

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

ĿXFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15323-e-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with PIC16(L)F15313/23 Microcontrollers	
3.0	Enhanced Mid-Range CPU	
4.0	Memory Organization	
5.0	Device Configuration	
6.0	Device Information Area	
7.0	Device Configuration Information	
8.0	Resets	
9.0	Oscillator Module (with Fail-Safe Clock Monitor)	100
10.0	Interrupts	
11.0	Power-Saving Operation Modes	139
12.0	Windowed Watchdog Timer (WWDT)	146
13.0	Nonvolatile Memory (NVM) Control	154
14.0	I/O Ports	172
15.0	Peripheral Pin Select (PPS) Module	185
16.0	Peripheral Module Disable	194
17.0	Interrupt-On-Change	202
18.0	Fixed Voltage Reference (FVR)	
19.0	Temperature Indicator Module	212
20.0	Analog-to-Digital Converter (ADC) Module	
21.0	5-Bit Digital-to-Analog Converter (DAC1) Module	229
22.0	Numerically Controlled Oscillator (NCO) Module	
	Comparator Module	
	Zero-Cross Detection (ZCD) Module	
	Timer0 Module	
	Timer1 Module with Gate Control	
27.0	Timer2 Module With Hardware Limit Timer (HLT)	279
28.0		
	Pulse-Width Modulation (PWM)	
30.0	Complementary Waveform Generator (CWG) Module	
31.0		
32.0	Master Synchronous Serial Port (MSSP1) Module	
33.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	
34.0	Reference Clock Output Module	
35.0	In-Circuit Serial Programming™ (ICSP™)	
36.0	Instruction Set Summary	
37.0		
38.0	DC and AC Characteristics Graphs and Charts	
39.0	Development Support	
40.0	Packaging Information	

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS3000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR	
Bank 7	ank 7											
CPU CORE REGISTERS; see Table 4-3 for specifics												
38Ch	PWM6DCL	DC<1:0)>	_	—	_	_	—	—	xx	uu	
38Dh	PWM6DCH				DC<9	:0>				XXXX XXXX	uuuu uuuu	
38Eh	PWM6CON	EN	_	OUT	POL	_	_	_	—	0-00	0-00	
38Fh 39Fh	-		Lin Lin <thlin< th=""> <thlin< th=""> <thlin< th=""></thlin<></thlin<></thlin<>									

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

REGIST	ER 5-7:	REVIS	SIONID	: REVIS	SION ID	REGIS	STER						
R	R	R	R	R	R	R	R	R	R	R	R	R	R
1	0		MJRREV<5:0> MNRREV<5:0>										
bit 13	13 bit 0									bit 0			
Legend:													
	R = Read	able bit											
	'0' = Bit is cleared '1' = Bit is set								x = Bit	is unkno	wn		
r													

bit 13-12 **Fixed Value**: Read-only bits These bits are fixed with value '10' for all devices included in this data sheet.

bit 11-6MJRREV<5:0>: Major Revision ID bits
These bits are used to identify a major revision.bit 5-0MNRREV<5:0>: Minor Revision ID bits
These bits are used to identify a minor revision.

© 2017 Microchip Technology Inc.

8.4 Low-Power Brown-out Reset (LPBOR)

The Low-Power Brown-out Reset (LPBOR) is an important part of the Reset subsystem. Refer to Figure 8-1 to see how the BOR and LPBOR interact with other modules.

The LPBOR is used to monitor the external VDD pin. When too low of a voltage is detected, the device is held in Reset.

8.4.1 ENABLING LPBOR

The LPBOR is controlled by the \overline{LPBOR} bit of the Configuration Word (Register 5-1). When the device is erased, the LPBOR module defaults to disabled.

8.4.2 LPBOR MODULE OUTPUT

The output of the LPBOR module is a signal indicating whether or not a Reset is to be asserted. When this occurs, a register bit (BOR) is changed to indicate that a BOR Reset has occurred. The same bit is set for either the BOR or the LPBOR (refer to Register 8-3). This signal is OR'd with the output of the BOR module to provide the generic BOR signal, which goes to the PCON register and to the power control block. Refer to Figure 8-1 for the OR gate connections of the BOR and LPBOR Reset signals, which eventually generates one common BOR Reset.

8.5 MCLR

The $\overline{\text{MCLR}}$ is an optional external input that can reset the device. The $\overline{\text{MCLR}}$ function is controlled by the MCLRE bit of Configuration Words and the LVP bit of Configuration Words (Table 8-2).

 TABLE 8-2:
 MCLR CONFIGURATION

MCLRE	LVP	MCLR
0	0	Disabled
1	0	Enabled
x	1	Enabled

8.5.1 MCLR ENABLED

When MCLR is enabled and the pin is held low, the device is held in Reset. The MCLR pin is connected to VDD through an internal weak pull-up. Refer to **Section 2.3 "Master Clear (MCLR) Pin"** for recommended MCLR connections.

The device has a noise filter in the MCLR Reset path. The filter will detect and ignore small pulses.

Note: A Reset does not drive the MCLR pin low.

8.5.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. See **Section 14.1 "I/O Priorities"** for more information.

8.6 Windowed Watchdog Timer (WWDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period and the window is open. The TO and PD bits in the STATUS register and the WDT bit in PCON are changed to indicate a WDT Reset caused by the timer overflowing, and WDTWV bit in the PCON register is changed to indicate a WDT Reset caused by a window violation. See **Section 12.0 "Windowed Watchdog Timer (WWDT)"** for more information.

8.7 RESET Instruction

A RESET instruction will cause a device Reset. The \overline{RI} bit in the PCON register will be set to '0'. See Table 8-4 for default conditions after a RESET instruction has occurred.

8.8 Stack Overflow/Underflow Reset

The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Words. See **Section 4.5.2** "**Overflow/Underflow Reset**" for more information.

8.9 Programming Mode Exit

Upon exit of In-Circuit Serial Programming[™] (ICSP[™]) mode, the device will behave as if a POR had just occurred (the device does not reset upon run time self-programming/erase operations).

8.10 Power-up Timer

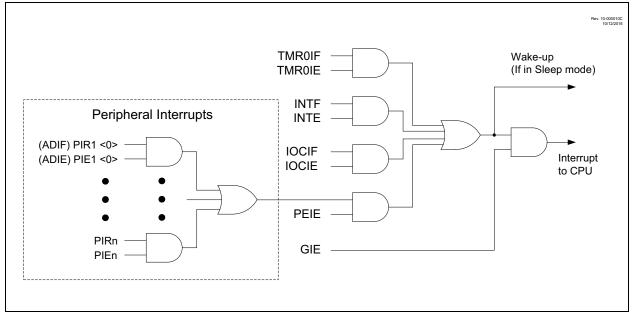
The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the $\overrightarrow{\text{PWRTE}}$ bit of the Configuration Words.

The Power-up Timer provides a nominal 64 ms time out on POR or Brown-out Reset. The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the VDD to rise to an acceptable level. The Power-up Timer is enabled by clearing the PWRTE bit in the Configuration Words. The Power-up Timer starts after the release of the POR and BOR. For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*" (DS00607).

10.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.


This chapter contains the following information for Interrupts:

- Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- · Automatic Context Saving

Many peripherals produce interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 10-1.

FIGURE 10-1: INTERRUPT LOGIC

U-0	U-0	R/W/HS-0/0	R-0	U-0	U-0	U-0	R/W/HS-0/0
00			-			00	INTF ⁽¹⁾
	- <u> </u>						
bit 7							bit 0
Legend:							
R = Read	lable bit	W = Writable b	it	U = Unimplei	mented bit, read	as '0'	
u = Bit is	unchanged	x = Bit is unkno	wn	-n/n = Value	at POR and BOF	R/Value at all	other Resets
'1' = Bit is	s set	'0' = Bit is clear	ed	HS= Hardwa	re Set		
bit 7-6	Unimpleme	nted: Read as '0'					
bit 5	TMR0IF: Tir	ner0 Overflow Inte	errupt Flag	bit			
	1 = Timer0	register has over	flowed (mu	st be cleared in	software)		
	0 = Timer0) register did not o	verflow				
bit 4	IOCIF: Inter	rupt-on-Change Ir	nterrupt Fla	g bit (read-only))(2)		
		more of the IOCA		egister bits are	currently set, ind	icating an ena	abled edge was
		ed by the IOC mo					
		of the IOCAF-IOC	0	bits are current	ly set		
bit 3-1	Unimpleme	nted: Read as '0'					
bit 0	INTF: INT E	xternal Interrupt F	lag bit ⁽¹⁾				
	1 = The IN	T external interru	ot occurred	(must be cleare	ed in software)		
	0 = The IN	T external interru	ot did not o	ccur			
Note 1:	The External Inte	rrupt GPIO pin is	selected by	/ INTPPS (Regi	ster 15-1).		
2:	The IOCIF bit is t	he logical OR of a	all the IOCA	F-IOCEF flags.	Therefore, to cle	ear the IOCIF	⁻ flag,
		are must clear all					-
-							
Note:	Interrupt flag bits	are set when an ir	nterrupt				

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state
	of its corresponding enable bit or the
	Global Enable bit, GIE, of the INTCON
	register. User software should ensure the
	appropriate interrupt flag bits are clear
	prior to enabling an interrupt.

© 2017 Microchip Technology Inc.

PIC16(L)F15313/23

R/W-0/u	R/W/HC/HS-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0		
IDLEN	DOZEN ^(1,2)	ROI	DOE	—		DOZE<2:0>			
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimple	emented bit, re	ead as '0'			
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value Resets	e at POR and I	BOR/Value at a	all other		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7	IDLEN: Idle Enal 1 = A SLEEP ins 0 = A SLEEP ins	struction inhibits				ock(s)			
bit 6	DOZEN: Doze E 1 = The CPU ex 0 = The CPU ex	ecutes instruct				ration)			
bit 5	 ROI: Recover-on 1 = Entering the operation. 0 = Interrupt ent 	Interrupt Servi		R) makes DO	ZEN = 0 bit, b	ringing the CPl	J to full-speed		
bit 4	DOE: Doze on E 1 = Executing R 0 = RETFIE doe	ETFIE makes		ringing the C	PU to reduced	l speed operati	ion.		
bit 3	Unimplemented	I: Read as '0'							
bit 2-0	DOZE<2:0>: Rat 111 =1:256 110 =1:128 101 =1:64 100 =1:32 011 =1:16 010 =1:8 001 =1:4	tio of CPU Insti	ruction Cycles	to Peripheral	I Instruction C	ycles			

- **Note 1:** When ROI = 1 or DOE = 1, DOZEN is changed by hardware interrupt entry and/or exit.
 - 2: Entering ICD overrides DOZEN, returning the CPU to full execution speed; this bit is not affected.

VALC	20
Desired Input Pin	Value to Write to Register
RA0	0x00
RA1	0x01
RA2	0x02
RA3	0x03
RA4	0x04
RA5	0x05
RC0 ⁽¹⁾	0x10
RC1 ⁽¹⁾	0x11
RC2 ⁽¹⁾	0x12
RC3 ⁽¹⁾	0x13
RC4 ⁽¹⁾	0x14
RC5 ⁽¹⁾	0x15

TABLE 15-3: PPS INPUT REGISTER VALUES

Note 1: Present on PIC16(L)F15323 only.

U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0		
—	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1 ⁽¹⁾	IOCAF0 ⁽¹⁾		
bit 7							bit 0		
Legend:									
R = Readable b	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown			-n/n = Value a	at POR and BO	R/Value at all o	ther Resets			
'1' = Bit is set '0' = Bit is cleared HS - Bit is set in hardware									

REGISTER 17-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER

bit 7-6 Unimplemented: read as '0'

bit 5-0 **IOCAF<5:0>:** Interrupt-on-Change PORTA Flag bits

- 1 = An enabled change was detected on the associated pin.
 - Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge was detected on RAx.
- 0 = No change was detected, or the user cleared the detected change.

Note 1: If the debugger is enabled, these bits are not available for use.

18.3 Register Definitions: FVR Control

REGISTER 18-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAFVR<1:0>		ADFV	R<1:0>
bit 7							bit 0

Legend:							
R = Readable bit u = Bit is unchanged '1' = Bit is set		W = Writable bit	U = Unimplemented bit, read as '0' -n/n = Value at POR and BOR/Value at all other Resets				
		x = Bit is unknown					
		'0' = Bit is cleared	q = Value depends on condition				
bit 7	1 = Fixed	Fixed Voltage Reference Ena Voltage Reference is enable Voltage Reference is disabl	ed				
bit 6	FVRRDY: Fixed Voltage Reference Ready Flag bit ⁽¹⁾ 1 = Fixed Voltage Reference output is ready for use 0 = Fixed Voltage Reference output is not ready or not enabled						
bit 5	TSEN: Temperature Indicator Enable bit ⁽³⁾ 1 = Temperature Indicator is enabled 0 = Temperature Indicator is disabled						
bit 4	TSRNG: Temperature Indicator Range Selection bit ⁽³⁾ 1 = Temperature in High Range Vout = 3VT 0 = Temperature in Low Range Vout = 2VT						
bit 3-2	11 = Com 10 = Com 01 = Com	<1:0>: Comparator FVR Buff parator FVR Buffer Gain is 4 parator FVR Buffer Gain is 2 parator FVR Buffer Gain is 1 parator FVR Buffer is off	x, (4.096V) ⁽²⁾ x, (2.048V) ⁽²⁾				
bit 1-0	ADFVR<1:0>: ADC FVR Buffer Gain Selection bit 11 = ADC FVR Buffer Gain is 4x, $(4.096V)^{(2)}$ 10 = ADC FVR Buffer Gain is 2x, $(2.048V)^{(2)}$ 01 = ADC FVR Buffer Gain is 1x, $(1.024V)$ 00 = ADC FVR Buffer is off						
2: 1	•	Reference output cannot exc	eed VDD. Module" for additional information				

3: See Section 19.0 "Temperature Indicator Module" for additional information.

23.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution. The analog comparator module includes the following features:

- · Programmable input selection
- Selectable voltage reference
- Programmable output polarity
- Rising/falling output edge interrupts
- CWG1 Auto-shutdown source

23.1 Comparator Overview

A single comparator is shown in Figure 23-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

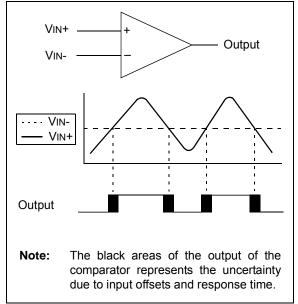

The comparators available are shown in Table 23-1.

TABLE 23-1:AVAILABLE COMPARATORS

Device	C1	C2
PIC16(L)F15313	•	
PIC16(L)F15323	•	•

FIGURE 23-1:

SINGLE COMPARATOR

27.4 Timer2 Interrupt

Timer2 can also generate a device interrupt. The interrupt is generated when the postscaler counter matches one of 16 postscale options (from 1:1 through 1:16), which are selected with the postscaler control bits, OUTPS<3:0> of the T2CON register. The interrupt is enabled by setting the TMR2IE interrupt enable bit of the PIE4 register. Interrupt timing is illustrated in Figure 27-3.

FIGURE 27-3: TIMER2 PRESCALER, POSTSCALER, AND INTERRUPT TIMING DIAGRAM

	Rev. 10-00205A 4/7/2016
CKPS	0b010
PRx	1
OUTPS	0b0001
TMRx_clk	
TMRx	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
TMRx_postscaled_	
TMRxIF	(1) (1)
Note 1: 2:	Synchronization may take as many as 2 instruction cycles

27.5 Operation Examples

Unless otherwise specified, the following notes apply to the following timing diagrams:

- Both the prescaler and postscaler are set to 1:1 (both the CKPS and OUTPS bits in the TxCON register are cleared).
- The diagrams illustrate any clock except Fosc/4 and show clock-sync delays of at least two full cycles for both ON and Timer2_ers. When using Fosc/4, the clock-sync delay is at least one instruction period for Timer2_ers; ON applies in the next instruction period.
- The PWM Duty Cycle and PWM output are illustrated assuming that the timer is used for the PWM function of the CCP module as described in **Section 28.0 "Capture/Compare/PWM Modules"**. The signals are not a part of the Timer2 module.

27.5.1 SOFTWARE GATE MODE

This mode corresponds to legacy Timer2 operation. The timer increments with each clock input when ON = 1 and does not increment when ON = 0. When the TMRx count equals the PRx period count the timer resets on the next clock and continues counting from 0. Operation with the ON bit software controlled is illustrated in Figure 27-4. With PRx = 5, the counter advances until TMRx = 5, and goes to zero with the next clock.

REGISTER 27-4:	T2RST: TIMER2 EXTERNAL RESET SIGNAL SELECTION REGISTER
----------------	--

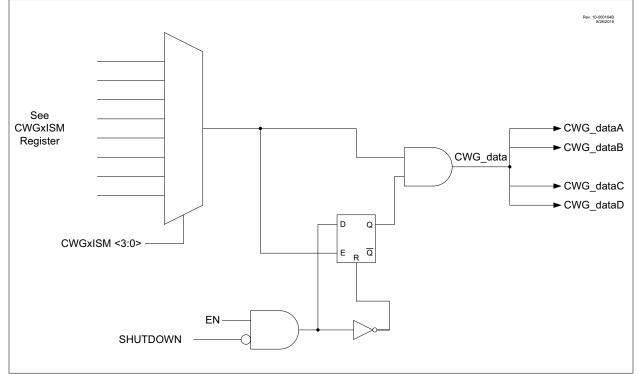
U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
_			—	RSEL<3:0>					
bit 7							bit 0		
							1		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged		x = Bit is unkr	iown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7-4	Unimplemen	ted: Read as '	0'						
bit 3-0	RSEL<3:0>:	Timer2 Externa	al Reset Signa	I Source Select	tion bits				
	1111 = Rese	rved							
	1101 = LC4 _								
	1100 = LC3_								
1011 = LC2_out									
1010 = LC1_out 1001 = ZCD1_output									
	1001 = 200 1000 = C201								
$0111 = C1OUT_sync$									
0110 = PWM6 out									
0101 = PWM5 out									
$0100 = PWM4_out$									
	0011 = PWM	13_out							
0010 = CCP2_out									
	0001 = CCP	-							
	0000 = T2INI	PPS							

Note 1: Present on PIC16(L)F15323 only. Reserved for the PIC16(L)F15313.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCP1CON	EN	_	OUT	FMT		MODE	=<3:0>		306
CCP2CON	EN	_	OUT	FMT		MODE	=<3:0>		306
INTCON	GIE	PEIE	_	—	—	—	—	INTEDG	121
PIE1	OSFIE	CSWIE	_	—	—	—	_	ADIE	123
PIR1	OSFIF	CSWIF	_		—	—	_	ADIF	131
PR2	Timer2 Modu	Timer2 Module Period Register						280*	
TMR2	Holding Reg	Holding Register for the 8-bit TMR2 Register					280*		
T2CON	ON	CKPS<2:0>			OUTPS<3:0>				295
T2CLKCON	—			_	CS<3:0>				294
T2RST	_			_	RSEL<3:0>				297
T2HLT	PSYNC	CKPOL CKSYNC			MODE<4:0>				296

TABLE 27-2: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.


* Page provides register information.

30.1.4 STEERING MODES

In Steering modes, the data input can be steered to any or all of the four CWG output pins. In Synchronous Steering mode, changes to steering selection registers take effect on the next rising input.

In Non-Synchronous mode, steering takes effect on the next instruction cycle. Additional details are provided in **Section 30.9 "CWG Steering Mode"**.

30.2 Clock Source

The CWG module allows the following clock sources to be selected:

- Fosc (system clock)
- HFINTOSC (16 MHz only)

The clock sources are selected using the CS bit of the CWG1CLKCON register.

33.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 9.2.2.2** "Internal Oscillator Frequency **Adjustment**" for more information.

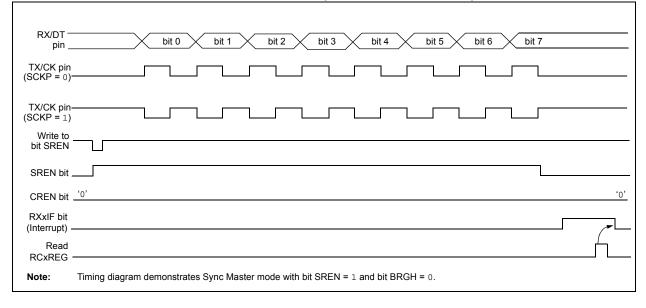
The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 33.3.1** "**Auto-Baud Detect**"). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

33.4.1.6 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TX/CK pin output driver is automatically disabled when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

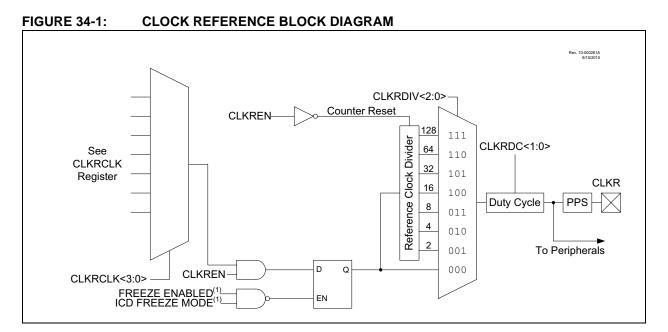
Note:	If the device is configured as a slave and
	the TX/CK function is on an analog pin, the
	corresponding ANSEL bit must be cleared.

33.4.1.7 Receive Overrun Error


The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RC1REG is read to access the FIFO. When this happens the OERR bit of the RC1STA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RC1REG. If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RC1STA register or by clearing the SPEN bit which resets the EUSART.

33.4.1.8 Receiving 9-bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RC1STA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RC1STA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RC1REG.


33.4.1.9 Synchronous Master Reception Set-up:

- 1. Initialize the SP1BRGH, SP1BRGL register pair for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 4. Ensure bits CREN and SREN are clear.
- 5. If interrupts are desired, set the RX1IE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 6. If 9-bit reception is desired, set bit RX9.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- Interrupt flag bit RX1IF will be set when reception of a character is complete. An interrupt will be generated if the enable bit RX1IE was set.
- 9. Read the RC1STA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RC1REG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RC1STA register or by clearing the SPEN bit which resets the EUSART.

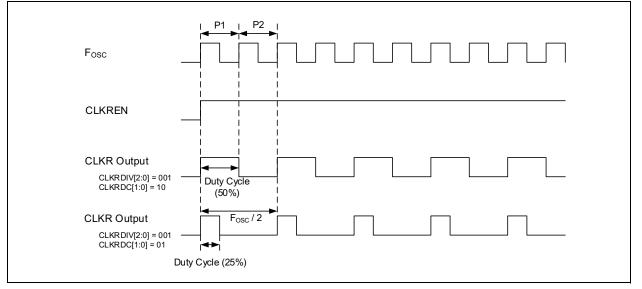
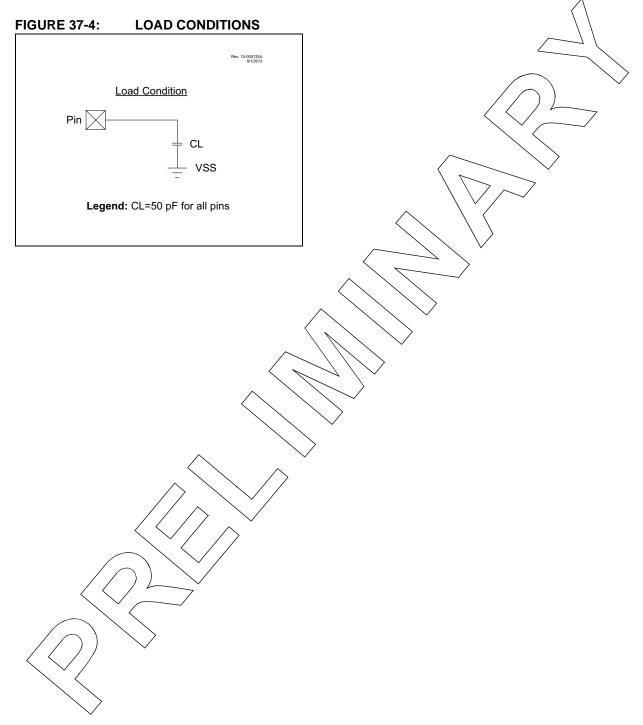


FIGURE 33-12: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)


PIC16(L)F15313/23

37.4 AC Characteristics

