

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	AVR
Core Size	8-Bit
Speed	10MHz
Connectivity	USI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	2KB (1K x 16)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-VQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/atmel/attiny261v-10mur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

be used. If a reset occurs while a write operation is in progress, the write operation will be completed provided that the power supply voltage is sufficient.

5.4 I/O Memory

The I/O space definition of the ATtiny261/461/861 is shown in "Register Summary" on page 223.

All ATtiny261/461/861 I/Os and peripherals are placed in the I/O space. All I/O locations may be accessed using the LD/LDS/LDD and ST/STS/STD instructions, enabling data transfer between the 32 general purpose working registers and the I/O space. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the instruction set section for more details. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses.

For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work on registers in the address range 0x00 to 0x1F, only.

The I/O and Peripherals Control Registers are explained in later sections.

5.4.1 General Purpose I/O Registers

The ATtiny261/461/861 contains three General Purpose I/O Registers. These registers can be used for storing any information, and they are particularly useful for storing global variables and Status Flags. General Purpose I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.

5.5 Register Description

5.5.1 EEARH – EEPROM Address Register

Bits 7:1 – Res: Reserved Bits

These bits are reserved and will always read as zero.

Bit 0 – EEAR8: EEPROM Address

This is the most significant EEPROM address bit of ATtiny861. In devices with less EEPROM, i.e. ATtiny261/ATtiny461, this bit is reserved and will always read zero. The initial value of the EEPROM Address Register (EEAR) is undefined and a proper value must therefore be written before the EEPROM is accessed.

When the PLL output is selected as clock source, the start-up times are determined by SUT fuse bits as shown in Table 6-5.

SUT1:0	Start-up Time from Power Down	Additional Delay from Power-On-Reset (V _{CC} = 5.0V)	Recommended usage
00	14CK + 1K (1024) + 4 ms	4 ms	BOD enabled
01	14CK + 16K (16384) + 4 ms	4 ms	Fast rising power
10	14CK + 1K (1024) + 64 ms	4 ms	Slowly rising power
11	14CK + 16K (16384) + 64 ms	4 ms	Slowly rising power

Table 6-5.Start-up Times for the PLLCK

6.2.3 Calibrated Internal 8 MHz Oscillator

By default, the Internal Oscillator provides an approximately 8 MHz clock signal. Though voltage and temperature dependent, this clock can be very accurately calibrated by the user. See Table 19-2 on page 189 and "Internal Oscillator Speed" on page 216 for more details. The device is shipped with the CKDIV8 Fuse programmed. See "System Clock Prescaler" on page 31 for more details.

This clock may be selected as the system clock by programming the CKSEL Fuses as shown in Table 6-6. If selected, it will operate with no external components. During reset, hardware loads the pre-programmed calibration value into the OSCCAL Register and thereby automatically calibrates the RC Oscillator. The accuracy of this calibration is shown as Factory calibration in Table 19-2 on page 189.

Table 6-6.Internal Calibrated RC Oscillator Operating Modes

CKSEL3:0	Nominal Frequency
0010 ⁽¹⁾	8.0 MHz ⁽²⁾

Notes: 1. The device is shipped with this option selected.

 If the oscillator frequency exceeds the specification of the device (depends on V_{CC}), the CKDIV8 Fuse can be programmed to divide the internal frequency by 8.

When this oscillator is selected, start-up times are determined by SUT fuses as shown in Table 6-7.

SUT1:0	Start-up Time from Power-down	Additional Delay from Reset (V _{CC} = 5.0V)	Recommended Usage
00	6 CK	14CK ⁽¹⁾	BOD enabled
01	6 CK	14CK + 4 ms	Fast rising power
10 ⁽²⁾	6 CK	14CK + 64 ms	Slowly rising power
11		Reserved	

 Table 6-7.
 Start-up Times for the Internal Calibrated RC Oscillator Clock Selection

Note: 1. If the RSTDISBL fuse is programmed, this start-up time will be increased to 14CK + 4 ms to ensure programming mode can be entered.

2. The device is shipped with this option selected.

6.2.6 Crystal Oscillator / Ceramic Resonator

XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be configured for use as an On-chip Oscillator, as shown in Figure 6-4. Either a quartz crystal or a ceramic resonator may be used.

Figure 6-4. Crystal Oscillator Connections

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the electromagnetic noise of the environment. Some initial guidelines for choosing capacitors for use with crystals are given in Table 6-11. For ceramic resonators, the capacitor values given by the manufacturer should be used.

Table 6-11. Crystal Oscillator Operating Modes

CKSEL3:1	Frequency Range (MHz)	Recommended C1 and C2 Value (pF)
100 ⁽¹⁾	0.4 - 0.9	_
101	0.9 - 3.0	12 - 22
110	3.0 - 8.0	12 - 22
111	8.0 -	12 - 22

Notes: 1. This option should not be used with crystals, only with ceramic resonators.

The Oscillator can operate in three different modes, each optimized for a specific frequency range. The operating mode is selected by fuses CKSEL3:1 as shown in Table 6-11.

The CKSEL0 Fuse together with the SUT1:0 Fuses select the start-up times as shown in Table 6-12.

 Table 6-12.
 Start-up Times for the Crystal Oscillator Clock Selection

CKSEL0	SUT1:0	Start-up Time from Power-down and Power-save	Additional Delay from Reset (V _{CC} = 5.0V)	Recommended Usage
0	00	258 CK ⁽¹⁾	14CK + 4 ms	Ceramic resonator, fast rising power
0	01	258 CK ⁽¹⁾	14CK + 64 ms	Ceramic resonator, slowly rising power
0	10	1K (1024) CK ⁽²⁾	14CK	Ceramic resonator, BOD enabled

7. Power Management and Sleep Modes

The high performance and industry leading code efficiency makes the AVR microcontrollers an ideal choise for low power applications. In addition, sleep modes enable the application to shut down unused modules in the MCU, thereby saving power. The AVR provides various sleep modes allowing the user to tailor the power consumption to the application's requirements.

7.1 Sleep Modes

Figure 6-1 on page 24 presents the different clock systems and their distribution in ATtiny261/461/861. The figure is helpful in selecting an appropriate sleep mode. Table 7-1 shows the different sleep modes and their wake up sources.

		Activ	e Clo	ck D	omair	าร	Osc.		Wa	ake-up	Sourc	es	
Sleep Mode	clk _{GPU}	clk _{FLASH}	clk _{IO}	clk _{ADC}	clk _{PCK}	clk _{PLL}	Main Clock Source Enabled	INT0, INT1 and Pin Change	SPM/EEPROM Ready Interrupt	ADC Interrupt	USI Interrupt	Other I/O	Watchdog Interrupt
Idle			Х	Х	Х	X ⁽²⁾	Х	Х	Х	Х	Х	Х	Х
ADC Noise Reduct.				Х		X ⁽²⁾	Х	X ⁽¹⁾	Х	Х	Х		Х
Power-down								X ⁽¹⁾			Х		Х
Standby								X ⁽¹⁾			Х		Х

 Table 7-1.
 Active Clock Domains and Wake-up Sources in Different Sleep Modes

Note: 1. For INT0 and INT1, only level interrupt.

2. When PLL selected as system clock.

To enter any of the sleep modes, the SE bit in MCUCR must be written to logic one and a SLEEP instruction must be executed. The SM1:0 bits in the MCUCR Register select which sleep mode (Idle, ADC Noise Reduction, Power-down, or Standby) will be activated by the SLEEP instruction. See Table 7-2 for a summary.

If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for four cycles in addition to the start-up time, executes the interrupt routine, and resumes execution from the instruction following SLEEP. The contents of the Register File and SRAM are unaltered when the device wakes up from sleep. If a reset occurs during sleep mode, the MCU wakes up and executes from the Reset Vector.

Note that if a level triggered interrupt is used for wake-up the changed level must be held for some time to wake up the MCU (and for the MCU to enter the interrupt service routine). See "External Interrupts" on page 51 for details.

7.1.1 Idle Mode

When bits SM1:0 are written to 00, the SLEEP instruction makes the MCU enter Idle mode, stopping the CPU but allowing Analog Comparator, ADC, Timer/Counter, Watchdog, and the interrupt system to continue operating. This sleep mode basically halts clk_{CPU} and clk_{FLASH}, while allowing the other clocks to run.

- 1. In the same operation, write a logical one to WDCE and WDE. Even though the WDE always is set, the WDE must be written to one to start the timed sequence.
- 2. Within the next four clock cycles, in the same operation, write the WDP bits as desired, but with the WDCE bit cleared. The value written to the WDE bit is irrelevant.

8.3.2 Code Examples

The following code example shows one assembly and one C function for turning off the WDT. The example assumes that interrupts are controlled (e.g., by disabling interrupts globally) so that no interrupts will occur during execution of these functions.

```
Assembly Code Example
   WDT off:
     wdr
     ; Clear WDRF in MCUSR
     ldi r16, (0<<WDRF)
     out MCUSR, r16
     ; Write logical one to WDCE and WDE
     ; Keep old prescaler setting to prevent unintentional Watchdog Reset
     in r16, WDTCSR
     ori r16, (1<<WDCE) | (1<<WDE)
     out WDTCSR, r16
     ; Turn off WDT
     ldi r16, (0<<WDE)
     out WDTCSR, r16
     ret
C Code Example
   void WDT_off(void)
   {
     WDR();
     /* Clear WDRF in MCUSR */
     MCUSR = 0x00
     /* Write logical one to WDCE and WDE */
     WDTCSR |= (1<<WDCE) | (1<<WDE);
     /* Turn off WDT */
     WDTCSR = 0 \times 00;
   }
```

Note: See "Code Examples" on page 6.

10.3.4 PINA – Port A Input Pins Address

Bit	7	6	5	4	3	2	1	0	
0x19 (0x39)	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	PINA
Read/Write	R/W								
Initial Value	N/A								

10.3.5 PORTB – Port B Data Register

Bit	7	6	5	4	3	2	1	0	_
0x18 (0x38)	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	PORTB
Read/Write	R/W	-							
Initial Value	0	0	0	0	0	0	0	0	

10.3.6 DDRB – Port B Data Direction Register

Bit	7	6	5	4	3	2	1	0	
0x17 (0x37)	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	DDRB
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	

10.3.7 PINB – Port B Input Pins Address

Bit	7	6	5	4	3	2	1	0	
0x16 (0x36)	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	PINB
Read/Write	R/W								
Initial Value	N/A								

The following code examples show how to do an atomic write of the TCNT0H/L register contents. Writing any of the OCR0A/B registers can be done by using the same principle.

```
Assembly Code Example

TIM0_WriteTCNT0:

; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Set TCNT0 to r17:r16

out TCNT0H,r17

out TCNT0L,r16

; Restore global interrupt flag

out SREG,r18

ret
```

```
C Code Example
```

```
void TIM0_WriteTCNT0( unsigned int i )
{
    unsigned char sreg;
    /* Save global interrupt flag */
    sreg = SREG;
    /* Disable interrupts */
    _CLI();
    /* Set TCNT0 to i */
    TCNT0H = (i >> 8);
    TCNT0L = (unsigned char)i;
    /* Restore global interrupt flag */
    SREG = sreg;
}
```

Note: See "Code Examples" on page 6.

The assembly code example requires that the r17:r16 register pair contains the value to be written to TCNT0H/L.

11.9.1 Reusing the temporary high byte register

If writing to more than one 16-bit register where the high byte is the same for all registers written, then the high byte only needs to be written once. However, note that the same rule of atomic operation described previously also applies in this case.

```
2588F-AVR-06/2013
```

The counter value (TCNT1) that is shown as a histogram in Figure 12-11 is incremented until the counter value matches the TOP value. The counter is then cleared at the following clock cycle The diagram includes the Waveform Output (OCW1x) in toggle Compare Mode. The small horizontal line marks on the TCNT1 slopes represent Compare Matches between OCR1x and TCNT1.

The Timer/Counter Overflow Flag (TOV1) is set in the same clock cycle as the TCNT1 becomes zero. The TOV1 Flag in this case behaves like a 11th bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt, that automatically clears the TOV1 Flag, the timer resolution can be increased by software. There are no special cases to consider in the Normal mode, a new counter value can be written anytime.

The Output Compare Unit can be used to generate interrupts at some given time. Using the Output Compare to generate waveforms in Normal mode is not recommended, since this will occupy too much of the CPU time. For generating a waveform, the OCW1x output can be set to toggle its logical level on each Compare Match by setting the Compare Output mode bits to toggle mode (COM1x1:0 = 1). The OC1x value will not be visible on the port pin unless the data direction for the pin is set to output. The waveform generated will have a maximum frequency of $f_{OC1x} = f_{clkT1}/4$ when OCR1C is set to zero. The waveform frequency is defined by the following equation:

$$f_{OC1x} = \frac{f_{clkT1}}{2 \cdot (1 + OCR1C)}$$

Resolution, R_{PWM}, shows how many bit is required to express the value in the OCR1C register and it can be calculated using the following equation:

$$R_{PWM} = \log_2(OCR1C + 1)$$

The Output Compare Pin configurations in Normal Mode are described in Table 12-2.

COM1x1	COM1x0	OC1x Pin	OC1x Pin
0	0	Disconnected	Disconnected
0	1	Disconnected	OC1x
1	0	Disconnected	OC1x
1	1	Disconnected	OC1x

 Table 12-2.
 Output Compare Pin Configurations in Normal Mode

12.8.2 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (PWM1A/PWM1B = 1 and WGM11:10 = 00) provides a high frequency PWM waveform generation option. The fast PWM differs from the other PWM option by its single-slope operation. The counter counts from BOTTOM to TOP (defined as OCR1C) then restarts from BOTTOM. In non-inverting Compare Output mode the Waveform Output (OCW1x) is cleared on the Compare Match between TCNT1 and OCR1x and set at BOTTOM. In inverting Compare Output mode, the Waveform Output is set on Compare Match and cleared at BOTTOM. In complementary Compare Output mode the Waveform Output is cleared on the Compare Output mode the Waveform Output is cleared at BOTTOM.

Due to the single-slope operation, the operating frequency of the fast PWM mode can be twice as high as the Phase and Frequency Correct PWM mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited for power regulation, rectification, and

	COM1D1	COM1D0	OC1D Pin (PB4) OC1D Pin (PB5)						
	0 0 0 1 1 0		Disconnected	Disconnected					
			OC1A • OC1OE4	OC1A • OC1OE5					
			OC1A • OC1OE4	OC1A • OC1OE5					
1 1		1	OC1A • OC1OE4	OC1A • OC1OE5					

 Table 12-7.
 Configuration of Output Compare Pins OC1D and OC1D in PWM6 Mode

12.9 Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clk_{T1}) is therefore shown as a clock enable signal in the following figures. The figures include information on when Interrupt Flags are set.

Figure 12-15 contains timing data for basic Timer/Counter operation. The figure shows the count sequence close to the MAX value in all modes other than Phase and Frequency Correct PWM Mode.

Figure 12-16 shows the same timing data, but with the prescaler enabled, in all modes other than Phase and Frequency Correct PWM Mode.

Figure 12-17 shows the setting of OCF1A, OCF1B and OCF1D in all modes.

Table 12-10 shows the COM1A1:0 bit functionality when the PWM1A, WGM10 and WGM11 bits are set to Phase and Frequency Correct PWM Mode.

COM1A1:0	OCW1A Behaviour	OC1A Pin	OC1A Pin
00	Normal port operation.	Disconnected	Disconnected
01	Cleared on Compare Match when up-counting. Set on Compare Match when down-counting.	Connected	Connected
10	Cleared on Compare Match when up-counting. Set on Compare Match when down-counting.	Connected	Disconnected
11	Set on Compare Match when up-counting. Cleared on Compare Match when down-counting.	Connected	Disconnected

 Table 12-10.
 Compare Output Mode, Phase and Frequency Correct PWM Mode

Table 12-11 shows the COM1A1:0 bit functionality when the PWM1A, WGM10 and WGM11 bits are set to single-slope PWM6 Mode. In the PWM6 Mode the same Waveform Output (OCW1A) is used for generating all waveforms and the Output Compare values OC1A and $\overline{OC1A}$ are connected on thw all OC1x and $\overline{OC1x}$ pins as described below.

COM1A1:0	OCW1A Behaviour	OC1x Pin	OC1x Pin
00	Normal port operation.	Disconnected	Disconnected
01	Cleared on Compare Match. Set when TCNT1 = 0x000.	OC1A	OC1A
10	Cleared on Compare Match. Set when TCNT1 = 0x000.	OC1A	OC1A
11	Set on Compare Match. Cleared when TCNT1 = 0x000.	OC1A	OC1A

Table 12-11. Compare Output Mode, Single-Slope PWM6 Mode

Table 12-12 shows the COM1A1:0 bit functionality when the PWM1A, WGM10 and WGM11 bits are set to dual-slope PWM6 Mode.I

 Table 12-12.
 Compare Output Mode, Dual-Slope PWM6 Mode

COM1A1:0	OCW1A Behaviour	OC1x Pin	OC1x Pin
00	Normal port operation.	Disconnected	Disconnected
01	Cleared on Compare Match when up-counting. Set on Compare Match when down-counting.	OC1A	OC1A
10	Cleared on Compare Match when up-counting. Set on Compare Match when down-counting.	OC1A	OC1A
11	Set on Compare Match when up-counting. Cleared on Compare Match when down-counting.	OC1A	OC1A

Bits COM1A1 and COM1A0 are shadowed in TCCR1C. Writing to bits COM1A1 and COM1A0 will also change bits COM1A1S and COM1A0S in TCCR1C. Similary, changes written to bits COM1A1S and COM1A0S in TCCR1C will show here. See "TCCR1C – Timer/Counter1 Control Register C" on page 117.

Note that, if 10-bit accuracy is used special procedures must be followed when accessing the internal 10-bit Output Compare Registers via the 8-bit AVR data bus. These procedures are described in section "Accessing 10-Bit Registers" on page 108.

12.12.13 TIMSK – Timer/Counter1 Interrupt Mask Register

Bit	7	6	5	4	3	2	1	0	_
0x39 (0x59)	OCIE1D	OCIE1A	OCIE1B	OCIE0A	OCIE0B	TOIE1	TOIE0	TICIE0	TIMSK
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Initial value	0	0	0	0	0	0	0	0	

• Bit 7 – OCIE1D: Timer/Counter1 Output Compare Interrupt Enable

When the OCIE1D bit is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter1 Compare MatchD, interrupt is enabled. The corresponding interrupt at vector \$010 is executed if a compare matchD occurs. The Compare Flag in Timer/Counter1 is set (one) in the Timer/Counter Interrupt Flag Register.

Bit 6 – OCIE1A: Timer/Counter1 Output Compare Interrupt Enable

When the OCIE1A bit is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter1 Compare MatchA, interrupt is enabled. The corresponding interrupt at vector \$003 is executed if a compare matchA occurs. The Compare Flag in Timer/Counter1 is set (one) in the Timer/Counter Interrupt Flag Register.

• Bit 5 – OCIE1B: Timer/Counter1 Output Compare Interrupt Enable

When the OCIE1B bit is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter1 Compare MatchB, interrupt is enabled. The corresponding interrupt at vector \$009 is executed if a compare matchB occurs. The Compare Flag in Timer/Counter1 is set (one) in the Timer/Counter Interrupt Flag Register.

Bit 2 – TOIE1: Timer/Counter1 Overflow Interrupt Enable

When the TOIE1 bit is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter1 Overflow interrupt is enabled. The corresponding interrupt (at vector \$004) is executed if an overflow in Timer/Counter1 occurs. The Overflow Flag (Timer1) is set (one) in the Timer/Counter Interrupt Flag Register - TIFR.

12.12.14 TIFR – Timer/Counter1 Interrupt Flag Register

• Bit 7 – OCF1D: Output Compare Flag 1D

The OCF1D bit is set (one) when compare match occurs between Timer/Counter1 and the data value in OCR1D - Output Compare Register 1D. OCF1D is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, OCF1D is cleared, after synchronization clock cycle, by writing a logic one to the flag. When the I-bit in SREG, OCIE1D, and OCF1D are set (one), the Timer/Counter1 D compare match interrupt is executed.

Bit 6 – OCF1A: Output Compare Flag 1A

The OCF1A bit is set (one) when compare match occurs between Timer/Counter1 and the data value in OCR1A - Output Compare Register 1A. OCF1A is cleared by hardware when executing

13.4 Alternative USI Usage

The flexible design of the USI allows it to be used for other tasks when serial communication is not needed. Below are some examples.

13.4.1 Half-Duplex Asynchronous Data Transfer

Using the USI Data Register in three-wire mode it is possible to implement a more compact and higher performance UART than by software, only.

13.4.2 4-Bit Counter

The 4-bit counter can be used as a stand-alone counter with overflow interrupt. Note that if the counter is clocked externally, both clock edges will increment the counter value.

13.4.3 12-Bit Timer/Counter

Combining the 4-bit USI counter with one of the 8-bit timer/counters creates a 12-bit counter.

13.4.4 Edge Triggered External Interrupt

By setting the counter to maximum value (F) it can function as an additional external interrupt. The Overflow Flag and Interrupt Enable bit are then used for the external interrupt. This feature is selected by the USICS1 bit.

13.4.5 Software Interrupt

The counter overflow interrupt can be used as a software interrupt triggered by a clock strobe.

13.5 Register Descriptions

13.5.1 USIDR – USI Data Register

The USI Data Register can be accessed directly.

Depending on the USICS1:0 bits of the USI Control Register a (left) shift operation may be performed. The shift operation can be synchronised to an external clock edge, to a Timer/Counter0 Compare Match, or directly to software via the USICLK bit. If a serial clock occurs at the same cycle the register is written, the register will contain the value written and no shift is performed.

Note that even when no wire mode is selected (USIWM1:0 = 0) both the external data input (DI/SDA) and the external clock input (USCK/SCL) can still be used by the USI Data Register.

The output pin (DO or SDA, depending on the wire mode) is connected via the output latch to the most significant bit (bit 7) of the USI Data Register. The output latch ensures that data input is sampled and data output is changed on opposite clock edges. The latch is open (transparent) during the first half of a serial clock cycle when an external clock source is selected (USICS1 = 1) and constantly open when an internal clock source is used (USICS1 = 0). The output will be changed immediately when a new MSB is written as long as the latch is open.

Note that the Data Direction Register bit corresponding to the output pin must be set to one in order to enable data output from the USI Data Register.

Figure 15-5. ADC Timing Diagram, Single Conversion

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. See Figure 15-6. This assures a fixed delay from the trigger event to the start of conversion. In this mode, the sample-and-hold takes place two ADC clock cycles after the rising edge on the trigger source signal. Three additional CPU clock cycles are used for synchronization logic.

Figure 15-6. ADC Timing Diagram, Auto Triggered Conversion

In Free Running mode (see Figure 15-7), a new conversion will be started immediately after the conversion completes, while ADSC remains high.

0x3FF represents the selected voltage reference minus one LSB. The result is presented in onesided form, from 0x3FF to 0x000.

15.11.2 Unipolar Differential Conversion

If differential channels and an unipolar input mode are used, the result is

$$ADC = \frac{(V_{POS} - V_{NEG}) \cdot 1024}{V_{REF}} \cdot GAIN$$

where V_{POS} is the voltage on the positive input pin, V_{NEG} the voltage on the negative input pin, and V_{REF} the selected voltage reference (see Table 15-3 on page 155 and Table 15-4 on page 157). The voltage on the positive pin must always be larger than the voltage on the negative pin or otherwise the voltage difference is saturated to zero. The result is presented in one-sided form, from 0x000 (0d) to 0x3FF (+1023d). The GAIN is either 1x, 8x, 20x or 32x.

15.11.3 Bipolar Differential Conversion

As default the ADC converter operates in the unipolar input mode, but the bipolar input mode can be selected by writting the BIN bit in the ADCSRB to one. In the bipolar input mode twosided voltage differences are allowed and thus the voltage on the negative input pin can also be larger than the voltage on the positive input pin. If differential channels and a bipolar input mode are used, the result is

$$ADC = \frac{(V_{POS} - V_{NEG}) \cdot 512}{V_{REF}} \cdot GAIN$$

where VPOS is the voltage on the positive input pin, VNEG the voltage on the negative input pin, and VREF the selected voltage reference. The result is presented in two's complement form, from 0x200 (-512d) through 0x000 (+0d) to 0x1FF (+511d). The GAIN is either 1x, 8x, 20x or 32x.

However, if the signal is not bipolar by nature (9 bits + sign as the 10th bit), this scheme loses one bit of the converter dynamic range. Then, if the user wants to perform the conversion with the maximum dynamic range, the user can perform a quick polarity check of the result and use the unipolar differential conversion with selectable differential input pair. When the polarity check is performed, it is sufficient to read the MSB of the result (ADC9 in ADCH). If the bit is one, the result is negative, and if this bit is zero, the result is positive.

15.12 Temperature Measurement

The temperature measurement is based on an on-chip temperature sensor that is coupled to a single ended ADC11 channel. Selecting the ADC11 channel by writing the MUX5:0 bits in ADMUX register to "111111" enables the temperature sensor. The internal 1.1V voltage reference must also be selected for the ADC voltage reference source in the temperature sensor measurement. When the temperature sensor is enabled, the ADC converter can be used in single conversion mode to measure the voltage over the temperature sensor.

The measured voltage has a linear relationship to the temperature as described in Table 15-2 The sensitivity is approximately 1 LSB / °C and the accuracy depends on the method of user calibration. Typically, the measurement accuracy after a single temperature calibration is $\pm 10^{\circ}$ C, programmed simultaneously. The programming algorithm for the EEPROM data memory is as follows (refer to "Programming the Flash" on page 180 for details on Command, Address and Data loading):

- 1. A: Load Command "0001 0001".
- 2. G: Load Address High Byte (0x00 0xFF).
- 3. B: Load Address Low Byte (0x00 0xFF).
- 4. C: Load Data (0x00 0xFF).
- 5. E: Latch data (give PAGEL a positive pulse).
- 6. K: Repeat 3 through 5 until the entire buffer is filled.
- 7. L: Program EEPROM page
 - a. Set BS to "0".
 - b. Give $\overline{\text{WR}}$ a negative pulse. This starts programming of the EEPROM page. RDY/BSY goes low.
 - c. Wait until to RDY/BSY goes high before programming the next page (See Figure 18-6 for signal waveforms).

18.7.7 Reading the Flash

The algorithm for reading the Flash memory is as follows (refer to "Programming the Flash" on page 180 for details on Command and Address loading):

- 1. A: Load Command "0000 0010".
- 2. G: Load Address High Byte (0x00 0xFF).
- 3. B: Load Address Low Byte (0x00 0xFF).
- 4. Set \overline{OE} to "0", and BS1 to "0". The Flash word low byte can now be read at DATA.
- 5. Set BS to "1". The Flash word high byte can now be read at DATA.
- 6. Set \overline{OE} to "1".

2588F-AVR-06/2013

19. Electrical Characteristics

19.1 Absolute Maximum Ratings*

Operating Temperature55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on any Pin except $\overline{\mbox{RESET}}$ with respect to Ground0.5V to V $_{\rm CC}$ +0.5V
Voltage on $\overline{\text{RESET}}$ with respect to Ground0.5V to +13.0V
Maximum Operating Voltage6.0V
DC Current per I/O Pin 40.0 mA
DC Current V_{CC} and GND Pins

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

19.2 DC Characteristics

Table 19-1.	DC Characteristics.	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C, $	$V_{\rm CC} = 1.8 V$ to 5.5 V	(unless otherwise noted).
-------------	---------------------	---	-------------------------------	---------------------------

Symbol	Parameter	Condition	Min	Typ ⁽¹⁾	Max	Units
		Except XTAL1 and RESET pins	-0.5		0.2V _{CC} ⁽³⁾	V
V _{IL}	Input Low-voltage	XTAL1 pin, External Clock Selected	-0.5		0.1V _{CC} ⁽³⁾	V
		RESET pin	-0.5		0.2V _{CC} ⁽³⁾	V
		RESET pin as I/O	-0.5		0.2V _{CC} ⁽³⁾	V
		Except XTAL1 and RESET pins	0.7V _{CC} ⁽²⁾		V _{CC} +0.5	V
V _{IH}	Input High-voltage	XTAL1 pin, External Clock Selected	0.8V _{CC} ⁽²⁾		V _{CC} +0.5	V
		RESET pin	0.9V _{CC} ⁽²⁾		V _{CC} +0.5	V
		RESET pin as I/O	0.7V _{CC} ⁽²⁾		V _{CC} +0.5	V
V _{OL}	Output Low Voltage ⁽⁴⁾ (Except Reset pin) ⁽⁶⁾	$I_{OL} = 10 \text{ mA}, V_{CC} = 5V$ $I_{OL} = 5 \text{ mA}, V_{CC} = 3V$			0.6 0.5	V V
V _{OH}	Output High-voltage ⁽⁵⁾ (Except Reset pin) ⁽⁶⁾	$I_{OH} = -10$ mA, $V_{CC} = 5V$ $I_{OH} = -5$ mA, $V_{CC} = 3V$	4.3 2.5			V V
IIL	Input Leakage Current I/O Pin	Vcc = 5.5V, pin low (absolute value)		< 0.05	1	μA
I _{IH}	Input Leakage Current I/O Pin	Vcc = 5.5V, pin high (absolute value)		< 0.05	1	μA
R _{RST}	Reset Pull-up Resistor		30		60	kΩ
R _{PU}	I/O Pin Pull-up Resistor		20		50	kΩ

Figure 20-4. Active Supply Current vs. V_{CC} (Internal RC Oscillator, 1 MHz) ACTIVE SUPPLY CURRENT vs. V_{CC}

Figure 20-38. Calibrated 8.0 MHz RC Oscillator Frequency vs. V_{CC}

Figure 20-39. Calibrated 8.0 MHz RC Oscillator Frequency vs. Temperature CALIBRATED 8.0 MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE

21. Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page	
0x3F (0x5F)	SREG	I	Т	Н	S	V	N	Z	С	page 8	
0x3E (0x5E)	SPH	-	-	-	-	-	SP10	SP9	SP8	page 11	
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	page 11	
0x3C (0x5C)	Reserved		-								
0x3B (0x5B)	GIMSK	INT1	INT0	PCIE1	PCIE0	-	-	-	-	page 52	
0x3A (0x5A)	GIFR	INTF1	INTF0	PCIF	-	-	-	-	-	page 53	
0x39 (0x59)	TIMSK	OCIE1D	OCIE1A	OCIE1B	OCIE0A	OCIE0B	TOIE1	TOIE0	TICIE0	page 86, page 123	
0x38 (0x58)	TIFR	OCF1D	OCF1A	OCF1B	OCF0A	OCF0B	TOV1	TOV0	ICF0	page 87, page 123	
0x37 (0x57)	SPMCSR	-	-	-	CTPB	RFLB	PGWRT	PGERS	SPMEN	page 169	
0x36 (0x56)	PRR					PRTIM1	PRTIM0	PRUSI	PRADC	page 37	
0x35 (0x55)	MCUCR	-	PUD	SE	SM1	SM0	-	ISC01	ISC00	page 39, page 69, page 52	
0x34 (0x54)	MCUSR	-	-	-	-	WDRF	BORF	EXTRF	PORF	page 47,	
0x33 (0x53)	TCCR0B	-	-	-	TSM	PSR0	CS02	CS01	CS00	page 85	
0x32 (0x52)	TCNT0L			Time	r/Counter0 Cour	nter Register Lov	v Byte			page 85	
0x31 (0x51)	OSCCAL				Oscillator Calib	pration Register				page 32	
0x30 (0x50)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	FOC1A	FOC1B	PWM1A	PWM1B	page 112	
0x2F (0x4F)	TCCR1B	PWM1X	PSR1	DTPS11	DTPS10	CS13	CS12	CS11	CS10	page 169	
0x2E (0x4E)	TCNT1				Timer/Counter1	Counter Registe	r			page 121	
0x2D (0x4D)	OCR1A			l imei	Counter1 Outpu	ut Compare Reg	ister A			page 121	
0x2C (0x4C)	OCR1B			l imei	Counter1 Outpu	ut Compare Reg	ister B			page 122	
0x2B (0x4B)	OCR1C			l imer	Counter1 Outpu	ut Compare Reg	ister C			page 122	
0x2A (0x4A)	OCR1D	1.014		l imer	Counter1 Outpu	ut Compare Reg	Ister D	D 115	DI OOV	page 122	
0x29 (0x49)	PLLCSR	LSM				01.1/1000	PCKE	PLLE	PLOCK	page 120	
0x28 (0x48)			00144.000	COM4.046	COMIDOS	CLKPS3	CLKPS2	CLKPS1	CLKPSU	page 32	
0x27 (0x47)	TCCRIC		COMIAUS	COMIBIS		COMIDI		FOCID	PWWID	page 117	
0x26 (0x46)	TCCRID	FPIET	FPENI	FPINCI	FPEST	FPACI	FPFI	TC10	TC19	page 118	
0x23 (0x43)				DT1H1		DT11.2	DT11.2	DT111	DT11.0	page 121	
0x24 (0x44)	PCMSKO	DTITI5 PCINIT7	PCINTE	DTITT PCINT5	DTITIO PCINITA	DTTL3	DTTL2 PCINT2	PCINT1	PCINTO	page 124	
0x23 (0x43)	PCMSK1	PCINT15	PCINT0 PCINT1/	PCINT3 PCINT13	PCINT4 PCINT12	PCINT11	PCINT2 PCINT10	PCINTO	PCINT8	page 54	
0x22 (0x42)	WDTCR	WDIE	WDIE	WDP3	WDCF	WDF	WDP2	WDP1	WDP0	page 34	
0x20 (0x40)	DWDR		110.2		DWD	R[7:0]				page 37	
0x1F (0x3F)	EEARH								EEAR8	page 20	
0x1E (0x3E)	EEARL	EEAR7	EEAR6	EEAR5	EEAR4	EEAR3	EEAR2	EEAR1	EEAR0	page 21	
0x1D (0x3D)	EEDR				EEPROM D	ata Register				page 21	
0x1C (0x3C)	EECR	-	-	EEPM1	EEPM0	EERIE	EEMPE	EEPE	EERE	page 21	
0x1B (0x3B)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	page 69	
0x1A (0x3A)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	page 69	
0x19 (0x39)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	page 70	
0x18 (0x38)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	page 70	
0x17 (0x37)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	page 70	
0x16 (0x36)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	page 70	
0x15 (0x35)	TCCR0A	TCW0	ICEN0	ICNC0	ICES0	ACIC0			CTC0	page 84	
0x14 (0x34)	TCNT0H			Time	r/Counter0 Coun	ter Register Higl	h Byte			page 86	
0x13 (0x33)	OCR0A			Timer	/Counter0 Outpu	ut Compare Reg	ister A			page 86	
0x12 (0x32)	OCR0B		•	Timer	/Counter0 Outpu	ut Compare Reg	ister B			page 86	
0x11 (0x31)	USIPP								USIPOS	page 136	
0x10 (0x30)	USIBR				USI Buffe	er Register				page 133	
0x0F (0x2F)	USIDR		r	1	USI Data	Register	r	r	T	page 132	
0x0E (0x2E)	USISR	USISIF	USIOIF	USIPF	USIDC	USICNT3	USICNT2	USICNT1	USICNT0	page 133	
0x0D (0x2D)	USICR	USISIE	USIOIE	USIWM1	USIWM0	USICS1	USICS0	USICLK	USITC	page 134	
0x0C (0x2C)	GPIOR2				General Purpos	se I/O Register 2				page 22	
0x0B (0x2B)	GPIOR1				General Purpos	e I/O Register 1				page 23	
0x0A (0x2A)	GPIOR0				General Purpos	e I/O Register 0				page 23	
0x09 (0x29)	ACSRB	HSEL	HLEV				ACM2	ACM1	ACM0	page 140	
0x08 (0x28)	ACSRA	ACD	ACBG	ACO	ACI	ACIE	ACME	ACIS1	ACIS0	page 139	
0x07 (0x27)	ADMUX	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	page 155	
0x06 (0x26)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	page 159	
0x05 (0x25)	ADCH				ADC Data Reg	gister High Byte				page 160	
0x04 (0x24)	ADCL ADC Data Register Low Byte		ADTOO	page 160							
0x03 (0x23)	ADCSRB	BIN	GSEL	40000	REFS2	MUX5	AD1S2	ADIS1	AD1S0	page 161	
0x02 (0x22)		ADC10D	ADC9D	ADC8D	ADC7D	ADEED	40000	100/0	40000	page 162	
UXU1 (UX21)	UIDR0	ADC6D	ADC5D	ADC4D	ADC3D	AKEFD	ADC2D	ADC1D	ADCOD	page 162	

26. Datasheet Revision History

Please note that the referring page numbers in this section refer to the complete document.

- 26.1 Rev. 2588F 06/13
 - 1. ATtiny261 changed status to "Mature".

26.2 Rev. 2588E - 08/10

- 1. Added tape and reel in "Ordering Information" on page 227.
- 2. Clarified Section 6.4 "Clock Output Buffer" on page 32.
- 3. Removed text "Not recommended for new designs" from cover page.

26.3 Rev. 2588D - 06/10

- 1. Removed "Preliminary" from cover page.
- 2. Added clarification before Table 6-10, "Capacitance for Low-Frequency Crystal Oscillator," on page 29.
- 3. Updated Figure 15-1 "Analog to Digital Converter Block Schematic" on page 143, changed INTERNAL 1.18V REFERENCE to 1.1V.
- 4. Updated Table 18-8, "No. of Words in a Page and No. of Pages in the EEPROM," on page 173, No. of Pages from 64 to 32 for ATtiny261.
- 5. Adjusted notes in Table 19-1, "DC Characteristics. TA = -40°C to +85°C, VCC = 1.8V to 5.5V (unless otherwise noted).," on page 187.

26.4 Rev. 2588C - 10/09

- 1. Updated document template. Re-arranged some sections.
- 2. Changed device status to "Not Recommended for New Designs".
- 3. Added Sections:
 - "Data Retention" on page 6
 - "Clock Sources" on page 25
 - "Low Level Interrupt" on page 51
 - "Prescaling and Conversion Timing" on page 145
 - "Clock speed considerations" on page 131
- 4. Updated Sections:
 - "Code Examples" on page 6
 - "High-Frequency PLL Clock" on page 26
 - "Normal Mode" on page 99
 - "Features" on page 142
 - "Temperature Measurement" on page 154
 - "Limitations of debugWIRE" on page 164
 - Step 1. on page 174
 - "Programming the Flash" on page 180
 - "System and Reset Characteristics" on page 190
- 5. Added Figures:
 - "Flash Programming Waveforms" on page 182