - 0x7F)
; 5. NVM interrupts are not taken into account

BANKSEL NVMADRH
MOVF ADDRH,W
MOVWF NVMADRH ; Load initial address
MOVF ADDRL,W
MOVWF NVMADRL
MOVLW LOW DATA_ADDR ; Load initial data address
MOVWF FSR0L
MOVLW HIGH DATA_ADDR
MOVWF FSR0H
BCF NVMCON1,NVMREGS ; Set PFM as write location
BSF NVMCON1,WREN ; Enable writes
BSF NVMCON1,LWLO ; Load only write latches

LOOP
MOVIW FSR0++
MOVWF NVMDATL ; Load first data byte
MOVIW FSR0++
MOVWF NVMDATH ; Load second data byte

CALL UNLOCK_SEQ ; If not, go load latch
INCF NVMADRL,F ; Increment address
MOVF NVMADRL,W
XORLW 0x1F ; Check if lower bits of address are 00000
ANDLW 0x1F ; and if on last of 32 addresses
BTFSC STATUS,Z ; Last of 32 words?
GOTO START_WRITE ; If so, go write latches into memory

GOTO LOOP

START_WRITE
BCF NVMCON1,LWLO ; Latch writes complete, now write memory
CALL UNLOCK_SEQ ; Perform required unlock sequence
BCF NVMCON1,LWLO ; Disable writes

UNLOCK_SEQ
MOVLW 55h
BCF INTCON,GIE ; Disable interrupts
MOVWF NVMCON2 ; Begin unlock sequence
MOVLW AAh
MOVWF NVMCON2
BSF NVMCON1,WR
BSF INTCON,GIE ; Unlock sequence complete, re-enable interrupts
return
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 166
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REGISTER 22-2: NCO1CLK: NCO1 INPUT CLOCK CONTROL REGISTER

R/W-0/0 R/W-0/0 R/W-0/0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

N1PWS<2:0>(1,2) — N1CKS<3:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-5 N1PWS<2:0>: NCO1 Output Pulse Width Select bits(1)

111 =   NCO1 output is active for 128 input clock periods
110 =   NCO1 output is active for 64 input clock periods
101 =   NCO1 output is active for 32 input clock periods
100 =   NCO1 output is active for 16 input clock periods
011 =   NCO1 output is active for 8 input clock periods
010 =   NCO1 output is active for 4 input clock periods
001 =   NCO1 output is active for 2 input clock periods
000 =   NCO1 output is active for 1 input clock period

bit 4 Unimplemented: Read as ‘0’

bit 3-0 N1CKS<3:0>: NCO1 Clock Source Select bits
1011-1111 =   Reserved
1010 =   LC4_out 
1001 =   LC3_out 
1000 =   LC2_out
0111 =   LC1_out
0110 =   CLKR
0101 =   Reserved
0100 =   MFINTOSC (32 kHz)
0011 =   MFINTOSC (500 kHz)
0010 =   LFINTOSC
0001 =   HFINTOSC
0000 =   FOSC

Note 1: N1PWS applies only when operating in Pulse Frequency mode.
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 240
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TABLE 27-1: TIMER2 OPERATING MODES 

Mode
MODE<4:0> Output

Operation
Operation

Timer Control

<4:3> <2:0> Start Reset Stop

Free
Running 
Period

00

000

Period 
Pulse

Software gate (Figure 27-4) ON = 1 — ON = 0

001
Hardware gate, active-high

(Figure 27-5)
ON = 1 and

TMRx_ers = 1
— ON = 0 or

TMRx_ers = 0

010 Hardware gate, active-low
ON = 1 and

TMRx_ers = 0
— ON = 0 or

TMRx_ers = 1

011

Period
Pulse 
with

Hardware
Reset

Rising or falling edge Reset

ON = 1

TMRx_ers ↕
ON = 0100 Rising edge Reset (Figure 27-6) TMRx_ers ↑

101 Falling edge Reset TMRx_ers ↓

110 Low level Reset TMRx_ers = 0
ON = 0 or

TMRx_ers = 0

111
High level Reset (Figure 27-7)

TMRx_ers = 1
ON = 0 or

TMRx_ers = 1

One-shot 01

000 One-shot Software start (Figure 27-8) ON = 1 —

ON = 0
or

Next clock 
after 

TMRx = PRx
(Note 2)

001
Edge 

triggered 
start

(Note 1)

Rising edge start (Figure 27-9)
ON = 1 and
TMRx_ers ↑ —

010 Falling edge start
ON = 1 and
TMRx_ers ↓ —

011 Any edge start
ON = 1 and
TMRx_ers ↕ —

100
Edge

triggered 
start 
and 

hardware 
Reset

(Note 1)

Rising edge start and
Rising edge Reset (Figure 27-10)

ON = 1 and
TMRx_ers ↑ TMRx_ers ↑

101
Falling edge start and

Falling edge Reset
ON = 1 and
TMRx_ers ↓ TMRx_ers ↓

110
Rising edge start and

Low level Reset (Figure 27-11)
ON = 1 and
TMRx_ers ↑ TMRx_ers = 0

111
Falling edge start and

High level Reset
ON = 1 and
TMRx_ers ↓ TMRx_ers = 1

Mono-stable

10

000 Reserved

001
Edge

triggered
start

(Note 1)

Rising edge start 
(Figure 27-12)

ON = 1 and
TMRx_ers ↑ — ON = 0

or
Next clock 

after 
TMRx = PRx

(Note 3)

010 Falling edge start
ON = 1 and
TMRx_ers ↓ —

011 Any edge start
ON = 1 and
TMRx_ers ↕ —

Reserved 100 Reserved

Reserved 101 Reserved

One-shot

110
Level

triggered
start
and

hardware 
Reset

High level start and
Low level Reset (Figure 27-13)

ON = 1 and
TMRx_ers = 1

TMRx_ers = 0
ON = 0 or

Held in Reset
(Note 2)111

Low level start &
High level Reset

ON = 1 and
TMRx_ers = 0

TMRx_ers = 1

Reserved 11 xxx Reserved

Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.
2: When TMRx = PRx then the next clock clears ON and stops TMRx at 00h.
3: When TMRx = PRx then the next clock stops TMRx at 00h but does not clear ON.
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27

In 
ex
On
co
ex
• R

• F

it when the timer value matches the PRx
ill have no effect until after software sets
he rising edge hardware limit one-shot

 with the CCP then the first starting edge
s, will activate the PWM drive. The PWM
tches the CCPRx pulse-width value and

 the PRx period match unless an external
 match occurs.

FIG 01100)

Rev. 10-000201B
4/7/2016

4 5 0

 to 
.5.7 EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT 
MODE

Edge-Triggered Hardware Limit One-Shot modes the timer starts on the first 
ternal signal edge after the ON bit is set and resets on all subsequent edges. 
ly the first edge after the ON bit is set is needed to start the timer. The 

unter will resume counting automatically two clocks after all subsequent 
ternal Reset edges. Edge triggers are as follows:

ising edge start and Reset (MODE<4:0> = 01100)

alling edge start and Reset (MODE<4:0> = 01101)

The timer resets and clears the ON b
period value. External signal edges w
the ON bit. Figure 27-10 illustrates t
operation.

When this mode is used in conjunction
trigger, and all subsequent Reset edge
drive will deactivate when the timer ma
stay deactivated until the timer halts at
signal edge resets the timer before the

URE 27-10: EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODE TIMING DIAGRAM (MODE =

TMRx_clk

ON

PRx

TMRx

BSF BSF

5

0 1 2 3 4 5 0 01

MODE 0b01100

2

TMRx_postscaled

TMRx_ers

1 2 3

PWM Duty 
Cycle 3

PWM Output

Instruction(1)

Note 1:   BSF and BCF represent Bit-Set File and Bit-Clear File instructions executed by the CPU
set or clear the ON bit of TxCON. CPU execution is asynchronous to the timer clock input.
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30.1.2 PUSH-PULL MODE

In Push-Pull mode, two output signals are generated,
alternating copies of the input as illustrated in
Figure 30-2. This alternation creates the push-pull
effect required for driving some transformer-based
power supply designs.

The push-pull sequencer is reset whenever EN = 0 or
if an auto-shutdown event occurs. The sequencer is
clocked by the first input pulse, and the first output
appears on CWG1A.

The unused outputs CWG1C and CWG1D drive copies
of CWG1A and CWG1B, respectively, but with polarity
controlled by the POLC and POLD bits of the
CWG1CON1 register, respectively.

30.1.3 FULL-BRIDGE MODES

In Forward and Reverse Full-Bridge modes, three out-
puts drive static values while the fourth is modulated by
the input data signal. In Forward Full-Bridge mode,
CWG1A is driven to its active state, CWG1B and
CWG1C are driven to their inactive state, and CWG1D
is modulated by the input signal. In Reverse Full-Bridge
mode, CWG1C is driven to its active state, CWG1A and
CWG1D are driven to their inactive states, and CWG1B
is modulated by the input signal. In Full-Bridge mode,
the dead-band period is used when there is a switch
from forward to reverse or vice-versa. This dead-band
control is described in Section 30.5 “Dead-Band Con-
trol”, with additional details in Section 30.6 “Rising
Edge and Reverse Dead Band” and Section
30.7 “Falling Edge and Forward Dead Band”.

The mode selection may be toggled between forward
and reverse toggling the MODE<0> bit of the
CWG1CON0 while keeping MODE<2:1> static, without
disabling the CWG module.
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Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

CLC4GLS1 ― ― LC4G2D3T LC4G2D3N LC4G2D2T LC4G2D2N LC4G2D1T LC4G2D1N 354

CLC4GLS2 ― ― LC4G3D3T LC4G3D3N LC4G3D2T LC4G3D2N LC4G3D1T LC4G3D1N 355

CLC4GLS3 ― ― LC4G4D3T LC4G4D3N LC4G4D2T LC4G4D2N LC4G4D1T LC4G4D1N 356

CLCIN0PPS ― ― CLCIN0PPS<5:0> 191

CLCIN1PPS ― ― CLCIN1PPS<5:0> 191

CLCIN2PPS ― ― CLCIN2PPS<5:0> 191

CLCIN3PPS ― ― CLCIN3PPS<5:0> 191

Legend: — = unimplemented, read as ‘0’. Shaded cells are unused by the CLCx modules.

TABLE 31-4: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx (continued)
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32.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a
synchronous serial data communication bus that
operates in Full-Duplex mode. Devices communicate
in a master/slave environment where the master device
initiates the communication. A slave device is
controlled through a Chip Select known as Slave
Select. 

The SPI bus specifies four signal connections:

• Serial Clock (SCK)

• Serial Data Out (SDO)

• Serial Data In (SDI)

• Slave Select (SS)

Figure 32-1 shows the block diagram of the MSSP
module when operating in SPI mode.

The SPI bus operates with a single master device and
one or more slave devices. When multiple slave
devices are used, an independent Slave Select
connection is required from the master device to each
slave device.

Figure 32-4 shows a typical connection between a
master device and multiple slave devices.

The master selects only one slave at a time. Most slave
devices have tri-state outputs so their output signal
appears disconnected from the bus when they are not
selected.

Transmissions involve two shift registers, eight bits in
size, one in the master and one in the slave. Data is
always shifted out one bit at a time, with the Most
Significant bit (MSb) shifted out first. At the same time,
a new Least Significant bit (LSb) is shifted into the
same register.

Figure 32-5 shows a typical connection between two
processors configured as master and slave devices.

Data is shifted out of both shift registers on the
programmed clock edge and latched on the opposite
edge of the clock.

The master device transmits information out on its SDO
output pin which is connected to, and received by, the
slave’s SDI input pin. The slave device transmits infor-
mation out on its SDO output pin, which is connected
to, and received by, the master’s SDI input pin.

To begin communication, the master device first sends
out the clock signal. Both the master and the slave
devices should be configured for the same clock polar-
ity. 

The master device starts a transmission by sending out
the MSb from its shift register. The slave device reads
this bit from that same line and saves it into the LSb
position of its shift register. 

During each SPI clock cycle, a full-duplex data
transmission occurs. This means that while the master
device is sending out the MSb from its shift register (on
its SDO pin) and the slave device is reading this bit and
saving it as the LSb of its shift register, that the slave
device is also sending out the MSb from its shift register
(on its SDO pin) and the master device is reading this
bit and saving it as the LSb of its shift register.

After eight bits have been shifted out, the master and
slave have exchanged register values.

If there is more data to exchange, the shift registers are
loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data),
depends on the application software. This leads to
three scenarios for data transmission:

• Master sends useful data and slave sends dummy 
data.

• Master sends useful data and slave sends useful 
data.

• Master sends dummy data and slave sends useful 
data.

Transmissions may involve any number of clock
cycles. When there is no more data to be transmitted,
the master stops sending the clock signal and it
deselects the slave.

Every slave device connected to the bus that has not
been selected through its slave select line must disre-
gard the clock and transmission signals and must not
transmit out any data of its own.
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32.5.4 SLAVE MODE 10-BIT ADDRESS 
RECEPTION

This section describes a standard sequence of events
for the MSSP module configured as an I2C slave in
10-bit Addressing mode. 

Figure 32-20 is used as a visual reference for this
description.

This is a step by step process of what must be done by
slave software to accomplish I2C communication.

1. Bus starts Idle.

2. Master sends Start condition; S bit of
SSP1STAT is set; SSP1IF is set if interrupt on
Start detect is enabled.

3. Master sends matching high address with R/W
bit clear; UA bit of the SSP1STAT register is set.

4. Slave sends ACK and SSP1IF is set.

5. Software clears the SSP1IF bit.

6. Software reads received address from
SSP1BUF clearing the BF flag.

7. Slave loads low address into SSP1ADD,
releasing SCL.

8. Master sends matching low address byte to the
slave; UA bit is set.

9. Slave sends ACK and SSP1IF is set.

10. Slave clears SSP1IF.

11. Slave reads the received matching address
from SSP1BUF clearing BF.

12. Slave loads high address into SSP1ADD.

13. Master clocks a data byte to the slave and
clocks out the slaves ACK on the ninth SCL
pulse; SSP1IF is set.

14. If SEN bit of SSP1CON2 is set, CKP is cleared
by hardware and the clock is stretched.

15. Slave clears SSP1IF.

16. Slave reads the received byte from SSP1BUF
clearing BF.

17. If SEN is set the slave sets CKP to release the
SCL.

18. Steps 13-17 repeat for each received byte.

19. Master sends Stop to end the transmission.

32.5.5 10-BIT ADDRESSING WITH ADDRESS OR 
DATA HOLD

Reception using 10-bit addressing with AHEN or
DHEN set is the same as with 7-bit modes. The only
difference is the need to update the SSP1ADD register
using the UA bit. All functionality, specifically when the
CKP bit is cleared and SCL line is held low are the
same. Figure 32-21 can be used as a reference of a
slave in 10-bit addressing with AHEN set. 

Figure 32-22 shows a standard waveform for a slave
transmitter in 10-bit Addressing mode.

Note: Updates to the SSP1ADD register are not
allowed until after the ACK sequence.

Note: If the low address does not match, SSP1IF
and UA are still set so that the slave
software can set SSP1ADD back to the high
address. BF is not set because there is no
match. CKP is unaffected.
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32.6.6 I2C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the
other half of a 10-bit address is accomplished by simply
writing a value to the SSP1BUF register. This action will
set the Buffer Full flag bit, BF, and allow the Baud Rate
Generator to begin counting and start the next trans-
mission. Each bit of address/data will be shifted out
onto the SDA pin after the falling edge of SCL is
asserted. SCL is held low for one Baud Rate Generator
rollover count (TBRG). Data should be valid before SCL
is released high. When the SCL pin is released high, it
is held that way for TBRG. The data on the SDA pin
must remain stable for that duration and some hold
time after the next falling edge of SCL. After the eighth
bit is shifted out (the falling edge of the eighth clock),
the BF flag is cleared and the master releases SDA.
This allows the slave device being addressed to
respond with an ACK bit during the ninth bit time if an
address match occurred, or if data was received prop-
erly. The status of ACK is written into the ACKSTAT bit
on the rising edge of the ninth clock. If the master
receives an Acknowledge, the Acknowledge Status bit,
ACKSTAT, is cleared. If not, the bit is set. After the ninth
clock, the SSP1IF bit is set and the master clock (Baud
Rate Generator) is suspended until the next data byte
is loaded into the SSP1BUF, leaving SCL low and SDA
unchanged (Figure 32-28).

After the write to the SSP1BUF, each bit of the address
will be shifted out on the falling edge of SCL until all
seven address bits and the R/W bit are completed. On
the falling edge of the eighth clock, the master will
release the SDA pin, allowing the slave to respond with
an Acknowledge. On the falling edge of the ninth clock,
the master will sample the SDA pin to see if the address
was recognized by a slave. The status of the ACK bit is
loaded into the ACKSTAT Status bit of the SSP1CON2
register. Following the falling edge of the ninth clock
transmission of the address, the SSP1IF is set, the BF
flag is cleared and the Baud Rate Generator is turned
off until another write to the SSP1BUF takes place,
holding SCL low and allowing SDA to float.

32.6.6.1 BF Status Flag

In Transmit mode, the BF bit of the SSP1STAT register
is set when the CPU writes to SSP1BUF and is cleared
when all eight bits are shifted out.

32.6.6.2 WCOL Status Flag

If the user writes the SSP1BUF when a transmit is
already in progress (i.e., SSP1SR is still shifting out a
data byte), the WCOL bit is set and the contents of the
buffer are unchanged (the write does not occur). 

WCOL must be cleared by software before the next
transmission.

32.6.6.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSP1CON2
register is cleared when the slave has sent an Acknowl-
edge (ACK = 0) and is set when the slave does not
Acknowledge (ACK = 1). A slave sends an Acknowl-
edge when it has recognized its address (including a
general call), or when the slave has properly received
its data.

32.6.6.4 Typical transmit sequence:

1. The user generates a Start condition by setting
the SEN bit of the SSP1CON2 register.

2. SSP1IF is set by hardware on completion of the
Start. 

3. SSP1IF is cleared by software.

4. The MSSP module will wait the required start
time before any other operation takes place.

5. The user loads the SSP1BUF with the slave
address to transmit.

6. Address is shifted out the SDA pin until all eight
bits are transmitted. Transmission begins as
soon as SSP1BUF is written to.

7. The MSSP module shifts in the ACK bit from the
slave device and writes its value into the
ACKSTAT bit of the SSP1CON2 register.

8. The MSSP module generates an interrupt at the
end of the ninth clock cycle by setting the
SSP1IF bit.

9. The user loads the SSP1BUF with eight bits of
data. 

10. Data is shifted out the SDA pin until all eight bits
are transmitted.

11. The MSSP module shifts in the ACK bit from the
slave device and writes its value into the
ACKSTAT bit of the SSP1CON2 register.

12. Steps 8-11 are repeated for all transmitted data
bytes.

13. The user generates a Stop or Restart condition
by setting the PEN or RSEN bits of the
SSP1CON2 register. Interrupt is generated
once the Stop/Restart condition is complete.
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URE 32-28: I2C MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS)       
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TABLE 37-4: I/O PORTS
Standard Operating Conditions (unless otherwise stated)

Param.
No.

Sym. Characteristic Min. Typ† Max. Units Conditions

VIL Input Low Voltage

I/O PORT:

D300 with TTL buffer — — 0.8 V 4.5V  VDD  5.5V

D301 — — 0.15 VDD V 1.8V  VDD  4.5V

D302 with Schmitt Trigger buffer — — 0.2 VDD V 2.0V  VDD  5.5V

D303 with I2C levels — — 0.3 VDD V

D304 with SMBus levels — — 0.8 V 2.7V  VDD  5.5V

D305 MCLR — — 0.2 VDD V

VIH Input High Voltage

I/O PORT:

D320 with TTL buffer 2.0 — — V 4.5V  VDD 5.5V

D321 0.25 VDD + 
0.8

— — V 1.8V  VDD  4.5V

D322 with Schmitt Trigger buffer 0.8 VDD — — V 2.0V  VDD  5.5V

D323 with I2C levels 0.7 VDD — — V

D324 with SMBus levels 2.1 — — V 2.7V  VDD  5.5V

D325 MCLR 0.7 VDD — — V

IIL Input Leakage Current(1)

D340 I/O Ports — ± 5 ± 125 nA VSS  VPIN  VDD, 
Pin at high-impedance, 85°C

D341 — ± 5 ± 1000 nA VSS  VPIN  VDD, 
Pin at high-impedance, 125°C

D342 MCLR(2) — ± 50 ± 200 nA VSS  VPIN  VDD, 
Pin at high-impedance, 85°C

IPUR Weak Pull-up Current

D350 25 120 200 A VDD = 3.0V, VPIN = VSS

VOL Output Low Voltage

D360 I/O ports — — 0.6 V IOL = 10.0mA, VDD = 3.0V

VOH Output High Voltage

D370 I/O ports VDD - 0.7 — — V IOH = 6.0 mA, VDD = 3.0V

D380 CIO All I/O pins — 5 50 pF

† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are 
not tested.

Note 1: Negative current is defined as current sourced by the pin.
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent 

normal operating conditions. Higher leakage current may be measured at different input voltages.
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FIGURE 37-21: I2C BUS START/STOP BITS TIMING

TABLE 37-24: I2C BUS START/STOP BITS REQUIREMENTS

FIGURE 37-22: I2C BUS DATA TIMING

Standard Operating Conditions (unless otherwise stated)

Param.
No.

Symbol Characteristic Min. Typ Max. Units Conditions

SP90* TSU:STA Start condition 100 kHz mode 4700 — — ns Only relevant for Repeated Start 
conditionSetup time 400 kHz mode 600 — —

SP91* THD:STA Start condition 100 kHz mode 4000 — — ns After this period, the first clock 
pulse is generatedHold time 400 kHz mode 600 — —

SP92* TSU:STO Stop condition 100 kHz mode 4700 — — ns

Setup time 400 kHz mode 600 — —

SP93 THD:STO Stop condition 100 kHz mode 4000 — — ns

Hold time 400 kHz mode 600 — —

* These parameters are characterized but not tested.

Note: Refer to Figure 37-4 for load conditions.

SP91

SP92

SP93
SCL

SDA

Start
Condition

Stop
Condition

SP90

Note: Refer to Figure 37-4 for load conditions.

SP90

SP91 SP92

SP100

SP101
SP103

SP106
SP107

SP109
SP109

SP110

SP102

SCL

SDA
In

SDA
Out
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Note: For the most current package drawings, please see the Microchip Packaging Specification located at 
http://www.microchip.com/packaging
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