
Microchip Technology - PIC16LF15323T-I/ST Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 32MHz

Connectivity I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 12

Program Memory Size 3.5KB (2K x 14)

Program Memory Type FLASH

EEPROM Size 224 x 8

RAM Size 256 x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 11x10b; D/A 1x5b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 14-TSSOP (0.173", 4.40mm Width)

Supplier Device Package 14-TSSOP

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15323t-i-st

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic16lf15323t-i-st-4393297
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers


PIC16(L)F15313/23

P
e

ri
p

h
er

al
 M

o
d

u
le

 D
is

a
b

le

D
eb

u
g

 (
1)

I

I

I

I

I

I

I

I

I

I

I

I

I

r

TABLE 1: PIC16(L)F153XX FAMILY TYPES 

Device

D
at

a 
S

h
ee

t 
In

d
ex

P
ro

g
ra

m
 F

la
s

h
 M

e
m

o
ry

 (
K

W
)

P
ro

g
ra

m
 F

la
s

h
 M

e
m

o
ry

 (
K

B
) 

S
to

ra
g

e 
A

re
a

 F
la

sh
 (

B
)

D
a

ta
 S

R
A

M
(b

yt
e

s
)

I/O
P

in
s

10
-b

it
 A

D
C

5
-b

it
 D

A
C

C
o

m
p

ar
a

to
r

8
-b

it
/ 

(w
it

h
 H

LT
) 

T
im

e
r

16
-b

it
 T

im
er

 

W
in

d
o

w
 W

a
tc

h
d

o
g

 T
im

e
r

C
C

P
/1

0
-b

it
 P

W
M

C
W

G

N
C

O

C
L

C

Z
e

ro
-C

ro
s

s
 D

et
e

ct

Te
m

p
e

ra
tu

re
 I

n
d

ic
a

to
r

M
em

o
ry

 A
c

c
es

s
 P

a
rt

it
io

n

D
e

vi
c

e 
In

fo
rm

a
ti

o
n

 A
re

a

E
U

S
A

R
T

/ 
I2

C
-S

P
I

P
er

ip
h

er
al

 P
in

 S
el

ec
t

PIC16(L)F15313 (C) 2 3.5 224 256 6 5 1 1 1 2 Y 2/4 1 1 4 Y Y Y Y 1/1 Y Y

PIC16(L)F15323 (C) 2 3.5 224 256 12 11 1 2 1 2 Y 2/4 1 1 4 Y Y Y Y 1/1 Y Y

PIC16(L)F15324 (D) 4 7 224 512 12 11 1 2 1 2 Y 2/4 1 1 4 Y Y Y Y 2/1 Y Y

PIC16(L)F15325 (B) 8 14 224 1024 12 11 1 2 1 2 Y 2/4 1 1 4 Y Y Y Y 2/1 Y Y

PIC16(L)F15344 (D) 4 7 224 512 18 17 1 2 1 2 Y 2/4 1 1 4 Y Y Y Y 2/1 Y Y

PIC16(L)F15345 (B) 8 14 224 1024 18 17 1 2 1 2 Y 2/4 1 1 4 Y Y Y Y 2/1 Y Y

PIC16(L)F15354 (A) 4 7 224 512 25 24 1 2 1 2 Y 2/4 1 1 4 Y Y Y Y 2/2 Y Y

PIC16(L)F15355 (A) 8 14 224 1024 25 24 1 2 1 2 Y 2/4 1 1 4 Y Y Y Y 2/2 Y Y

PIC16(L)F15356 (E) 16 28 224 2048 25 24 1 2 1 2 Y 2/4 1 1 4 Y Y Y Y 2/2 Y Y

PIC16(L)F15375 (E) 8 14 224 1024 36 35 1 2 1 2 Y 2/4 1 1 4 Y Y Y Y 2/2 Y Y

PIC16(L)F15376 (E) 16 28 224 2048 36 35 1 2 1 2 Y 2/4 1 1 4 Y Y Y Y 2/2 Y Y

PIC16(L)F15385 (E) 8 14 224 1024 44 43 1 2 1 2 Y 2/4 1 1 4 Y Y Y Y 2/2 Y Y

PIC16(L)F15386 (E) 16 28 224 2048 44 43 1 2 1 2 Y 2/4 1 1 4 Y Y Y Y 2/2 Y Y

Note 1: I - Debugging integrated on chip.

Data Sheet Index:

A: DS40001853 PIC16(L)F15354/5 Data Sheet, 28-Pin

B: DS40001865 PIC16(L)F15325/45 Data Sheet, 14/20-Pin

C: DS40001897 PIC16(L)F15313/23 Data Sheet, 8/14-Pin

D: DS40001889 PIC16(L)F15324/44 Data Sheet, 14/20-Pin

E: DS40001866 PIC16(L)F15356/75/76/85/86 Data Sheet, 28/40/48-Pin

Note: For other small form-factor package availability and marking information, visit www.microchip.com/packaging o
contact your local sales office.
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 3

www.microchip.com/packaging


PIC16(L)F15313/23
1.1 Register and Bit Naming 
Conventions

1.1.1 REGISTER NAMES

When there are multiple instances of the same
peripheral in a device, the peripheral control registers
will be depicted as the concatenation of a peripheral
identifier, peripheral instance, and control identifier.
The control registers section will show just one
instance of all the register names with an ‘x’ in the place
of the peripheral instance number. This naming
convention may also be applied to peripherals when
there is only one instance of that peripheral in the
device to maintain compatibility with other devices in
the family that contain more than one.

1.1.2 BIT NAMES

There are two variants for bit names:

• Short name: Bit function abbreviation

• Long name: Peripheral abbreviation + short name

1.1.2.1 Short Bit Names

Short bit names are an abbreviation for the bit function.
For example, some peripherals are enabled with the
EN bit. The bit names shown in the registers are the
short name variant.

Short bit names are useful when accessing bits in C
programs. The general format for accessing bits by the
short name is RegisterNamebits.ShortName. For
example, the enable bit, EN, in the COG1CON0 regis-
ter can be set in C programs with the instruction
COG1CON0bits.EN = 1.

Short names are generally not useful in assembly
programs because the same name may be used by
different peripherals in different bit positions. When this
occurs, during the include file generation, all instances
of that short bit name are appended with an underscore
plus the name of the register in which the bit resides to
avoid naming contentions.

1.1.2.2 Long Bit Names

Long bit names are constructed by adding a peripheral
abbreviation prefix to the short name. The prefix is
unique to the peripheral thereby making every long bit
name unique. The long bit name for the COG1 enable
bit is the COG1 prefix, G1, appended with the enable
bit short name, EN, resulting in the unique bit name
G1EN.

Long bit names are useful in both C and assembly pro-
grams. For example, in C the COG1CON0 enable bit
can be set with the G1EN = 1 instruction. In assembly,
this bit can be set with the BSF COG1CON0,G1EN
instruction. 

1.1.2.3 Bit Fields

Bit fields are two or more adjacent bits in the same
register. Bit fields adhere only to the short bit naming
convention. For example, the three Least Significant
bits of the COG1CON0 register contain the mode
control bits. The short name for this field is MD. There
is no long bit name variant. Bit field access is only
possible in C programs. The following example
demonstrates a C program instruction for setting the
COG1 to the Push-Pull mode:

COG1CON0bits.MD = 0x5;

Individual bits in a bit field can also be accessed with
long and short bit names. Each bit is the field name
appended with the number of the bit position within the
field. For example, the Most Significant mode bit has
the short bit name MD2 and the long bit name is
G1MD2. The following two examples demonstrate
assembly program sequences for setting the COG1 to
Push-Pull mode:

Example 1:

MOVLW  ~(1<<G1MD1)
ANDWF  COG1CON0,F
MOVLW  1<<G1MD2 | 1<<G1MD0
IORWF  COG1CON0,F

Example 2:

BSF    COG1CON0,G1MD2
BCF    COG1CON0,G1MD1
BSF    COG1CON0,G1MD0

1.1.3 REGISTER AND BIT NAMING 
EXCEPTIONS

1.1.3.1 Status, Interrupt, and Mirror Bits

Status, interrupt enables, interrupt flags, and mirror bits
are contained in registers that span more than one
peripheral. In these cases, the bit name shown is
unique so there is no prefix or short name variant.

1.1.3.2 Legacy Peripherals

There are some peripherals that do not strictly adhere
to these naming conventions. Peripherals that have
existed for many years and are present in almost every
device are the exceptions. These exceptions were
necessary to limit the adverse impact of the new
conventions on legacy code. Peripherals that do
adhere to the new convention will include a table in the
registers section indicating the long name prefix for
each peripheral instance. Peripherals that fall into the
exception category will not have this table. These
peripherals include, but are not limited to, the following:

• EUSART

• MSSP
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 12



PIC16(L)F15313/23
4.5 Stack

All devices have a 16-level x 15-bit wide hardware
stack (refer to Figure 4-4 through Figure 4-7). The
stack space is not part of either program or data space.
The PC is PUSHed onto the stack when CALL or
CALLW instructions are executed or an interrupt causes
a branch. The stack is POPed in the event of a
RETURN, RETLW or a RETFIE instruction execution.
PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer if the STVREN
bit is programmed to ‘0‘ (Configuration Words). This
means that after the stack has been PUSHed sixteen
times, the seventeenth PUSH overwrites the value that
was stored from the first PUSH. The eighteenth PUSH
overwrites the second PUSH (and so on). The
STKOVF and STKUNF flag bits will be set on an
Overflow/Underflow, regardless of whether the Reset is
enabled.

4.5.1 ACCESSING THE STACK

The stack is accessible through the TOSH, TOSL and
STKPTR registers. STKPTR is the current value of the
Stack Pointer. TOSH:TOSL register pair points to the
TOP of the stack. Both registers are read/writable. TOS
is split into TOSH and TOSL due to the 15-bit size of the
PC. To access the stack, adjust the value of STKPTR,
which will position TOSH:TOSL, then read/write to
TOSH:TOSL. STKPTR is five bits to allow detection of
overflow and underflow.

During normal program operation, CALL, CALLW and
interrupts will increment STKPTR while RETLW,
RETURN, and RETFIE will decrement STKPTR.
STKPTR can be monitored to obtain to value of stack
memory left at any given time. The STKPTR always
points at the currently used place on the stack.
Therefore, a CALL or CALLW will increment the
STKPTR and then write the PC, and a return will
unload the PC value from the stack and then
decrement the STKPTR.

Reference Figure 4-4 through Figure 4-7 for examples
of accessing the stack.

FIGURE 4-4: ACCESSING THE STACK EXAMPLE 1

Note 1: There are no instructions/mnemonics
called PUSH or POP. These are actions
that occur from the execution of the
CALL, CALLW, RETURN, RETLW and
RETFIE instructions or the vectoring to
an interrupt address.

Note: Care should be taken when modifying the
STKPTR while interrupts are enabled.

STKPTR = 0x1F
Stack Reset Disabled
(STVREN = 0)

Stack Reset Enabled
(STVREN = 1)

Initial Stack Configuration:

After Reset, the stack is empty. The
empty stack is initialized so the Stack
Pointer is pointing at 0x1F. If the Stack
Overflow/Underflow Reset is enabled, the
TOSH/TOSL register will return ‘0’. If the
Stack Overflow/Underflow Reset is
disabled, the TOSH/TOSL register will
return the contents of stack address
0x0F.

0x0000 STKPTR = 0x1F

TOSH:TOSL 0x0F

0x0E

0x0D

0x0C

0x0B

0x0A

0x09

0x08

0x07

0x06

0x04

0x05

0x03

0x02

0x01

0x00

0x1FTOSH:TOSL

Rev. 10-000043A
7/30/2013
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 69



PIC16(L)F15313/23
8.3 Register Definitions: Brown-out Reset Control

REGISTER 8-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u U-0 U-0 U-0 U-0 U-0 U-0 R-q/u

SBOREN(1) — — — — — — BORRDY

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition

bit 7 SBOREN: Software Brown-out Reset Enable bit(1)

If BOREN <1:0> in Configuration Words  01:
SBOREN is read/write, but has no effect on the BOR.
If BOREN <1:0> in Configuration Words = 01:
1 = BOR Enabled
0 = BOR Disabled

bit 6-1 Unimplemented: Read as ‘0’

bit 0 BORRDY: Brown-out Reset Circuit Ready Status bit
1 = The Brown-out Reset circuit is active
0 = The Brown-out Reset circuit is inactive

Note 1: BOREN<1:0> bits are located in Configuration Words.
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 92



PIC16(L)F15313/23
 

REGISTER 10-11: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1  

R/W/HS-0/0 R/W/HS-0/0 U-0 U-0 U-0 U-0 U-0 R/W/HS-0/0

OSFIF CSWIF — — — — — ADIF

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared HS = Hardware set

bit 7 OSFIF: Oscillator Fail-Safe Interrupt Flag bit
1 = Oscillator fail-safe interrupt has occurred (must be cleared in software)
0 = No oscillator fail-safe interrupt

bit 6 CSWIF: Clock Switch Complete Interrupt Flag bit

1 = The clock switch module indicates an interrupt condition and is ready to complete the clock switch
operation (must be cleared in software)

0 = The clock switch does not indicate an interrupt condition

bit 5-1 Unimplemented: Read as ‘0’

bit 0 ADIF: Analog-to-Digital Converter (ADC) Interrupt Flag bit
1 = An A/D conversion or complex operation has completed (must be cleared in software)
0 = An A/D conversion or complex operation is not complete

Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the Global
Enable bit, GIE, of the INTCON register.
User software should ensure the
appropriate interrupt flag bits are clear
prior to enabling an interrupt.
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 131



PIC16(L)F15313/23
EXAMPLE 13-4: WRITING TO PROGRAM FLASH MEMORY  
; This write routine assumes the following:
; 1. 64 bytes of data are loaded, starting at the address in DATA_ADDR
; 2. Each word of data to be written is made up of two adjacent bytes in DATA_ADDR,
; stored in little endian format
; 3. A valid starting address (the least significant bits = 00000) is loaded in ADDRH:ADDRL
; 4. ADDRH and ADDRL are located in common RAM (locations 0x70 - 0x7F)
; 5. NVM interrupts are not taken into account

BANKSEL NVMADRH
MOVF ADDRH,W
MOVWF NVMADRH ; Load initial address
MOVF ADDRL,W
MOVWF NVMADRL
MOVLW LOW DATA_ADDR ; Load initial data address
MOVWF FSR0L
MOVLW HIGH DATA_ADDR
MOVWF FSR0H
BCF NVMCON1,NVMREGS ; Set Program Flash Memory as write location
BSF NVMCON1,WREN ; Enable writes
BSF NVMCON1,LWLO ; Load only write latches

LOOP
MOVIW FSR0++
MOVWF NVMDATL ; Load first data byte
MOVIW FSR0++
MOVWF NVMDATH ; Load second data byte

MOVF NVMADRL,W
XORLW 0x1F ; Check if lower bits of address are 00000
ANDLW 0x1F ; and if on last of 32 addresses
BTFSC STATUS,Z ; Last of 32 words?
GOTO START_WRITE ; If so, go write latches into memory

CALL UNLOCK_SEQ ; If not, go load latch
INCF NVMADRL,F ; Increment address
GOTO LOOP

START_WRITE
BCF NVMCON1,LWLO ; Latch writes complete, now write memory
CALL UNLOCK_SEQ ; Perform required unlock sequence
BCF NVMCON1,WREN ; Disable writes

UNLOCK_SEQ
MOVLW 55h
BCF INTCON,GIE ; Disable interrupts
MOVWF NVMCON2 ; Begin unlock sequence
MOVLW AAh
MOVWF NVMCON2
BSF NVMCON1,WR
BSF INTCON,GIE ; Unlock sequence complete, re-enable interrupts
return
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 163



PIC16(L)F15313/23
              

REGISTER 13-5: NVMCON1: NONVOLATILE MEMORY CONTROL 1 REGISTER
U-0 R/W-0/0 R/W-0/0 R/W/HC-0/0 R/W/HC-x/q R/W-0/0 R/S/HC-0/0 R/S/HC-0/0

— NVMREGS LWLO FREE WRERR(1,2,3) WREN WR(4,5,6) RD

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

S = Bit can only be set x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared HC = Bit is cleared by hardware

bit 7 Unimplemented: Read as ‘0’

bit 6 NVMREGS: Configuration Select bit
1 = Access DIA, DCI, Configuration, User ID and Device ID Registers
0 = Access PFM

bit 5 LWLO: Load Write Latches Only bit
When FREE = 0:
1 = The next WR command updates the write latch for this word within the row; no memory operation is initiated.
0 = The next WR command writes data or erases
Otherwise: The bit is ignored

bit 4 FREE: PFM Erase Enable bit 
When NVMREGS:NVMADR points to a PFM location:
1 = Performs an erase operation with the next WR command; the 32-word pseudo-row containing the indicated

address is erased (to all 1s) to prepare for writing.
0 = All erase operations have completed normally

bit 3 WRERR: Program/Erase Error Flag bit(1,2,3)

This bit is normally set by hardware.
1 = A write operation was interrupted by a Reset, interrupted unlock sequence, or WR was written to one while

NVMADR points to a write-protected address.
0 = The program or erase operation completed normally

bit 2 WREN: Program/Erase Enable bit
1 = Allows program/erase cycles
0 = Inhibits programming/erasing of program Flash

bit 1 WR: Write Control bit(4,5,6)

When NVMREG:NVMADR points to a PFM location:
1 = Initiates the operation indicated by Table 13-4
0 = NVM program/erase operation is complete and inactive.

bit 0 RD: Read Control bit(7)

1 = Initiates a read at address = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle and the
bit is cleared when the operation is complete. The bit can only be set (not cleared) in software.

0 = NVM read operation is complete and inactive

Note 1: Bit is undefined while WR = 1.
2: Bit must be cleared by software; hardware will not clear this bit.
3: Bit may be written to ‘1’ by software in order to implement test sequences.
4: This bit can only be set by following the unlock sequence of Section 13.3.2 “NVM Unlock Sequence”.
5: Operations are self-timed, and the WR bit is cleared by hardware when complete.
6: Once a write operation is initiated, setting this bit to zero will have no effect.
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 170



PIC16(L)F15313/23
FIGURE 17-1: INTERRUPT-ON-CHANGE BLOCK DIAGRAM (PORTA EXAMPLE)

Note 1: See Table 8-1 for BOR Active Conditions.

IOCANx

IOCAPx

Q2

Q4Q1

data bus =
0 or 1

write IOCAFx

IOCIE

to data bus
IOCAFx

edge
detect

IOC interrupt
to CPU core

from all other 
IOCnFx individual 

pin detectors

D Q
S

D Q

R

D Q

R

RAx

Rev. 10-000037D
10/3/2016
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 203



PIC16(L)F15313/23
20.1 ADC Configuration 

When configuring and using the ADC the following
functions must be considered:

• Port configuration

• Channel selection

• ADC voltage reference selection

• ADC conversion clock source

• Interrupt control

• Result formatting

20.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and
digital signals. When converting analog signals, the I/O
pin will be configured for analog by setting the
associated TRIS and ANSEL bits. Refer to
Section 14.0 “I/O Ports” for more information.

20.1.2 CHANNEL SELECTION

There are several channel selections available:

• Six Port A channels

• Six Port C channels (PIC16(L)F15323 only)

• Temperature Indicator

• DAC output

• Fixed Voltage Reference (FVR)

• AVSS (Ground)

The CHS<5:0> bits of the ADCON0 register
(Register 20-1) determine which channel is connected
to the sample and hold circuit.

When changing channels, a delay is required before
starting the next conversion. Refer to Section 20.2
“ADC Operation” for more information.

20.1.3 ADC VOLTAGE REFERENCE

The ADPREF<1:0> bits of the ADCON1 register
provides control of the positive voltage reference. The
positive voltage reference can be:

• VREF+ pin

• VDD

• FVR 2.048V

• FVR 4.096V (Not available on LF devices)

The ADPREF bit of the ADCON1 register provides
control of the negative voltage reference. The negative
voltage reference can be:

• VREF- pin

• VSS

See Section 18.0 “Fixed Voltage Reference (FVR)”
for more details on the Fixed Voltage Reference.

20.1.4  CONVERSION CLOCK

The source of the conversion clock is software
selectable via the ADCS<2:0> bits of the ADCON1
register. There are seven possible clock options:

• FOSC/2

• FOSC/4

• FOSC/8

• FOSC/16

• FOSC/32

• FOSC/64

• ADCRC (dedicated RC oscillator)

The time to complete one bit conversion is defined as
TAD. One full 10-bit conversion requires 11.5 TAD

periods as shown in Figure 20-2.

For correct conversion, the appropriate TAD specification
must be met. Refer to Table 37-13 for more information.
Table 20-1 gives examples of appropriate ADC clock
selections.

Note: Analog voltages on any pin that is defined
as a digital input may cause the input
buffer to conduct excess current.

Note: It is recommended that when switching
from an ADC channel of a higher voltage
to a channel of a lower voltage, that the
user selects the VSS channel before con-
necting to the channel with the lower volt-
age. If the ADC does not have a dedicated
VSS input channel, the VSS selection
(DAC1R<4:0> = b’00000’) through the
DAC output channel can be used. If the
DAC is in use, a free input channel can be
connected to VSS, and can be used in
place of the DAC.

Note: Unless using the ADCRC, any changes in
the system clock frequency will change
the ADC clock frequency, which may
adversely affect the ADC result.
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 216



PIC16(L)F15313/23
25.0 TIMER0 MODULE

The Timer0 module is an 8/16-bit timer/counter with the
following features:

• 16-bit timer/counter
• 8-bit timer/counter with programmable period
• Synchronous or asynchronous operation
• Selectable clock sources
• Programmable prescaler (independent of 

Watchdog Timer)
• Programmable postscaler
• Operation during Sleep mode
• Interrupt on match or overflow
• Output on I/O pin (via PPS) or to other peripherals

25.1 Timer0 Operation

Timer0 can operate as either an 8-bit timer/counter or
a 16-bit timer/counter. The mode is selected with the
T016BIT bit of the T0CON register.

25.1.1 16-BIT MODE

In normal operation, TMR0 increments on the rising
edge of the clock source. A 15-bit prescaler on the
clock input gives several prescale options (see
prescaler control bits, T0CKPS<3:0> in the T0CON1
register).

25.1.1.1 Timer0 Reads and Writes in 16-Bit 
Mode

TMR0H is not the actual high byte of Timer0 in 16-bit
mode. It is actually a buffered version of the real high
byte of Timer0, which is neither directly readable nor
writable (see Figure 25-1). TMR0H is updated with the
contents of the high byte of Timer0 during a read of
TMR0L. This provides the ability to read all 16 bits of
Timer0 without having to verify that the read of the high
and low byte was valid, due to a rollover between
successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also
take place through the TMR0H Buffer register. The high
byte is updated with the contents of TMR0H when a
write occurs to TMR0L. This allows all 16 bits of Timer0
to be updated at once.

25.1.2 8-BIT MODE

In normal operation, TMR0 increments on the rising
edge of the clock source. A 15-bit prescaler on the
clock input gives several prescale options (see
prescaler control bits, T0CKPS<3:0> in the T0CON1
register).

The value of TMR0L is compared to that of the Period
buffer, a copy of TMR0H, on each clock cycle. When
the two values match, the following events happen:

• TMR0_out goes high for one prescaled clock 
period

• TMR0L is reset
• The contents of TMR0H are copied to the period 

buffer

In 8-bit mode, the TMR0L and TMR0H registers are
both directly readable and writable. The TMR0L
register is cleared on any device Reset, while the
TMR0H register initializes at FFh.

Both the prescaler and postscaler counters are cleared
on the following events:

• A write to the TMR0L register
• A write to either the T0CON0 or T0CON1 

registers
• Any device Reset – Power-on Reset (POR), 

MCLR Reset, Watchdog Timer Reset (WDTR) or
•  Brown-out Reset (BOR)

25.1.3 COUNTER MODE

In Counter mode, the prescaler is normally disabled by
setting the T0CKPS bits of the T0CON1 register to
‘0000’. Each rising edge of the clock input (or the
output of the prescaler if the prescaler is used)
increments the counter by ‘1’.

25.1.4 TIMER MODE

In Timer mode, the Timer0 module will increment every
instruction cycle as long as there is a valid clock signal
and the T0CKPS bits of the T0CON1 register
(Register 25-2) are set to ‘0000’. When a prescaler is
added, the timer will increment at the rate based on the
prescaler value. 

25.1.5 ASYNCHRONOUS MODE

When the T0ASYNC bit of the T0CON1 register is set
(T0ASYNC = ‘1’), the counter increments with each
rising edge of the input source (or output of the
prescaler, if used). Asynchronous mode allows the
counter to continue operation during Sleep mode
provided that the clock also continues to operate during
Sleep.

25.1.6 SYNCHRONOUS MODE

When the T0ASYNC bit of the T0CON1 register is clear
(T0ASYNC = 0), the counter clock is synchronized to
the system oscillator (FOSC/4). When operating in
Synchronous mode, the counter clock frequency
cannot exceed FOSC/4.
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 260



PIC16(L)F15313/23
27.7 Register Definitions: Timer2 Control

 

REGISTER 27-1: T2CLKCON: TIMER2 CLOCK SELECTION REGISTER

U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

— — — — CS<3:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-4 Unimplemented: Read as ‘0’

bit 3-0 CS<3:0>: Timer2 Clock Select bits

1111 = Reserved
1110 = LC4_out
1101 = LC3_out
1100 = LC2_out
1011 = LC1_out
1010 = ZCD1_output
1001 = NCO1_out
1000 = CLKR
0111 = Reserved
0110 = MFINTOSC (31.25 kHz)
0101 = MFINTOSC (500 kHz)
0100 = LFINTOSC
0011 = HFINTOSC (32 MHz)
0010 = FOSC

0001 = FOSC/4
0000 = T2CKIPPS
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 294



PIC16(L)F15313/23
28.1.2 TIMER1 MODE RESOURCE

Timer1 must be running in Timer mode or Synchronized
Counter mode for the CCP module to use the capture
feature. In Asynchronous Counter mode, the capture
operation may not work. 

See Section 26.0 “Timer1 Module with Gate
Control” for more information on configuring Timer1.

28.1.3 SOFTWARE INTERRUPT MODE

When the Capture mode is changed, a false capture
interrupt may be generated. The user should keep the
CCPxIE interrupt enable bit of the PIE6 register clear to
avoid false interrupts. Additionally, the user should
clear the CCPxIF interrupt flag bit of the PIR6 register
following any change in Operating mode.

28.1.4 CCP PRESCALER

There are four prescaler settings specified by the
CCPxMODE<3:0> bits of the CCPxCON register.
Whenever the CCP module is turned off, or the CCP
module is not in Capture mode, the prescaler counter
is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not
clear the prescaler and may generate a false interrupt. To
avoid this unexpected operation, turn the module off by
clearing the CCPxCON register before changing the
prescaler. Example 28-1 demonstrates the code to
perform this function.

EXAMPLE 28-1: CHANGING BETWEEN 
CAPTURE PRESCALERS

28.1.5 CAPTURE DURING SLEEP

Capture mode depends upon the Timer1 module for
proper operation. There are two options for driving the
Timer1 module in Capture mode. It can be driven by the
instruction clock (FOSC/4), or by an external clock source.

When Timer1 is clocked by FOSC/4, Timer1 will not
increment during Sleep. When the device wakes from
Sleep, Timer1 will continue from its previous state.

Capture mode will operate during Sleep when Timer1
is clocked by an external clock source.

28.2 Compare Mode

Compare mode makes use of the 16-bit Timer1
resource. The 16-bit value of the CCPRxH:CCPRxL
register pair is constantly compared against the 16-bit
value of the TMR1H:TMR1L register pair. When a
match occurs, one of the following events can occur:

• Toggle the CCPx output

• Set the CCPx output

• Clear the CCPx output

• Generate an Auto-conversion Trigger

• Generate a Software Interrupt

The action on the pin is based on the value of the
CCPxMODE<3:0> control bits of the CCPxCON
register. At the same time, the interrupt flag CCPxIF bit
is set, and an ADC conversion can be triggered, if
selected.

All Compare modes can generate an interrupt and
trigger and ADC conversion.

Figure 28-2 shows a simplified diagram of the compare
operation.

FIGURE 28-2: COMPARE MODE 
OPERATION BLOCK 
DIAGRAM

Note: Clocking Timer1 from the system clock
(FOSC) should not be used in Capture
mode. In order for Capture mode to
recognize the trigger event on the CCPx
pin, Timer1 must be clocked from the
instruction clock (FOSC/4).

BANKSEL CCPxCON ;Set Bank bits to point
;to CCPxCON

CLRF CCPxCON ;Turn CCP module off
MOVLW NEW_CAPT_PS;Load the W reg with

;the new prescaler
;move value and CCP ON

MOVWF CCPxCON ;Load CCPxCON with this
;value

CCPRxH CCPRxL

TMR1H TMR1L

Comparator
Q S

R

Output
Logic

Auto-conversion Trigger

Set CCPxIF Interrupt Flag
(PIR6)

Match

TRIS

CCPxMODE<3:0>
Mode Select

Output Enable

Pin
CCPx 4
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 301



PIC16(L)F15313/23
            

            

REGISTER 30-3: CWG1DBR: CWG1 RISING DEAD-BAND COUNTER REGISTER

U-0 U-0 R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u

— — DBR<5:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition

bit 7-6 Unimplemented: Read as ‘0’

bit 5-0 DBR<5:0>: Rising Event Dead-Band Value for Counter bits

REGISTER 30-4: CWG1DBF: CWG1 FALLING DEAD-BAND COUNTER REGISTER

U-0 U-0 R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u

— — DBF<5:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition

bit 7-6 Unimplemented: Read as ‘0’

bit 5-0 DBF<5:0>: Falling Event Dead-Band Value for Counter bits
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 337



PIC16(L)F15313/23
REGISTER 31-9: CLCxGLS2: GATE 2 LOGIC SELECT REGISTER

R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u

LCxG3D4T LCxG3D4N LCxG3D3T LCxG3D3N LCxG3D2T LCxG3D2N LCxG3D1T LCxG3D1N

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets 

‘1’ = Bit is set ‘0’ = Bit is cleared      

bit 7 LCxG3D4T: Gate 2 Data 4 True (non-inverted) bit

1 = CLCIN3 (true) is gated into CLCx Gate 2
0 = CLCIN3 (true) is not gated into CLCx Gate 2

bit 6 LCxG3D4N: Gate 2 Data 4 Negated (inverted) bit

1 = CLCIN3 (inverted) is gated into CLCx Gate 2
0 = CLCIN3 (inverted) is not gated into CLCx Gate 2

bit 5 LCxG3D3T: Gate 2 Data 3 True (non-inverted) bit

1 = CLCIN2 (true) is gated into CLCx Gate 2
0 = CLCIN2 (true) is not gated into CLCx Gate 2

bit 4 LCxG3D3N: Gate 2 Data 3 Negated (inverted) bit

1 = CLCIN2 (inverted) is gated into CLCx Gate 2
0 = CLCIN2 (inverted) is not gated into CLCx Gate 2

bit 3 LCxG3D2T: Gate 2 Data 2 True (non-inverted) bit

1 = CLCIN1 (true) is gated into CLCx Gate 2
0 = CLCIN1 (true) is not gated into CLCx Gate 2

bit 2 LCxG3D2N: Gate 2 Data 2 Negated (inverted) bit

1 = CLCIN1 (inverted) is gated into CLCx Gate 2
0 = CLCIN1 (inverted) is not gated into CLCx Gate 2

bit 1 LCxG3D1T: Gate 2 Data 1 True (non-inverted) bit

1 = CLCIN0 (true) is gated into CLCx Gate 2
0 = CLCIN0 (true) is not gated into CLCx Gate 2

bit 0 LCxG3D1N: Gate 2 Data 1 Negated (inverted) bit

1 = CLCIN0 (inverted) is gated into CLCx Gate 2
0 = CLCIN0 (inverted) is not gated into CLCx Gate 2
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 355



PIC16(L)F15313/23
32.5.2.2 7-bit Reception with AHEN and DHEN

Slave device reception with AHEN and DHEN set
operate the same as without these options with extra
interrupts and clock stretching added after the eighth
falling edge of SCL. These additional interrupts allows
time for the slave software to decide whether it wants
to ACK the receive address or data byte.

This list describes the steps that need to be taken by
slave software to use these options for I2C
communication. Figure 32-16 displays a module using
both address and data holding. Figure 32-17 includes
the operation with the SEN bit of the SSP1CON2
register set.

1. S bit of SSP1STAT is set; SSP1IF is set if
interrupt on Start detect is enabled.

2. Matching address with R/W bit clear is clocked
in. SSP1IF is set and CKP cleared after the
eighth falling edge of SCL.

3. Slave clears the SSP1IF.

4. Slave can look at the ACKTIM bit of the
SSP1CON3 register to determine if the SSP1IF
was after or before the ACK.

5. Slave reads the address value from SSP1BUF,
clearing the BF flag.

6. Slave sets ACK value clocked out to the master
by setting ACKDT.

7. Slave releases the clock by setting CKP.

8. SSP1IF is set after an ACK, not after a NACK.

9. If SEN = 1 the slave hardware will stretch the
clock after the ACK.

10. Slave clears SSP1IF.

11. SSP1IF set and CKP cleared after eighth falling
edge of SCL for a received data byte.

12. Slave looks at ACKTIM bit of SSP1CON3 to
determine the source of the interrupt.

13. Slave reads the received data from SSP1BUF
clearing BF.

14. Steps 7-14 are the same for each received data
byte.

15. Communication is ended by either the slave
sending an ACK = 1, or the master sending a
Stop condition. If a Stop is sent and Interrupt on
Stop Detect is disabled, the slave will only know
by polling the P bit of the SSP1STAT register.

Note: SSP1IF is still set after the ninth falling edge
of SCL even if there is no clock stretching
and BF has been cleared. Only if NACK is
sent to master is SSP1IF not set
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 375



PIC16(L)F15313/23
FIGURE 33-4: ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)        

33.1.2 EUSART ASYNCHRONOUS 
RECEIVER

The Asynchronous mode is typically used in RS-232
systems. The receiver block diagram is shown in
Figure 33-2. The data is received on the RX/DT pin and
drives the data recovery block. The data recovery block
is actually a high-speed shifter operating at 16 times
the baud rate, whereas the serial Receive Shift
Register (RSR) operates at the bit rate. When all eight
or nine bits of the character have been shifted in, they
are immediately transferred to a two character
First-In-First-Out (FIFO) memory. The FIFO buffering
allows reception of two complete characters and the
start of a third character before software must start
servicing the EUSART receiver. The FIFO and RSR
registers are not directly accessible by software.
Access to the received data is via the RC1REG
register.

33.1.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous
operation by configuring the following three control bits:

• CREN = 1

• SYNC = 0

• SPEN = 1

All other EUSART control bits are assumed to be in
their default state.

Setting the CREN bit of the RC1STA register enables
the receiver circuitry of the EUSART. Clearing the SYNC
bit of the TX1STA register configures the EUSART for
asynchronous operation. Setting the SPEN bit of the
RC1STA register enables the EUSART. The
programmer must set the corresponding TRIS bit to
configure the RX/DT I/O pin as an input. 

33.1.2.2 Receiving Data

The receiver data recovery circuit initiates character
reception on the falling edge of the first bit. The first bit,
also known as the Start bit, is always a zero. The data
recovery circuit counts one-half bit time to the center of
the Start bit and verifies that the bit is still a zero. If it is
not a zero then the data recovery circuit aborts
character reception, without generating an error, and
resumes looking for the falling edge of the Start bit. If
the Start bit zero verification succeeds then the data
recovery circuit counts a full bit time to the center of the
next bit. The bit is then sampled by a majority detect
circuit and the resulting ‘0’ or ‘1’ is shifted into the RSR.
This repeats until all data bits have been sampled and
shifted into the RSR. One final bit time is measured and
the level sampled. This is the Stop bit, which is always
a ‘1’. If the data recovery circuit samples a ‘0’ in the
Stop bit position then a framing error is set for this
character, otherwise the framing error is cleared for this
character. See Section 33.1.2.4 “Receive Framing
Error” for more information on framing errors.

Immediately after all data bits and the Stop bit have
been received, the character in the RSR is transferred
to the EUSART receive FIFO and the RX1IF interrupt
flag bit of the PIR3 register is set. The top character in
the FIFO is transferred out of the FIFO by reading the
RC1REG register. 

Transmit Shift Reg.

Write to TXxREG

BRG Output
(Shift Clock)

TX/CK

TRMT bit
(Transmit Shift

Reg. Empty Flag)

Word 1 Word 2

Word 1 Word 2

Start bit Stop bit Start bit

Transmit Shift Reg.

Word 1 Word 2
bit 0 bit 1 bit 7/8 bit 0

Note: This timing diagram shows two consecutive transmissions.

1 TCY

1 TCY

pin

TXxIF bit
(Transmit Buffer

Reg. Empty Flag)

Note: If the RX/DT function is on an analog pin,
the corresponding ANSEL bit must be
cleared for the receiver to function.

Note: If the receive FIFO is overrun, no additional
characters will be received until the overrun
condition is cleared. See Section 33.1.2.5
“Receive Overrun Error” for more
information on overrun errors.
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 415



PIC16(L)F15313/23
FIGURE 33-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION 

FIGURE 33-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP 

33.3.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the
special Break character sequences that are required by
the LIN bus standard. A Break character consists of a
Start bit, followed by 12 ‘0’ bits and a Stop bit.

To send a Break character, set the SENDB and TXEN
bits of the TX1STA register. The Break character
transmission is then initiated by a write to the TX1REG.
The value of data written to TX1REG will be ignored
and all ‘0’s will be transmitted. 

The SENDB bit is automatically reset by hardware after
the corresponding Stop bit is sent. This allows the user
to preload the transmit FIFO with the next transmit byte
following the Break character (typically, the Sync
character in the LIN specification).

The TRMT bit of the TX1STA register indicates when the
transmit operation is active or idle, just as it does during
normal transmission. See Figure 33-9 for the timing of
the Break character sequence.

33.3.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame
header made up of a Break, followed by an auto-baud
Sync byte. This sequence is typical of a LIN bus
master.

1. Configure the EUSART for the desired mode.

2. Set the TXEN and SENDB bits to enable the
Break sequence.

3. Load the TX1REG with a dummy character to
initiate transmission (the value is ignored).

4. Write ‘55h’ to TX1REG to load the Sync
character into the transmit FIFO buffer.

5. After the Break has been sent, the SENDB bit is
reset by hardware and the Sync character is
then transmitted.

When the TX1REG becomes empty, as indicated by
the TX1IF, the next data byte can be written to
TX1REG.

Q1 Q2 Q3 Q4 Q1 Q2 Q3Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4

OSC1

WUE bit

RX/DT Line

RXxIF

Bit set by user Auto Cleared

Cleared due to User Read of RCxREG

Note 1: The EUSART remains in Idle while the WUE bit is set.

Q1Q2Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2Q3 Q4 Q1Q2 Q3 Q4

OSC1

WUE bit

RX/DT Line

RXxIF

Bit Set by User Auto Cleared

Cleared due to User Read of RCxREG
Sleep Command Executed

Note 1

Note 1: If the wake-up event requires long oscillator warm-up time, the automatic clearing of the WUE bit can occur while the stposc signal is
still active. This sequence should not depend on the presence of Q clocks.

2: The EUSART remains in Idle while the WUE bit is set.

Sleep Ends
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 422



PIC16(L)F15313/23
36.3 Instruction Descriptions 

 

ADDFSR Add Literal to FSRn 

Syntax: [ label ] ADDFSR   FSRn, k

Operands: -32  k  31
n  [ 0, 1]

Operation: FSR(n) + k  FSR(n)

Status Affected: None

Description: The signed 6-bit literal ‘k’ is added to 
the contents of the FSRnH:FSRnL 
register pair.

FSRn is limited to the range 
0000h-FFFFh. Moving beyond these 
bounds will cause the FSR to 
wrap-around.

ADDLW Add literal and W

Syntax: [ label ]  ADDLW     k

Operands: 0  k  255

Operation: (W) + k  (W)

Status Affected: C, DC, Z

Description: The contents of the W register are 
added to the 8-bit literal ‘k’ and the 
result is placed in the W register.

ADDWF Add W and f

Syntax: [ label ]  ADDWF     f,d

Operands: 0  f  127
d 0,1

Operation: (W) + (f)  (destination)

Status Affected: C, DC, Z

Description: Add the contents of the W register 
with register ‘f’. If ‘d’ is ‘0’, the result is 
stored in the W register. If ‘d’ is ‘1’, the 
result is stored back in register ‘f’.

ADDWFC ADD W and CARRY bit to f

Syntax: [ label ] ADDWFC      f {,d}

Operands: 0  f  127
d [0,1]

Operation: (W) + (f) + (C)  dest

Status Affected: C, DC, Z

Description: Add W, the Carry flag and data mem-
ory location ‘f’. If ‘d’ is ‘0’, the result is 
placed in W. If ‘d’ is ‘1’, the result is 
placed in data memory location ‘f’. 

ANDLW AND literal with W

Syntax: [ label ]  ANDLW     k

Operands: 0  k  255

Operation: (W) .AND. (k)  (W)

Status Affected: Z

Description: The contents of W register are 
AND’ed with the 8-bit literal ‘k’. The 
result is placed in the W register.

ANDWF AND W with f

Syntax: [ label ]  ANDWF     f,d

Operands: 0  f  127
d 0,1

Operation: (W) .AND. (f)  (destination)

Status Affected: Z

Description: AND the W register with register ‘f’. If 
‘d’ is ‘0’, the result is stored in the W 
register. If ‘d’ is ‘1’, the result is stored 
back in register ‘f’.

ASRF Arithmetic Right Shift

Syntax: [ label ] ASRF    f {,d}

Operands: 0  f  127
d [0,1]

Operation: (f<7>) dest<7>
(f<7:1>)  dest<6:0>,
(f<0>)  C,

Status Affected: C, Z

Description: The contents of register ‘f’ are shifted 
one bit to the right through the Carry 
flag. The MSb remains unchanged. If 
‘d’ is ‘0’, the result is placed in W. If ‘d’ 
is ‘1’, the result is stored back in 
register ‘f’. 

   register f   C
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 448



PIC16(L)F15313/23
BCF Bit Clear f

Syntax: [ label ] BCF     f,b

Operands: 0  f  127
0  b  7

Operation: 0  (f<b>)

Status Affected: None

Description: Bit ‘b’ in register ‘f’ is cleared.

BRA Relative Branch

Syntax: [ label ] BRA   label 
[ label ] BRA   $+k

Operands: -256  label - PC + 1  255
-256  k  255

Operation: (PC) + 1 + k  PC

Status Affected: None

Description: Add the signed 9-bit literal ‘k’ to the 
PC. Since the PC will have 
incremented to fetch the next 
instruction, the new address will be 
PC + 1 + k. This instruction is a 
2-cycle instruction. This branch has a 
limited range.

BRW Relative Branch with W

Syntax: [ label ] BRW 

Operands: None

Operation: (PC) + (W)  PC

Status Affected: None

Description: Add the contents of W (unsigned) to 
the PC. Since the PC will have 
incremented to fetch the next 
instruction, the new address will be 
PC + 1 + (W). This instruction is a 
2-cycle instruction. 

BSF Bit Set f

Syntax: [ label ] BSF    f,b

Operands: 0  f  127
0  b  7

Operation: 1  (f<b>)

Status Affected: None

Description: Bit ‘b’ in register ‘f’ is set.

BTFSC Bit Test f, Skip if Clear

Syntax: [ label ] BTFSC   f,b

Operands: 0  f  127
0  b  7

Operation: skip if (f<b>) = 0

Status Affected: None

Description: If bit ‘b’ in register ‘f’ is ‘1’, the next 
instruction is executed.
If bit ‘b’, in register ‘f’, is ‘0’, the next 
instruction is discarded, and a NOP is 
executed instead, making this a 
2-cycle instruction.

BTFSS Bit Test f, Skip if Set

Syntax: [ label ] BTFSS   f,b

Operands: 0  f  127
0  b < 7

Operation: skip if (f<b>) = 1

Status Affected: None

Description: If bit ‘b’ in register ‘f’ is ‘0’, the next 
instruction is executed.
If bit ‘b’ is ‘1’, then the next instruction 
is discarded and a NOP is executed 
instead, making this a 2-cycle 
instruction.
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 449



PIC16(L)F15313/23
40.1 Package Marking Information

14-Lead PDIP (300 mil) Example

PIC16F15323
/SO 

1525017

3e

14-Lead TSSOP (4.4 mm) Example

YYWW
NNN

XXXXXXXX 16F15323

1525

017

3e

14-Lead SOIC (3.90 mm) Example

PIC16F15323
/SO 

1525017
3e

Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
  Pb-free JEDEC® designator for Matte Tin (Sn)
* This package is Pb-free. The Pb-free JEDEC designator (     )

can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.

3e
 2017 Microchip Technology Inc. Preliminary DS40001897A-page 493


