

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

EXE

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I²C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15323-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F15313/23

TABLE 2: PACKAGES

Device	PDIP	SOIC	DFN	TSSOP	UQFN (4x4)
PIC16(L)F15313	•	•	•		
PIC16(L)F15323	•	•		•	•

The HIGH directive will set bit 7 if a label points to a location in the program memory. This applies to the assembly code Example 4-2 shown below.

EXAMPLE 4-2: ACCESSING PROGRAM MEMORY VIA FSR

constants			
RETLW	DATA0	;Index0	data
RETLW	DATA1	;Index1	data
RETLW	DATA2		
RETLW	DATA3		
my_functi	on		
; LO:	IS OF CODE		
MOVLW	LOW consta	ants	
MOVWF	FSR1L		
MOVLW	HIGH const	ants	
MOVWF	FSR1H		
MOVIW	0[FSR1]		
; THE PROG	RAM MEMORY I	S IN W	
; THE PROG	RAM MEMORY I	S IN W	

4.2 Memory Access Partition (MAP)

User Flash is partitioned into:

- Application Block
- Boot Block, and
- Storage Area Flash (SAF) Block

The user can allocate the memory usage by setting the BBEN bit, selecting the size of the partition defined by BBSIZE[2:0] bits and enabling the Storage Area Flash by the SAFEN bit of the Configuration Word (see Register 5-4). Refer to Table 4-2 for the different user Flash memory partitions.

4.2.1 APPLICATION BLOCK

Default settings of the Configuration bits ($\overline{\text{BBEN}} = 1$ and $\overline{\text{SAFEN}} = 1$) assign all memory in the user Flash area to the Application Block.

4.2.2 BOOT BLOCK

If $\overline{\text{BBEN}} = 1$, the Boot Block is enabled and a specific address range is alloted as the Boot Block based on the value of the BBSIZE bits of Configuration Word (Register 5-4) and the sizes provided in .

4.2.3 STORAGE AREA FLASH

Storage Area Flash (SAF) is enabled by clearing the SAFEN bit of the Configuration Word in Register 5-4. If enabled, the SAF block is placed at the end of memory and spans 128 words. If the Storage Area Flash (SAF) is enabled, the SAF area is not available for program execution.

4.2.4 MEMORY WRITE PROTECTION

All the memory blocks have corresponding write protection fuses WRTAPP, WRTB and WRTC bits in the Configuration Word 4 (Register 5-4). If write-protected locations are written from NVMCON registers, memory is not changed and the WRERR bit defined in Register 12-5 is set as explained in **Section 13.3.8 "WRERR Bit**".

4.2.5 MEMORY VIOLATION

A Memory Execution Violation Reset occurs while executing an instruction that has been fetched from outside a valid execution area, clearing the MEMV bit. Refer to **Section 8.12 "Memory Execution Violation"** for the available valid program execution areas and the PCON1 register definition (Register 8-3) for MEMV bit conditions.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 3											
				CPU COF	RE REGISTERS;	see Table 4-3 for	specifics				
18Ch	SSP1BUF	Synchronous Serial P	ort Receive Buffer/	Transmit Register						XXXX XXXX	XXXX XXXX
18Dh	SSP1ADD				ADD<	7:0>				0000 0000	0000 0000
18Eh	SSP1MSK				MSK<	7:0>				1111 1111	1111 1111
18Fh	SSP1STAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	0000 0000
190h	SSP1CON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
191h	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
192h	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000
193h 19Fh	193h 19Fh Unimplemented										_

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 60											
				CPU COF	RE REGISTERS;	see Table 4-3 fo	r specifics				
1E0Ch	_				Unimple	mented				_	_
1E0Dh	_				Unimple	mented				_	_
1E0Eh	_		-		Unimple	mented				_	_
1E0Fh	CLCDATA	_	_	_	_	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT	xxxx	uuuu
1E10h	CLCCON	LC1EN	—	LC10UT	LC1INTP	LC1INTN		LC1MODE<2:	0>	0-00 0000	0-00 0000
1E11h	CLC1POL	LC1POL	—	—	—	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	0 xxxx	0 uuuu
1E12h	CLC1SEL0	—	—			LC1I	D1S<5:0>			xx xxxx	uu uuuu
1E13h	CLC1SEL1		—			LC1I	D2S<5:0>			xx xxxx	uu uuuu
1E14h	CLC1SEL2		—			LC1I	D3S<5:0>			xx xxxx	uu uuuu
1E15h	CLC1SEL3	_	—			LC1I	D4S<5:0>			xx xxxx	uu uuuu
1E16h	CLC1GLS0	LC1G1D4T	LC1G4D3N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	xxxx xxxx	uuuu uuuu
1E17h	CLC1GLS1	LC1G2D4T	LC1G4D3N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	xxxx xxxx	uuuu uuuu
1E18h	CLC1GLS2	LC1G3D4T	LC1G4D3N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	xxxx xxxx	uuuu uuuu
1E19h	CLC1GLS3	LC1G4D4T	LC1G4D3N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	xxxx xxxx	uuuu uuuu
1E1Ah	CLC2CON	LC2EN	—	LC2OUT	LC2INTP	LC2INTN		LC2MODE<2:	0>	0-00 0000	0-00 0000
1E1Bh	CLC2POL	LC2POL	—	_	—	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	0 xxxx	0 uuuu
1E1Ch	CLC2SEL0	_	—			LC2I	D1S<5:0>			xx xxxx	uu uuuu
1E1Dh	CLC2SEL1	_	_			LC2I	D2S<5:0>			xx xxxx	uu uuuu
1E1Eh	CLC2SEL2	_	_			LC2I	D3S<5:0>			xx xxxx	uu uuuu
1E1Fh	CLC2SEL3	_	_			LC2I	D4S<5:0>			xx xxxx	uu uuuu
1E20h	CLC2GLS0	LC2G1D4T	LC2G4D3N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	xxxx xxxx	uuuu uuuu
1E21h	CLC2GLS1	LC2G2D4T	LC2G4D3N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	xxxx xxxx	uuuu uuuu
1E22h	CLC2GLS2	LC2G3D4T	LC2G4D3N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	xxxx xxxx	uuuu uuuu
1E23h	CLC2GLS3	LC2G4D4T	LC2G4D3N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	xxxx xxxx	uuuu uuuu
1E24h	CLC3CON	LC3EN		LC3OUT	LC3INTP	LC3INTN		LC3MODE		0-00 0000	0-00 0000
1E25h	CLC3POL	LC3POL	_	_	—	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	0 xxxx	0 uuuu
1E26h	CLC3SEL0	—			•	LC3I	D1S<5:0>	-		xx xxxx	uu uuuu
1E27h	CLC3SEL1	_	_			LC3I	D2S<5:0>			xx xxxx	uu uuuu
1E28h	CLC3SEL2	_	_			LC3I	D3S<5:0>			xx xxxx	uu uuuu
1E29h	CLC3SEL3	_	_			LC3I	D4S<5:0>			xx xxxx	uu uuuu
1E2Ah	CLC3GLS0	LC3G1D4T	LC3G4D3N	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	xxxx xxxx	uuuu uuuu

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

DS40001897A-page 61

9.4 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, ECL, ECM, ECH.

9.4.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 9-8. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

FIGURE 9-9: FSCM TIMING DIAGRAM

9.4.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the device clock to the HFINTOSC at 1 MHz clock frequency and sets the bit flag OSFIF of the PIR1 register. Setting this flag will generate an interrupt if the OSFIE bit of the PIE1 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation, by writing to the NOSC and NDIV bits of the OSCCON1 register.

9.4.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the NOSC and NDIV bits of the OSCCON1 register. When switching to the external oscillator, or external oscillator and PLL, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON1. When the OST times out, the Fail-Safe condition is cleared after successfully switching to the external clock source. The OSFIF bit should be cleared prior to switching to the external clock source. If the Fail-Safe condition still exists, the OSFIF flag will again become set by hardware.

9.4.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed. Therefore, the device will always be executing code while the OST is operating.

REGISTER 12-2:	WDTCON1: WATCHDOG TIMER CONTROL REGISTER 1

U-0	R/W ⁽³⁾ -q/q ⁽¹⁾	R/W ⁽³⁾ -q/q ⁽¹⁾ R/W ⁽³⁾ -q/q ⁽¹⁾	U-0	R/W ⁽⁴⁾ -q/q ⁽²⁾	R/W ⁽⁴⁾ -q/q ⁽²⁾	R/W ⁽⁴⁾ -q/q ⁽²⁾
_		WDTCS<2:0>	-		WINDOW<2:0>	
bit 7						bit 0
Legend:						
R = Readabl	le bit	W = Writable bit	U = Unimple	mented bit, read	as '0'	
u = Bit is und	changed	x = Bit is unknown	-n/n = Value	at POR and BO	R/Value at all othe	er Resets
'1' = Bit is se	et	'0' = Bit is cleared	q = Value de	pends on condit	ion	

'0'
•

bit 6-4 WDTCS<2:0>: Watchdog Timer Clock Select bits

111 = Reserved

•

- •
- 010 = Reserved

001 = MFINTOSC 31.25 kHz

- 000 = LFINTOSC 31 kHz
- bit 3 Unimplemented: Read as '0'
- bit 2-0 WINDOW<2:0>: Watchdog Timer Window Select bits

WINDOW<2:0>	Window delay Percent of time	Window opening Percent of time
111	N/A	100
110	12.5	87.5
101	25	75
100	37.5	62.5
011	50	50
010	62.5	37.5
001	75	25
000	87.5	12.5

Note 1: If WDTCCS <2:0> in CONFIG3 = 111, the Reset value of WDTCS<2:0> is 000.

2: The Reset value of WINDOW<2:0> is determined by the value of WDTCWS<2:0> in the CONFIG3 register.

3: If WDTCCS<2:0> in CONFIG3 \neq 111, these bits are read-only.

4: If WDTCWS<2:0> in CONFIG3 \neq 111, these bits are read-only.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTC	—	—	RC5	RC4	RC3	RC2	RC1	RC0	181
TRISC	—	_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	181
LATC	—	_	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	181
ANSELC	—	_	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	182
WPUC	_	_	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	182
ODCONC	—	_	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	183
SLRCONC	—	_	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	183
INLVLC	_	_	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	183

TABLE 14-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Legend: – = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

PIC16(L)F15313/23

REGISTER	16-2: PMD	1: PMD CON	ROL REGIS	STER 1				
R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	
NCO1MD		—		—	TMR2MD	TMR1MD	TMR0MD	
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
u = Bit is und	hanged	x = Bit is unkr	iown	-n/n = Value a	t POR and BO	R/Value at all c	other Resets	
'1' = Bit is se	t	'0' = Bit is clea	ared	q = Value dep	ends on condit	ion		
bit 7	NCO1MD: D 1 = NCO1 m 0 = NCO1 m	isable Numerica nodule disabled nodule enabled	ally Control Os	scillator bit				
bit 6-3	Unimplemer	nted: Read as ')'					
bit 2	TMR2MD: D 1 = Timer2 r 0 = Timer2 r	isable Timer TM nodule disabled nodule enabled	IR2 bit					
bit 1 TMR1MD: Disable Timer TMR1 bit 1 = Timer1 module disabled 0 = Timer1 module enabled								
bit 0	TMR0MD: D 1 = Timer0 r 0 = Timer0 r	isable Timer TM nodule disabled nodule enabled	IR0 bit					

18.3 Register Definitions: FVR Control

REGISTER 18-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAF\	/R<1:0>	ADFV	R<1:0>
bit 7							bit 0

l egend.									
R = Readah	nle hit	W = Writable bit	II = IInimplemented bit read as '0'						
u = Rit is unchanged		x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Rese						
'1' = Bit is s	et	'0' = Bit is cleared	q = Value depends on condition						
bit 7	FVREN: F 1 = Fixed 0 = Fixed	ixed Voltage Reference Enal Voltage Reference is enable Voltage Reference is disable	ble bit ed ed						
bit 6 FVRRDY: Fixed Voltage Reference Ready Flag bit ⁽¹⁾ 1 = Fixed Voltage Reference output is ready for use 0 = Fixed Voltage Reference output is not ready or not enabled									
bit 5	_{it} (3)								
bit 4	TSRNG: 1 1 = Temp 0 = Temp	Femperature Indicator Range erature in High Range Vout erature in Low Range Vout =	Selection bit ⁽³⁾ = 3VT = 2VT						
bit 3-2	CDAFVR 11 = Com 10 = Com 01 = Com 00 = Com	<1:0>: Comparator FVR Buff parator FVR Buffer Gain is 4 parator FVR Buffer Gain is 2 parator FVR Buffer Gain is 1 parator FVR Buffer is off	er Gain Selection bits x, (4.096V) ⁽²⁾ x, (2.048V) ⁽²⁾ x, (1.024V)						
bit 1-0	ADFVR<1 11 = ADC 10 = ADC 01 = ADC 00 = ADC	:0>: ADC FVR Buffer Gain S FVR Buffer Gain is 4x, (4.09 FVR Buffer Gain is 2x, (2.04 FVR Buffer Gain is 1x, (1.02 FVR Buffer is off	Selection bit)6V) ⁽²⁾ !8V) ⁽²⁾ 24V)						
Note 1: F	FVRRDY is alv Fixed Voltage F	vays '1'. Reference output cannot exce	eed VDD.						

3: See Section 19.0 "Temperature Indicator Module" for additional information.

PIC16(L)F15313/23

EXAMPLE 24-1:

VRMS = 120 VPEAK =VRMS* $\sqrt{2}$ = 169.7 f = 60 Hz C = 0.1 uF Z = VPEAK/3x10⁻⁴ = 169.7/(3x10⁻⁴) = 565.7 kOhms Xc = 1/(2 Π fC) = 1/(2 Π *60*1*10⁻⁷) = 26.53 kOhms R = $\sqrt{(Z^2 - Xc^2)}$ = 565.1 kOhms (computed) R = 560 kOhms (used) ZR = $\sqrt{(R^2 + Xc^2)}$ = 560.6 kOhms (using actual resistor) IPEAK = VPEAK/ZR = 302.7*10⁻⁶ VC = Xc* IPEAK = 8.0 V Φ = Tan⁻¹(Xc/R) = 0.047 radians T $_{\Phi}$ = $\Phi/(2\Pi$ f) = 125.6 us

24.5.2 CORRECTION BY OFFSET CURRENT

When the waveform is varying relative to Vss, then the zero cross is detected too early as the waveform falls and too late as the waveform rises. When the waveform is varying relative to VDD, then the zero cross is detected too late as the waveform rises and too early as the waveform falls. The actual offset time can be determined for sinusoidal waveforms with the corresponding equations shown in Equation 24-3.

EQUATION 24-3: ZCD EVENT OFFSET

When External Voltage Source is relative to Vss:

$$TOFFSET = \frac{\operatorname{asin}\left(\frac{Vcpinv}{VPEAK}\right)}{2\pi \bullet Freq}$$

When External Voltage Source is relative to VDD:

$$TOFFSET = \frac{\operatorname{asin}\left(\frac{VDD - Vcpinv}{VPEAK}\right)}{2\pi \bullet Freq}$$

This offset time can be compensated for by adding a pull-up or pull-down biasing resistor to the ZCD pin. A pull-up resistor is used when the external voltage source is varying relative to Vss. A pull-down resistor is used when the voltage is varying relative to VDD. The resistor adds a bias to the ZCD pin so that the target external voltage source must go to zero to pull the pin voltage to the VCPINV switching voltage. The pull-up or pull-down value can be determined with the equation shown in Equation 24-4.

EQUATION 24-4: ZCD PULL-UP/DOWN

When External Signal is relative to Vss:

$$R_{PULLUP} = \frac{R_{SERIES}(V_{PULLUP} - V_{cpinv})}{V_{cpinv}}$$

When External Signal is relative to VDD:

$$\left(RPULLDOWN = \frac{RSERIES \times (Vcpinv)}{(VDD - Vcpinv)}\right)$$

24.6 Handling VPEAK variations

If the peak amplitude of the external voltage is expected to vary, the series resistor must be selected to keep the ZCD current source and sink below the design maximum range of $\pm 600 \,\mu$ A and above a reasonable minimum range. A general rule of thumb is that the maximum peak voltage can be no more than six times the minimum peak voltage. To ensure that the maximum current does not exceed $\pm 600 \,\mu$ A and the minimum is at least $\pm 100 \,\mu$ A, compute the series resistance as shown in Equation 24-5. The compensating pull-up for this series resistance can be determined with Equation 24-4 because the pull-up value is not dependent from the peak voltage.

EQUATION 24-5: SERIES R FOR V RANGE

$$R_{SERIES} = \frac{V_{MAXPEAK} + V_{MINPEAK}}{7 \times 10^{-4}}$$

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
INTCON	GIE	PEIE	—	_	—	—	—	INTEDG	121	
PIR4	—	—	—	_	—	—	TMR2IF	TMR1IF	134	
PIE4	_	—	—	_	—	_	TMR2IE	TMR1IE	126	
CCP1CON	EN	—	OUT	FMT		MODE	=<3:0>		306	
CCP1CAP	—	—	—	_	—		CTS<2:0>		308	
CCPR1L	Capture/Con	npare/PWM F	Register 1 (LS	B)					308	
CCPR1H	Capture/Compare/PWM Register 1 (MSB)							309		
CCP2CON	EN	—	OUT	FMT		MODE	=<3:0>		306	
CCP2CAP	_	—	—	_	—		CTS<2:0>		308	
CCPR2L	Capture/Con	npare/PWM F	Register 1 (LS	B)					308	
CCPR2H	Capture/Con	npare/PWM F	Register 1 (MS	SB)					308	
CCP1PPS	_	_			CCP1PI	PS<5:0>			191	
CCP2PPS	—	—		CCP2PPS<5:0>						
RxyPPS	—	—	—	RxyPPS<4:0>						
ADACT	_	—	—	- ADACT<4:0>						
CLCxSELy	—	—	—	LCxDyS<4:0>						
CWG1ISM	—	—	—	— IS<3:0>						

TABLE 28-5: SUMMARY OF REGISTERS ASSOCIATED WITH CCPx

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the CCP module.

U-1	U-1	U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			AS4E	AS3E	AS2E	AS1E	AS0E
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condit	ion	
bit 7-5	Unimplemen	ted: Read as '	o'				
bit 4	AS4E: CLC2	Output bit					
	1 = LC2_out	shut-down is e	nabled				
	$0 = LC2_out$	shut-down is d	isabled				
bit 3	AS3E: Compa	arator C2 Outp	ut bit				
	1 = C2 outpu	t shut down is	enabled				
hit 2		arator C1 Outp					
DIL Z		t shut down is					
	0 = C1 outpu	t shut-down is	disabled				
bit 2	AS1E: TMR2	Postscale Out	put bit				
	1 = TMR2 Pc	stscale shut-d	own is enable	d			
	0 = TMR2 Pc	stscale shut-d	own is disable	d			
bit 0	AS0E: CWG1	Input Pin bit					
	1 = Input pin	selected by CV	VG1PPS shut	-down is enabl	ed		
0 = Input pin selected by CWG1PPS shut-down is disabled							

REGISTER 30-6: CWG1AS1: CWG1 AUTO-SHUTDOWN CONTROL REGISTER 1

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page			
INTCON	GIE	PEIE	—	—	—	_	—	INTEDG	121			
PIR5	CLC4IF	CLC3IF	CLC2IF	CLC1IF	—	—	_	TMR1GIF	135			
PIE5	CLC4IE	CLC4IE	CLC2IE	CLC1IE	—	—	_	TMR1GIE	127			
CLC1CON	LC1EN	_	LC10UT	LC1INTP	LC1INTN		LC1MODE<2:0>					
CLC1POL	LC1POL	_	_	_	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	351			
CLC1SEL0	_	_		LC1D1S<5:0>								
CLC1SEL1	_	_		LC1D2S<5:0>								
CLC1SEL2	_	_			LC1D	3S<5:0>			352			
CLC1SEL3	_	_			LC1D	4S<5:0>			352			
CLC1GLS0	_	_	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	353			
CLC1GLS1	_	_	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	354			
CLC1GLS2	_	_	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	355			
CLC1GLS3	_	_	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	356			
CLC2CON	LC2EN	—	LC2OUT	LC2INTP	LC2INTN		LC2MODE<2:0>	>	350			
CLC2POL	LC2POL	_	_	_	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	351			
CLC2SEL0	_	—		•	LC2D	1S<5:0>			352			
CLC2SEL1	_	—			LC2D	2S<5:0>			352			
CLC2SEL2	_	—			LC2D	3S<5:0>			352			
CLC2SEL3	_	—			LC2D	4S<5:0>			352			
CLC2GLS0	_	—	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	353			
CLC2GLS1	_	_	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	354			
CLC2GLS2	_	_	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	355			
CLC2GLS3	_	_	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	356			
CLC3CON	LC3EN	_	LC3OUT	LC3INTP	LC3INTN		LC3MODE<2:0>	>	350			
CLC3POL	LC3POL	_	_	_	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	351			
CLC3SEL0	_	_			LC3D	1S<5:0>			352			
CLC3SEL1	_	—			LC3D	2S<5:0>			352			
CLC3SEL2	_	_			LC3D	3S<5:0>			352			
CLC3SEL3	_	_			LC3D	4S<5:0>			352			
CLC3GLS0	_	_	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	353			
CLC3GLS1	_	_	LC3G2D3T	LC3G2D3N	LC3G2D2T	LC3G2D2N	LC3G2D1T	LC3G2D1N	354			
CLC3GLS2	_	_	LC3G3D3T	LC3G3D3N	LC3G3D2T	LC3G3D2N	LC3G3D1T	LC3G3D1N	355			
CLC3GLS3	_	_	LC3G4D3T	LC3G4D3N	LC3G4D2T	LC3G4D2N	LC3G4D1T	LC3G4D1N	356			
CLC4CON	LC4EN	_	LC4OUT	LC4INTP	LC4INTN		LC4MODE<2:0>	>	350			
CLC4POL	LC4POL	_	_	_	LC4G4POL	LC4G3POL	LC4G2POL	LC4G1POL	351			
CLC4SEL0	_				LC4D	1S<5:0>			352			
CLC4SEL1					LC4D	2S<5:0>			352			
CLC4SEL2	_	_			LC4D	3S<5:0>			352			
CLC4SEL3					LC4D	4S<5:0>			352			
CLC4GLS0	-	_	LC4G1D3T	LC4G1D3N	LC4G1D2T	LC4G1D2N	LC4G1D1T	LC4G1D1N	353			

TABLE 31-4:	SUMMARY OF REGISTERS	ASSOCIATED WITH CLCx
-------------	----------------------	-----------------------------

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the CLCx modules.

32.5.8 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is a reserved address in the I^2C protocol, defined as address $0 \ge 0.00$. When the GCEN bit of the SSP1CON2 register is set, the slave module will automatically ACK the reception of this address regardless of the value stored in SSP1ADD. After the slave clocks in an address of all zeros with the R/W bit clear, an interrupt is generated and slave software can read SSP1BUF and respond. Figure 32-24 shows a general call reception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSP1CON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the eighth falling edge of SCL. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

32.5.9 SSP MASK REGISTER

An SSP Mask (SSP1MSK) register (Register 32-5) is available in I²C Slave mode as a mask for the value held in the SSP1SR register during an address comparison operation. A zero ('0') bit in the SSP1MSK register has the effect of making the corresponding bit of the received address a "don't care". This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value.

The SSP Mask register is active during:

- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSP mask has no effect during the reception of the first (high) byte of the address.

R/W-0/0	R/HS/HC-0	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0			
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN			
bit 7		·		•	•		bit 0			
Legend:										
R = Reada	ble bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is ur	nchanged	x = Bit is unki	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets			
'1' = Bit is s	et	'0' = Bit is cle	ared	HC = Cleared	d by hardware	S = User set				
bit 7	GCEN: Gener	ral Call Enable	bit (in I ² C Sla	ve mode only)						
	1 = Enable int 0 = General c	terrupt when a all address dis	general call a abled	ddress (0x00 d	or 00h) is receiv	ed in the SSP1	SR			
bit 6	ACKSTAT: Ac	cknowledge Sta	atus bit (in I ² C	mode only)						
	1 = Acknowle	dge was not re	eceived							
bit 5	ACKDT: Ackn	nowledge Data	bit (in I ² C mo	de onlv)						
	In Receive mo	ode:		,,						
	Value transmi	tted when the	user initiates a	in Acknowledg	e sequence at t	the end of a red	ceive			
	1 = Not Acknowled	owledge								
hit 4		uye nowledge Segi	ience Enable	hit (in I ² C Mae	ter mode only)					
	In Master Rec	reive mode.			ter mode only)					
	1 = Initiate A	Acknowledge	sequence on	SDA and S	CL pins, and	transmit ACK	CDT data bit.			
	Automatio	cally cleared b	y hardware.		•					
	0 = Acknowle	edge sequence	e idle							
bit 3		Ve Enable bit (in I ² C Master mode only)								
	1 = Enables F 0 = Receive id	dle	for I-C							
bit 2	PEN: Stop Co	ondition Enable	e bit (in I ² C Ma	ster mode only	y)					
	SCKMSSP Re	elease Control	<u>.</u>							
	1 = Initiate Sto	op condition or	n SDA and SC	L pins. Automa	atically cleared	oy hardware.				
	0 = Stop cond	lition Idle		······································						
bit 1	RSEN: Repea	ated Start Con	dition Enable b	oit (in I ² C Mast	er mode only)					
	1 = 10000000000000000000000000000000000	d Start conditio	n Idle	DA and SCL p	ins. Automatica	lly cleared by n	lardware.			
bit 0	SEN: Start Co	ondition Enable	e/Stretch Enab	le bit						
	In Master mod	<u>de:</u>								
	1 = Initiate Sta 0 = Start cond	art condition or lition Idle	n SDA and SC	L pins. Automa	atically cleared	by hardware.				
	In Slave mode	<u>9:</u>	lad fam by the st			(-tt	1)			
	1 = Clock stre0 = Clock stre	etching is enab	ied for both sla bled	ave transmit ar	na slave receive	(stretch enabl	ea)			
Note 1				na 1 ² C madula	is not in the IDI	E mada this k	it may not be			

REGISTER 32-3: SSP1CON2: SSP1 CONTROL REGISTER 2 (I²C MODE ONLY)⁽¹⁾

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the IDLE mode, this bit may not be set (no spooling) and the SSP1BUF may not be written (or writes to the SSP1BUF are disabled).

37.4 AC Characteristics

TABLE 37-20: CONFIGURABLE LOGIC CELL (CLC) CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param. No.	Sym.	Characteristic	Min.	Typt	Max.	Units	Conditions		
CLC01*	TCLCIN	CLC input time	\rightarrow	7	105	ns	(Note 1)		
CLC02*	TCLC	CLC module input to output propagation time	\searrow	24 12		ns ns	VDD = 1.8V VDD > 3.6V		
CLC03*	TCLCOUT	CLC output time Rise Tione	—	107		—	(Note 1)		
		Fall Time	_	108		_	(Note 1)		
CLC04*	FCLCMAX	CLC maximum switching frequency	—	32	Fosc	MHz			

- * These parameters are characterized but not/tested.
- † Data in "Typ" column is at 3.0%, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: See Table 37-10 for 105, 107 and 108 rise and fall times.

8-Lead Plastic Dual Flat, No Lead Package (MF) - 3x3x0.9mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-062C Sheet 1 of 2

8-Lead Plastic Dual Flat, No Lead Package (MF) - 3x3x0.9mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	MILLIMETERS						
Dimension	Limits	MIN	NOM	MAX				
Number of Pins	N		8					
Pitch	е		0.65 BSC					
Overall Height	Α	0.80	0.90	1.00				
Standoff	A1	0.00	0.02	0.05				
Contact Thickness	A3	0.20 REF						
Overall Length	D	3.00 BSC						
Exposed Pad Width	E2	2 1.34 - 1.						
Overall Width	E	3.00 BSC						
Exposed Pad Length	D2	1.60	-	2.40				
Contact Width	b	0.25	0.30	0.35				
Contact Length	L	0.20	0.30	0.55				
Contact-to-Exposed Pad	K	0.20	-	_				

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package may have one or more exposed tie bars at ends.

3. Package is saw singulated

4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-062C Sheet 2 of 2

16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body [UQFN]

Microchip Technology Drawing C04-257A Sheet 1 of 2