

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

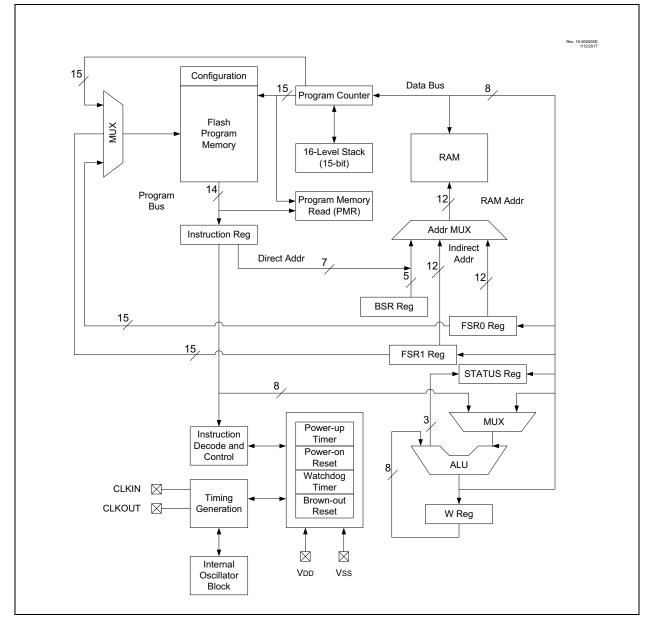
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15323-i-st


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 ENHANCED MID-RANGE CPU

This family of devices contains an enhanced mid-range 8-bit CPU core. The CPU has 48 instructions. Interrupt capability includes automatic context saving.

FIGURE 3-1: CORE DATA PATH DIAGRAM

The hardware stack is 16-levels deep and has Overflow and Underflow Reset capability. Direct, Indirect, and Relative Addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory.

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

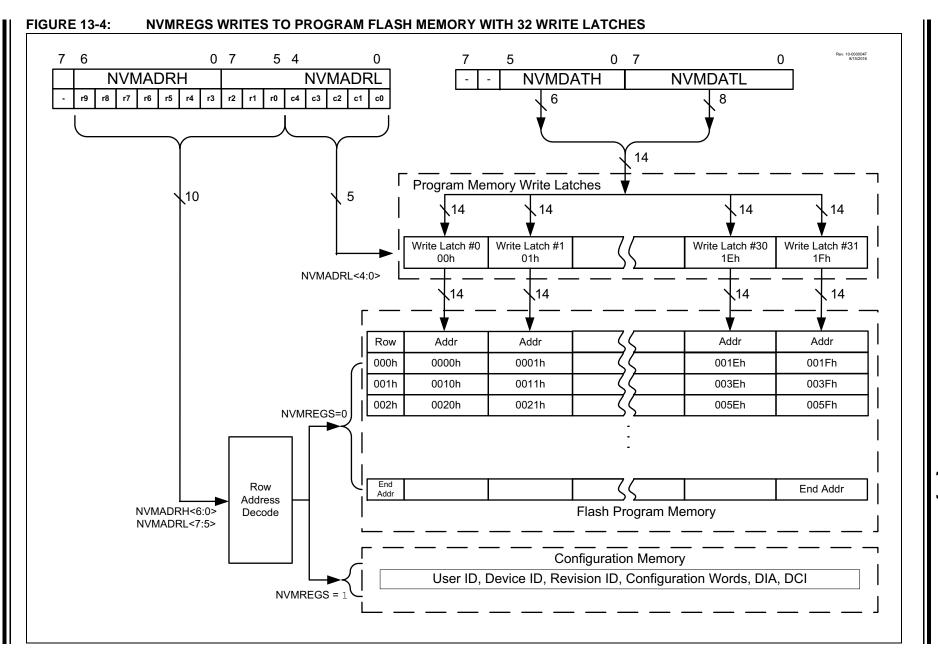
Address	Name	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on: POR, BOR Value on: MCLR											
Bank 8-10	ank 8-10												
	CPU CORE REGISTERS; see Table 4-3 for specifics												
x0Ch/ x8Ch 	/8Ch												

IABLE 4	-10: SPEC	AL FUNCTION	REGISTER	SUIVIIVIAR I	DANKS U-			1			T.
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 17											
				CPU COF	RE REGISTERS;	see Table 4-3 for	specifics				
88Ch	CPUDOZE	IDLEN	DOZEN	ROI	DOE	—	DOZE2	DOZE1	DOZE0	0000 -000	u000 -000
88Dh	OSCCON1	_		NOSC<2:0> NDIV<3:0> -qqq 0000			-qqq 0000	-ddd 0000			
88Eh	OSCCON2	—		COSC<2:0>			CD	IV<3:0>		-বর্বর বর্ববর	-বর্বর বর্ববর
88Fh	OSCCON3	CSWHOLD	_	_	ORDY	NOSCR	—	—	—	00 0	00 0
890h	OSCSTAT	EXTOR	HFOR	MFOR	LFOR	—	ADOR	—	PLLR	d000 -d-0	বর্ববুর -ব-ব
891h	OSCEN	EXTOEN	HFOEN	MFOEN	LFOEN	—	ADOEN	—	—	0000 -0	0000 -0
892h	OSCTUNE	_	_		•	HFT	UN<5:0>			10 0000	10 0000
893h	OSCFRQ	—	_	_	—	—		HFFRQ<2:0	>	ddd	ddd
894h	_				Unimpler	mented				—	—
895h	CLKRCON	CLKREN	_	_	CLKRE	OC<1:0> CLKRDIV<2:0>			0x xxxx	0u uuuu	
896h	CLKRCLK	_	_	_	—		CLKR	CLK<3:0>		0000	0000
897h Unimplemented							-	_			

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

TABLE 5-1: BOOT BLOCK SIZE BITS


BBEN	BBSIZE<2:0>	Actual Boot Block Size User Program Memory Size (words)	Last Boot Block Memory Access
1	xxx	0	-
0	111	512	01FFh
0	110-000	1024	03FFh

Note: The maximum boot block size is half the user program memory size. All selections higher than the maximum are set to half size. For example, all BBSIZE = 000 - 100 produce a boot block size of 4kW on a 8kW device.

PIC16(L)F15313/23

R-q/q	R-q/q	R-q/q	R-q/q	U-0	R-q/q	U-0	R-q/q
EXTOR	HFOR	MFOR	LFOR	_	ADOR		PLLR
bit 7			·				bit 0
Legend:							
R = Readable b	oit	W = Writable b	it	U = Unimplem	ented bit, read as	; '0'	
u = Bit is uncha	anged	x = Bit is unkno	own	-n/n = Value at	POR and BOR/V	/alue at all other	r Resets
'1' = Bit is set		'0' = Bit is clea	red				
bit 6 bit 5 bit 4	0 = The oscil HFOR: HFINT(1 = The oscil 0 = The oscil MFOR: MFINT 1 = The oscill 0 = The oscill	DSC Oscillator F llator is ready to llator is not enab OSC Oscillator I ator is ready to I	eled, or is not ye Ready bit be used eled, or is not ye Ready bit be used ed, or is not yet	t ready to be use t ready to be use ready to be used	d.		
		llator is ready to lator is not enab		ready to be used	d.		
bit 3	Unimplemente	ed: Read as '0'					
bit 2	1 = The oscil	escillator Ready llator is ready to lator is not enab	be used	ready to be used	d.		
bit 1	Unimplemente	ed: Read as '0'					
bit 0	PLLR: PLL is F 1 = The PLL	Ready bit is ready to be u	sed				

0 = The PLL is not enabled, the required input source is not ready, or the PLL is not locked.

U-0	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
_	NVMREGS	LWLO	FREE	WRERR ^(1,2,3)	WREN	WR ^(4,5,6)	RD
oit 7	·					÷	bit (
Legend:							
R = Readable b	bit	W = Writable b	it	U = Unimpleme	nted bit, read as	s 'O'	
S = Bit can only	/ be set	x = Bit is unkno	own	-n/n = Value at	POR and BOR/\	/alue at all other I	Resets
1' = Bit is set		'0' = Bit is clear	red	HC = Bit is clea	red by hardware	•	
bit 7	Unimplemente	ed: Read as '0'					
bit 6				and Device ID Re	gisters		
bit 5	When FREE = 1 = The next \	WR command up WR command w	odates the write		d within the row;	no memory oper	ation is initiated
bit 4	1 = Performs address is	GS:NVMADR po	on with the nex s) to prepare for	t WR command; writing.	the 32-word pse	udo-row containi	ng the indicate
bit 3	WRERR: Progr This bit is norm 1 = A write op NVMADR	ram/Erase Error nally set by hardv	Flag bit ^(1,2,3) vare. rrupted by a Re -protected addre	set, interrupted u	inlock sequence	, or WR was writ	ten to one whil
bit 2	1 = Allows pro	m/Erase Enable ogram/erase cycl ogramming/eras	es	-lash			
bit 1	WR: Write Con When NVMRE 1 = Initiates th		nts to a PFM loc cated by Table 1	<u>ation</u> : 3-4			
oit O	RD: Read Coni 1 = Initiates a bit is clear	trol bit ⁽⁷⁾ read at address	= NVMADR1, ar eration is comple	nd loads data to N ete. The bit can o		akes one instructi leared) in softwa	
2: Bit 3: Bit 4: Thi 5: Op	is undefined while must be cleared b may be written to s bit can only be s erations are self-t	by software; hard '1' by software i set by following t imed, and the W	n order to imple he unlock seque R bit is cleared	ment test sequen ence of Section 1	13.3.2 "NVM Un n complete.	lock Sequence"	

REGISTER 13-5: NVMCON1: NONVOLATILE MEMORY CONTROL 1 REGISTER

6: Once a write operation is initiated, setting this bit to zero will have no effect.

15.3 Bidirectional Pins

PPS selections for peripherals with bidirectional signals on a single pin must be made so that the PPS input and PPS output select the same pin. Peripherals that have bidirectional signals include:

- EUSART (synchronous operation)
- MSSP (I²C)
- The I²C SCLx and SDAx functions can be Note: remapped through PPS. However, only the RB1, RB2, RC3 and RC4 pins have the I²C and SMBus specific input buffers implemented (I²C mode disables INLVL and sets thresholds that are specific for I^2C). If the SCLx or SDAx functions are mapped to some other pin (other than RB1, RB2, RC3 or RC4), the general purpose TTL or ST input buffers (as configured based on INLVL register setting) will be used instead. In most applications, it is therefore recommended only to map the SCLx and SDAx pin functions to the RB1, RB2, RC3 or RC4 pins.

15.4 PPS Lock

The PPS includes a mode in which all input and output selections can be locked to prevent inadvertent changes. PPS selections are locked by setting the PPSLOCKED bit of the PPSLOCK register. Setting and clearing this bit requires a special sequence as an extra precaution against inadvertent changes. Examples of setting and clearing the PPSLOCKED bit are shown in Example 15-1.

EXAMPLE 15-1: PPS LOCK/UNLOCK SEQUENCE

;	suspend interrupts
	BCF INTCON, GIE
;	BANKSEL PPSLOCK ; set bank
;	required sequence, next 5 instructions
	MOVLW 0x55
	MOVWF PPSLOCK
	MOVLW 0xAA
	MOVWF PPSLOCK
;	Set PPSLOCKED bit to disable writes or
;	Clear PPSLOCKED bit to enable writes
	BSF PPSLOCK, PPSLOCKED
;	restore interrupts
	BSF INTCON, GIE

15.5 PPS Permanent Lock

The PPS can be permanently locked by setting the PPS1WAY Configuration bit. When this bit is set, the PPSLOCKED bit can only be cleared and set one time after a device Reset. This allows for clearing the PPSLOCKED bit so that the input and output selections can be made during initialization. When the PPSLOCKED bit is set after all selections have been made, it will remain set and cannot be cleared until after the next device Reset event.

15.6 Operation During Sleep

PPS input and output selections are unaffected by Sleep.

15.7 Effects of a Reset

A device Power-on-Reset (POR) clears all PPS input and output selections to their default values (Permanent Lock Removed). All other Resets leave the selections unchanged. Default input selections are shown in Table 15-1 and Table 15-2.

TABLE 15-4:PPS OUTPUT SIGNAL
ROUTING OPTIONS
(PIC16(L)F15313)

Output Signal	RxyPPS Register	Remappable to Pins of PORTx	
Name	Value	PIC16(L)F15313	
		PORTA	
CLKR	0x1B	•	
NCO10UT	0x1A	•	
TMR0	0x19	•	
SDO1/SDA1	0x16	•	
SCK1/SCL1	0x15	•	
C1OUT	0x13	•	
DT1	0x10	•	
TX1/CK1	0x0F	•	
PWM6OUT	0x0E	•	
PWM5OUT	0x0D	•	
PWM4OUT	0x0C	•	
PWM3OUT	0x0B	•	
CCP2	0x0A	•	
CCP1	0x09	•	
CWG1D	0x08	•	
CWG1C	0x07	•	
CWG1B	0x06	•	
CWG1A	0x05	•	
CLC4OUT	0x04	•	
CLC3OUT	0x03	•	
CLC2OUT	0x02	•	
CLC10UT	0x01	•	

TABLE 15-5:PPS OUTPUT SIGNAL
ROUTING OPTIONS
(PIC16(L)F15323)

Output	RxyPPS Register		le to Pins of RTx	
Signal Name	Value	PIC16(L)F15323		
		PORTA	PORTC	
CLKR	0x1B	•	•	
NCO10UT	0x1A	•	•	
TMR0	0x19	•	•	
SDO1/SDA1	0x16	•	•	
SCK1/SCL1	0x15	•	•	
C2OUT	0x14	•	•	
C10UT	0x13	•	•	
DT1	0x10	•	•	
TX1/CK1	0x0F	•	•	
PWM6OUT	0x0E	•	•	
PWM5OUT	0x0D	•	•	
PWM4OUT	0x0C	•	•	
PWM3OUT	0x0B	•	•	
CCP2	0x0A	•	•	
CCP1	0x09	•	•	
CWG1D	0x08	•	•	
CWG1C	0x07	•	•	
CWG1B	0x06	•	•	
CWG1A	0x05	•	•	
CLC4OUT	0x04	•	•	
CLC3OUT	0x03	•	•	
CLC2OUT	0x02	•	•	
CLC10UT	0x01	•	•	

18.3 Register Definitions: FVR Control

REGISTER 18-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAF\	/R<1:0>	ADFV	R<1:0>
bit 7							bit 0

Legend:			
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is un	nchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is s	et	'0' = Bit is cleared	q = Value depends on condition
bit 7	1 = Fixed	Fixed Voltage Reference Ena Voltage Reference is enable Voltage Reference is disabl	ed
bit 6	1 = Fixed	Fixed Voltage Reference Re Voltage Reference output is Voltage Reference output is	ready for use
bit 5	1 = Temp	mperature Indicator Enable I erature Indicator is enabled erature Indicator is disabled	bit ⁽³⁾
bit 4	1 = Temp	Femperature Indicator Range erature in High Range Vo∪⊤ erature in Low Range Vo∪⊤	= 3VT
bit 3-2	11 = Com 10 = Com 01 = Com	<1:0>: Comparator FVR Buff parator FVR Buffer Gain is 4 parator FVR Buffer Gain is 2 parator FVR Buffer Gain is 1 parator FVR Buffer is off	x, (4.096V) ⁽²⁾ x, (2.048V) ⁽²⁾
bit 1-0	11 = ADC 10 = ADC 01 = ADC	:0>: ADC FVR Buffer Gain S FVR Buffer Gain is 4x, (4.09 FVR Buffer Gain is 2x, (2.04 FVR Buffer Gain is 1x, (1.02 FVR Buffer is off	96V)(2) 48V) ⁽²⁾
2: F	•	Reference output cannot exc	eed VDD. Module" for additional information

3: See Section 19.0 "Temperature Indicator Module" for additional information.

PIC16(L)F15313/23

REGISTER 28-4: CCPRxH REGISTER: CCPx REGISTER HIGH BYTE

| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | CCPRx | <15:8> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

CCPxMODE = Capture mode
CCPRxH<7:0>: Captured value of TMR1H
<u>CCPxMODE = Compare mode</u>
CCPRxH<7:0>: MS Byte compared to TMR1H
<u>CCPxMODE = PWM modes when CCPxFMT = 0</u> :
CCPRxH<7:2>: Not used
CCPRxH<1:0>: Pulse-width Most Significant two bits
CCPxMODE = PWM modes when CCPxFMT = 1:
CCPRxH<7:0>: Pulse-width Most Significant eight bits

32.3.1 CLOCK STRETCHING

When a slave device has not completed processing data, it can delay the transfer of more data through the process of clock stretching. An addressed slave device may hold the SCL clock line low after receiving or sending a bit, indicating that it is not yet ready to continue. The master that is communicating with the slave will attempt to raise the SCL line in order to transfer the next bit, but will detect that the clock line has not yet been released. Because the SCL connection is open-drain, the slave has the ability to hold that line low until it is ready to continue communicating.

Clock stretching allows receivers that cannot keep up with a transmitter to control the flow of incoming data.

32.3.2 ARBITRATION

Each master device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state.

However, two master devices may try to initiate a transmission on or about the same time. When this occurs, the process of arbitration begins. Each transmitter checks the level of the SDA data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels do not match, loses arbitration, and must stop transmitting on the SDA line.

For example, if one transmitter holds the SDA line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDA line will be low. The first transmitter then observes that the level of the line is different than expected and concludes that another transmitter is communicating.

The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDA line. If this transmitter is also a master device, it also must stop driving the SCL line. It then can monitor the lines for a Stop condition before trying to reissue its transmission. In the meantime, the other device that has not noticed any difference between the expected and actual levels on the SDA line continues with its original transmission.

Slave Transmit mode can also be arbitrated, when a master addresses multiple slaves, but this is less common.

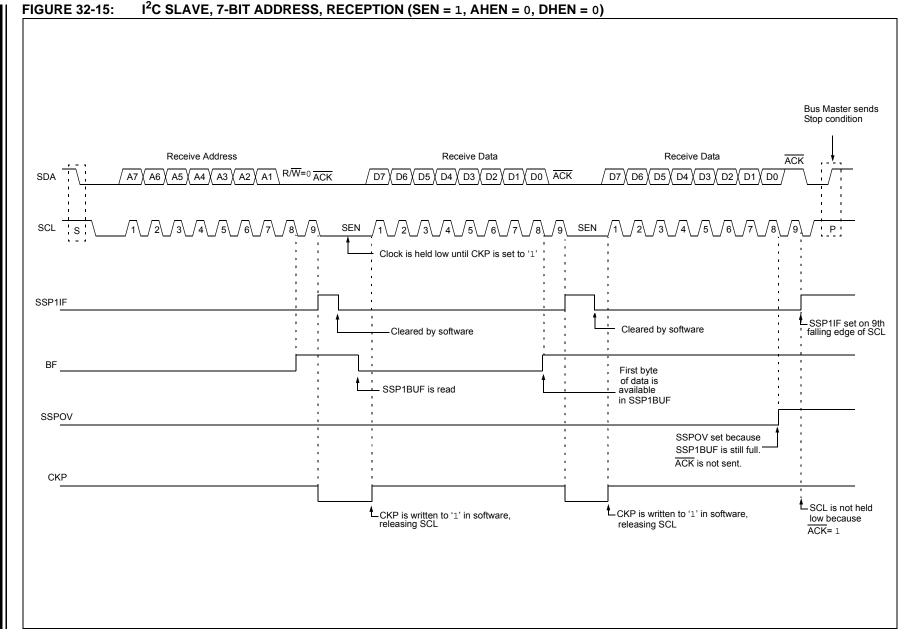
32.4 I²C MODE OPERATION

All MSSP I²C communication is byte oriented and shifted out MSb first. Six SFR registers and two interrupt flags interface the module with the $PIC^{$ [®]} microcontroller and user software. Two pins, SDA and SCL, are exercised by the module to communicate with other external I²C devices.

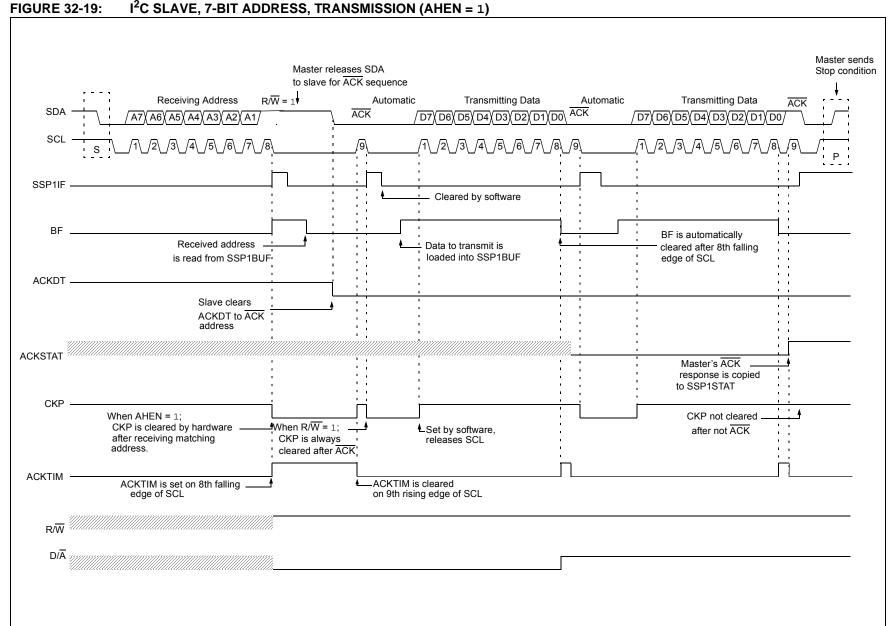
32.4.1 BYTE FORMAT

All communication in I^2C is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent back. After the eighth falling edge of the SCL line, the device outputting data on the SDA changes that pin to an input and reads in an acknowledge value on the next clock pulse.

The clock signal, SCL, is provided by the master. Data is valid to change while the SCL signal is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define special conditions on the bus, explained below.


32.4.2 DEFINITION OF I²C TERMINOLOGY

There is language and terminology in the description of I^2C communication that have definitions specific to I^2C . That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Philips I^2C specification.


32.4.3 SDA AND SCL PINS

Selection of any I²C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain. These pins should be set by the user to inputs by setting the appropriate TRIS bits.

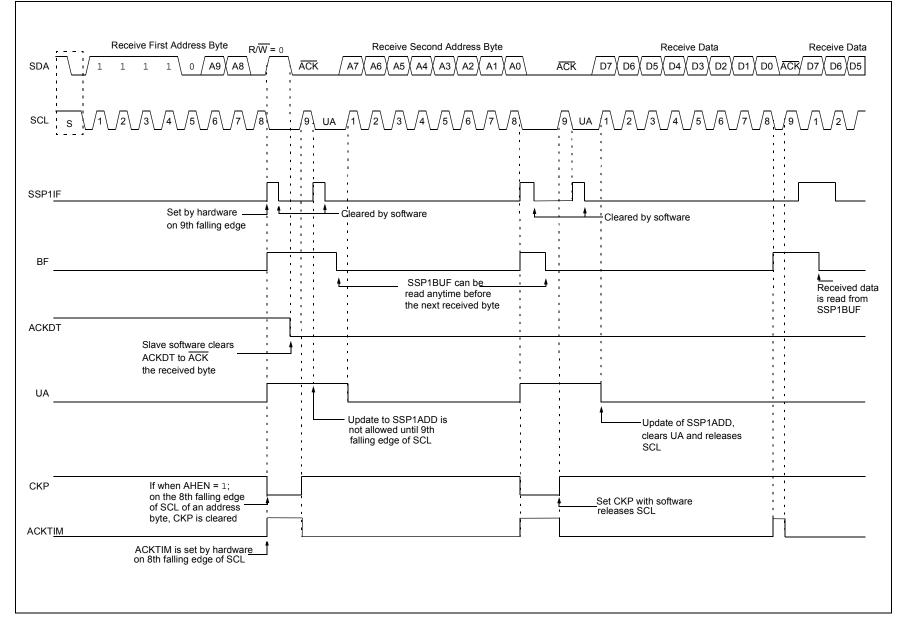

Note 1:	Any device pin can be selected for SDA
	and SCL functions with the PPS periph-
	eral. These functions are bidirectional.
	The SDA input is selected with the
	SSPDATPPS registers. The SCL input is
	selected with the SSPCLKPPS registers.
	Outputs are selected with the RxyPPS
	registers. It is the user's responsibility to
	make the selections so that both the input
	and the output for each function is on the
	same pin.

FIGURE 32-15:

I²C SLAVE, 7-BIT ADDRESS, TRANSMISSION (AHEN = 1)

FIGURE 32-21: I²C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 0)

Preliminary

32.8 Register Definitions: MSSP1 Control

R/W-0/0	R/W-0/0	R/HS/HC-0	R/HS/HC-0	R/HS/HC-0	R/HS/HC-0	R/HS/HC-0	R/HS/HC-0
SMP	CKE ⁽¹⁾	D/A	P ⁽²⁾	S ⁽²⁾	R/W	UA	BF
bit 7				1			bit C
Legend:							
R = Readable b	bit	W = Writable bit		II = I Inimpleme	nted bit, read as '0	,	
				•	POR and BOR/Val		oto
u = Bit is uncha	ingeu	x = Bit is unknow					els
'1' = Bit is set		'0' = Bit is cleare	ea	HS/HC = Hardw	/are set/clear		
bit 7	<u>SPI Master mo</u> 1 = Input data	a Input Sample bit <u>ode:</u> sampled at end of sampled at middle	•	ne			
	In I ² C Master of 1 = Slew rate	control disabled for	r Standard Speed	d mode (100 kHz a	and 1 MHz)		
		control enabled for	• •	. ,			
bit 6	<u>In SPI Master</u> 1 = Transmit o 0 = Transmit o	ck Edge Select bit (or Slave mode: ccurs on transition ccurs on transition	from active to Id	e clock state			
		<u>nly:</u> ut logic so that thre /Bus specific input:		liant with SMBus	specification		
bit 5	_	Iress bit (I ² C mode					
	1 = Indicates t	hat the last byte red hat the last byte red	ceived or transmi				
bit 4	P: Stop bit ⁽²⁾						
	1 = Indicates t	y. This bit is cleared hat a Stop bit has b as not detected last	een detected las			red.)	
bit 3	1 = Indicates t	y. This bit is cleared hat a Start bit has b as not detected last	een detected las			red.)	
bit 2	This bit holds t	ite bit information (he R/W bit info <u>rmai</u> Stop bit, or not ACK <u>ode:</u>	tion following the	last address mate	ch. This bit is only v	valid from the addı	ress match to the
	In I ² C Master I 1 = Transmit 0 = Transmit	<u>mode:</u> is in progress is not in progress his bit with SEN, R	SEN. PEN. RCE	N or ACKEN will i	ndicate if the MSS	P is in IDLE mode	
bit 1	UA: Update Address bit (10-bit I ² C mode only) 1 = Indicates that the user needs to update the address in the SSP1ADD register 0 = Address does not need to be updated						
bit 0	0 = Receive no	and I ² C modes): omplete, SSPBUF i ot complete, SSPBI					
		<u>mode only):</u> mit in progress (doo mit complete (does					
		e is set by the CKP					

REGISTER 32-1: SSP1STAT: SSP1 STATUS REGISTER

2: This bit is cleared on Reset and when SSPEN is cleared.

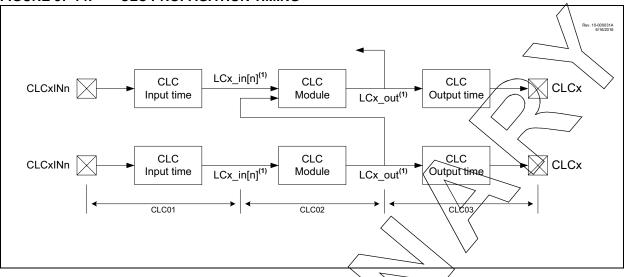
36.2 General Format for Instructions

Mnemonic,		Description		14-Bit Opcode				Status	Notes
Oper	ands	Description		MSb	LSb		Affected	Notes	
		BYTE-ORIENTED FILE	REGISTER OPE	RATIC	ONS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	00xx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	2
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	2
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	2
MOVWF	f	Move W to f	1	00	0000	1fff	ffff		2
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	2
SUBWFB	f, d	Subtract with Borrow W from f	1	11	1011	dfff	ffff	C, DC, Z	2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	2
		BYTE ORIENTED	SKIP OPERATIO	ONS					
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1, 2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2
	1	BIT-ORIENTED FILE			vs				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		2
		BIT-ORIENTED	SKIP OPERATIO	NS					
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2
LITERAL (OPERATI								
ADDLW	k	Add literal and W	1	11	1110	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLB	k	Move literal to BSR	1	00	000	0k	kkkk		
MOVLP	k	Move literal to PCLATH	1	11	0001	1kkk	kkkk		
MOVLW	k	Move literal to W	1	11	0000	kkkk	kkkk		
SUBLW	k	Subtract W from literal	1	11	1100	kkkk	kkkk	C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	1

TABLE 36-3: INSTRUCTION SET

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.


TABLE 37-18:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
--------------	---

	ng Temperatur		nless otherwis ≤ +125°C	e stateu)			-		$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$
Param. No.	Sym.		Characteristic	c	Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High I	Pulse Width	No Prescaler	0.5 Tcy + 20	1	—	ns	
				With Prescaler	10	_	—	/ ns	
41*	TT0L	T0CKI Low F	ulse Width	No Prescaler	0.5 TCY + 20	_	_/	/ns /	
				With Prescaler	10	_		NS	
42*	TT0P	T0CKI Period	ł		Greater of:	_	_	ns <	N = prescale value
					20 or <u>Tcy + 40</u> N	\square			\triangleright
45*	T⊤1H	T1CKI High	Synchronous, N	lo Prescaler	0.5 TCY + 20	_/	\sim	ns	
		Time	Synchronous, v	vith Prescaler	15	— /	$\overline{\checkmark}/$	715	
			Asynchronous		30 🔨	_	$\setminus - \langle$	ns	
46*	T⊤1L	T1CKI Low	Synchronous, N	lo Prescaler	0.5 Tcy + 20		$\langle - \rangle$	ns	
		Time	Synchronous, v	vith Prescaler	15		\rightarrow	ns	
			Asynchronous		< 30	1	>-	ns	
47*	TT1P	T1CKI Input	Synchronous		Greater of.		/ _	ns	N = prescale value
		Period			30 or <u>Tcy + 40</u> N	\geq			
			Asynchronous		60	~_		ns	
49*	TCKEZTMR1	Delay from E Increment	xternal Clock Ec	lge to Timer	2 ToSC	_	7 Tosc	_	Timers in Sync mode

*

These parameters are characterized but not tested. Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not † tested.

TABLE 37-20: CONFIGURABLE LOGIC CELL (CLC) CHARACTERISTICS

	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le Ta \le +125^{\circ}C$								
Param. No.	Sym.	Characteristic	Min.	Typt	Max.	Units	Conditions		
CLC01*	TCLCIN	CLC input time	\searrow	7	105	ns	(Note 1)		
CLC02*	TCLC	CLC module input to output propagation time	\searrow	24 12		ns ns	VDD = 1.8V VDD > 3.6V		
CLC03*	TCLCOUT	CLC output time Rise Time	_	107	_	_	(Note 1)		
		Pall Time	—	IO8	_		(Note 1)		
CLC04*	FCLCMAX	CLC maximum switching frequency	—	32	Fosc	MHz			

- * These parameters are characterized but not/tested.
- † Data in "Typ" column is at 3.0%, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: See Table 37-10 for 105, 107 and 108 rise and fall times.

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Symbol	Characte	eristic	Min.	Max.	Units	Conditions	
SP100*	0* Thigh	Clock high time	100 kHz mode	4.0		μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6		μS	Device must operate at a minimum of 10 MHz	
			SSP module	1.5Tcy	_			
SP101*	TLOW	Clock low time	100 kHz mode	4.7	-	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3		μS	Device must operate at a minimum of 10 MHz	
			SSP module	1.5TCY	_			
SP102* TR	TR	SDA and SCL rise	100 kHz mode	—	1000	ns		
		time	400 kHz mode	20 + 0.1CB	300	ns	CB is specified to be from 10-400 pF	
SP103*	TF	SDA and SCL fall time	100 kHz mode	_	250	ns		
			400 kHz mode	20 + 0.1CB	250	ns	CB is specified to be from 10-400 pF	
SP106*	THD:DAT	Data input hold time	100 kHz mode	0	_	ns		
			400 kHz mode	0	0.9	μs		
SP107*	TSU:DAT	:DAT Data input setup time	100 kHz mode	250	_	ns	(Note 2)	
			400 kHz mode	100	_	ns		
SP109*	ΤΑΑ	Output valid from	100 kHz mode	_	3500	ns	(Note 1)	
		clock	400 kHz mode	—	_	ns		
SP110*	TBUF	Bus free time	100 kHz mode	4.7	-	μs	Time the bus must be free	
			400 kHz mode	1.3	_	μS	before a new transmission can start	
SP111	Св	Bus capacitive loading		_	400	pF		

TABLE 37-25: I²C BUS DATA REQUIREMENTS

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.