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Note: See “Code Examples” on page 6.

4.7.1 Interrupt Response Time

The interrupt execution response for all the enabled AVR interrupts is four clock cycles mini-
mum. After four clock cycles the Program Vector address for the actual interrupt handling routine
is executed. During this four clock cycle period, the Program Counter is pushed onto the Stack.
The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If
an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed
before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt
execution response time is increased by four clock cycles. This increase comes in addition to the
start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock
cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is
incremented by two, and the I-bit in SREG is set.

C Code Example

_SEI(); /* set Global Interrupt Enable */

_SLEEP(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */
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Table 10-4 and Table 10-5 relate the alternate functions of Port A to the overriding signals
shown in Figure 10-5 on page 61.

Table 10-4. Overriding Signals for Alternate Functions in PA7:PA4

Signal 
Name

PA7/ADC6/AIN0/

PCINT7

PA6/ADC5/AIN1/

PCINT6

PA5/ADC4/AIN2/

PCINT5

PA4/ADC3/ICP0/

PCINT4

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE 0 0 0 0

DIEOE PCINT7 • PCIE + 
ADC6D

PCINT6 • PCIE + 
ADC5D

PCINT5 • PCIE + 
ADC4D

PCINT4 • PCIE + 
ADC3D

DIEOV ADC6D ADC5D ADC4D ADC3D

DI PCINT7 PCINT6 PCINT5 ICP0/PCINT4

AIO ADC6, AIN0 ADC5, AIN1 ADC4, AIN2 ADC3

Table 10-5. Overriding Signals for Alternate Functions in PA3:PA0

Signal 
Name

PA3/AREF/

PCINT3

PA2/ADC2/INT1/

USCK/SCL/PCINT2

PA1/ADC1/DO/

PCINT1

PA0/ADC0/DI/SDA/

PCINT0

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 USI_TWO_WIRE • 
USIPOS

0
USI_TWO_WIRE • 
USIPOS

DDOV 0 (USI_SCL_HOLD + 
PORTB2) • DDB2 • 
USIPOS

0
(SDA + PORTB0) • 
DDRB0 • USIPOS

PVOE 0 USI_TWO_WIRE • 
DDRB2

USI_THREE_WI
RE • USIPOS

USI_TWO_WIRE • 
DDRB0 • USIPOS

PVOV 0 0 DO • USIPOS 0

PTOE 0 USI_PTOE • USIPOS 0 0

DIEOE PCINT3 • 
PCIE

PCINT2 • PCIE + INT1 + 
ADC2D + USISIE • 
USIPOS

PCINT1 • PCIE + 
ADC1D

PCINT0 • PCIE + 
ADC0D + USISIE • 
USIPOS

DIEOV 0 ADC2D ADC1D ADC0D

DI PCINT3 USCK/SCL/INT1/ PCINT2 PCINT1 DI/SDA/PCINT0

AIO AREF ADC2 ADC1 ADC0
65
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• ADC10: ADC input Channel 10. Note that ADC input channel 10 uses analog power.

• PCINT15: Pin Change Interrupt source 15.

• Port B, Bit 6 – ADC9/ T0/ INT0/ PCINT14

• ADC9: ADC input Channel 9. Note that ADC input channel 9 uses analog power.

• T0: Timer/Counter0 counter source.

• INT0: The PB6 pin can serve as an External Interrupt source 0.

• PCINT14: Pin Change Interrupt source 14.

• Port B, Bit 5 – XTAL2/ CLKO/ ADC8/ PCINT13

• XTAL2: Chip clock Oscillator pin 2. Used as clock pin for crystal Oscillator or Low-frequency 
crystal Oscillator. When used as a clock pin, the pin can not be used as an I/O pin.

• CLKO: The divided system clock can be output on the PB5 pin, if the CKOUT Fuse is 
programmed, regardless of the PORTB5 and DDB5 settings. It will also be output during 
reset.

• OC1D Output Compare Match output: The PB5 pin can serve as an external output for the 
Timer/Counter1 Compare Match D when configured as an output (DDA1 set). The OC1D pin 
is also the output pin for the PWM mode timer function.

• ADC8: ADC input Channel 8. Note that ADC input channel 8 uses analog power.

• PCINT13: Pin Change Interrupt source 13.

• Port B, Bit 4 – XTAL1/ CLKI/ OC1B/ ADC7/ PCINT12

• XTAL1/CLKI: Chip clock Oscillator pin 1. Used for all chip clock sources except internal 
calibrated RC Oscillator. When used as a clock pin, the pin can not be used as an I/O pin.

• OC1D: Inverted Output Compare Match output: The PB4 pin can serve as an external output 
for the Timer/Counter1 Compare Match D when configured as an output (DDA0 set). The 
OC1D pin is also the inverted output pin for the PWM mode timer function.

• ADC7: ADC input Channel 7. Note that ADC input channel 7 uses analog power.

• PCINT12: Pin Change Interrupt source 12.

• Port B, Bit 3 – OC1B/ PCINT11

• OC1B, Output Compare Match output: The PB3 pin can serve as an external output for the 
Timer/Counter1 Compare Match B. The PB3 pin has to be configured as an output (DDB3 
set (one)) to serve this function. The OC1B pin is also the output pin for the PWM mode timer 
function.

• PCINT11: Pin Change Interrupt source 11.

• Port B, Bit 2 – SCK/ USCK/ SCL/ OC1B/ PCINT10

• USCK: Three-wire mode Universal Serial Interface Clock.

• SCL: Two-wire mode Serial Clock for USI Two-wire mode.

• OC1B: Inverted Output Compare Match output: The PB2 pin can serve as an external output 
for the Timer/Counter1 Compare Match B when configured as an output (DDB2 set). The 
OC1B pin is also the inverted output pin for the PWM mode timer function.

• PCINT10: Pin Change Interrupt source 10.
67
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visible in the Timer Interrupt Flag Register (TIFR). All interrupts are individually masked with the
Timer Interrupt Mask Register (TIMSK). TIFR and TIMSK are not shown in the figure.

In 16-bit mode one more 8-bit register is available, the Timer/Counter0 High Byte Register
(TCNT0H). Also, in 16-bit mode, there is only one output compare unit as the two Output Com-
pare Registers, OCR0A and OCR0B, are combined to one, 16-bit Output Compare Register,
where OCR0A contains the low byte and OCR0B contains the high byte of the word. When
accessing 16-bit registers, special procedures described in section “Accessing Registers in 16-
bit Mode” on page 80 must be followed.

11.2.2 Definitions

Many register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 0. A lower case “x” replaces the Output Com-
pare Unit, in this case Compare Unit A or Compare Unit B. However, when using the register or
bit defines in a program, the precise form must be used, i.e. TCNT0L for accessing
Timer/Counter0 counter value, and so on.

The definitions in Table 11-1 are also used extensively throughout the document.

11.3 Clock Sources
The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the T0 pin. The Clock Select logic is controlled by the Clock Select (CS02:0) bits located in the
Timer/Counter Control Register 0 B (TCCR0B), and controls which clock source and edge the
Timer/Counter uses to increment its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clkT0). 

11.3.1 Prescaler

The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This
provides the fastest operation, with a maximum Timer/Counter clock frequency equal to system
clock frequency (fCLK_I/O). Alternatively, one of four taps from the prescaler can be used as a
clock source.

See Figure 11-2 for an illustration of the prescaler unit.

Table 11-1. Definitions

Constant Description

BOTTOM The counter reaches BOTTOM when it becomes 0x00

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255)

TOP
The counter reaches the TOP when it becomes equal to the highest value in the count 
sequence. The TOP value can be assigned to be the fixed value 0xFF (MAX) or the 
value stored in the OCR0A Register. The assignment depends on the mode of operation
72
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11.7.1 Normal, 8-bit Mode

In Normal 8-bit mode (see Table 11-3), the counter (TCNT0L) is incrementing until it overruns
when it passes its maximum 8-bit value (MAX = 0xFF) and then restarts from the bottom (0x00).
The Overflow Flag (TOV0) is set in the same timer clock cycle as when TCNT0L becomes zero.
The TOV0 Flag in this case behaves like a ninth bit, except that it is only set, not cleared. How-
ever, combined with the timer overflow interrupt that automatically clears the TOV0 Flag, the
timer resolution can be increased by software. There are no special cases to consider in the
Normal 8-bit mode, a new counter value can be written anytime. The Output Compare Unit can
be used to generate interrupts at some given time. 

11.7.2 Clear Timer on Compare Match (CTC) 8-bit Mode

In Clear Timer on Compare or CTC mode, see Table 11-3 on page 77, the OCR0A Register is
used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when the
counter value (TCNT0) matches the OCR0A. The OCR0A defines the top value for the counter,
hence also its resolution. This mode allows greater control of the Compare Match output fre-
quency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 11-6. The counter value (TCNT0)
increases until a Compare Match occurs between TCNT0 and OCR0A, and then counter
(TCNT0) is cleared.

Figure 11-6. CTC Mode, Timing Diagram 

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCF0A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating
the TOP value. However, changing TOP to a value close to BOTTOM when the counter is run-
ning with none or a low prescaler value must be done with care since the CTC mode does not
have the double buffering feature. If the new value written to OCR0A is lower than the current
value of TCNT0, the counter will miss the Compare Match. The counter will then have to count to
its maximum value (0xFF) and wrap around starting at 0x00 before the Compare Match can
occur. As for the Normal mode of operation, the TOV0 Flag is set in the same timer clock cycle
that the counter counts from MAX to 0x00.

11.7.3 Normal, 16-bit Mode

In 16-bit mode, see Table 11-3 on page 77, the counter (TCNT0H/L) is a incrementing until it
overruns when it passes its maximum 16-bit value (MAX = 0xFFFF) and then restarts from the
bottom (0x0000). The Overflow Flag (TOV0) will be set in the same timer clock cycle as the
TCNT0H/L becomes zero. The TOV0 Flag in this case behaves like a 17th bit, except that it is
only set, not cleared. However, combined with the timer overflow interrupt that automatically
clears the TOV0 Flag, the timer resolution can be increased by software. There are no special

TCNTn

OCnx Interrupt Flag Set

1 4Period 2 3
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The dedicated Dead Time prescaler in front of the Dead Time Generator can divide the
Timer/Counter1 clock (PCK or CK) by 1, 2, 4 or 8 providing a large range of dead times that can
be generated. The Dead Time prescaler is controlled by two bits DTPS11 and DTPS10 from the
Dead Time Prescaler register. These bits define the division factor of the Dead Time prescaler.
The division factors are given in Table 12-16.

• Bits 3:0 – CS13, CS12, CS11, CS10: Clock Select Bits 3, 2, 1, and 0

The Clock Select bits 3, 2, 1, and 0 define the prescaling source of Timer/Counter1.

The Stop condition provides a Timer Enable/Disable function.

Table 12-16. Division factors of the Dead Time prescaler

DTPS11 DTPS10 Prescaler divides the T/C1 clock by

0 0 1x (no division)

0 1 2x

1 0 4x

1 1 8x

Table 12-17. Timer/Counter1 Prescaler Select 

CS13 CS12 CS11 CS10 Asynchronous Clocking Mode Synchronous Clocking Mode

0 0 0 0 T/C1 stopped T/C1 stopped

0 0 0 1 PCK CK

0 0 1 0 PCK/2 CK/2

0 0 1 1 PCK/4 CK/4

0 1 0 0 PCK/8 CK/8

0 1 0 1 PCK/16 CK/16

0 1 1 0 PCK/32 CK/32

0 1 1 1 PCK/64 CK/64

1 0 0 0 PCK/128 CK/128

1 0 0 1 PCK/256 CK/256

1 0 1 0 PCK/512 CK/512

1 0 1 1 PCK/1024 CK/1024

1 1 0 0 PCK/2048 CK/2048

1 1 0 1 PCK/4096 CK/4096

1 1 1 0 PCK/8192 CK/8192

1 1 1 1 PCK/16384 CK/16384
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the corresponding interrupt handling vector. Alternatively, OCF1A is cleared, after synchroniza-
tion clock cycle, by writing a logic one to the flag. When the I-bit in SREG, OCIE1A, and OCF1A
are set (one), the Timer/Counter1 A compare match interrupt is executed.

• Bit 5 – OCF1B: Output Compare Flag 1B

The OCF1B bit is set (one) when compare match occurs between Timer/Counter1 and the data
value in OCR1B - Output Compare Register 1A. OCF1B is cleared by hardware when executing
the corresponding interrupt handling vector. Alternatively, OCF1B is cleared, after synchroniza-
tion clock cycle, by writing a logic one to the flag. When the I-bit in SREG, OCIE1B, and OCF1B
are set (one), the Timer/Counter1 B compare match interrupt is executed.

• Bit 2 – TOV1: Timer/Counter1 Overflow Flag

In Normal Mode and Fast PWM Mode the TOV1 bit is set (one) each time the counter reaches
TOP at the same clock cycle when the counter is reset to BOTTOM. In Phase and Frequency
Correct PWM Mode the TOV1 bit is set (one) each time the counter reaches BOTTOM at the
same clock cycle when zero is clocked to the counter.

The bit TOV1 is cleared by hardware when executing the corresponding interrupt handling vec-
tor. Alternatively, TOV1 is cleared, after synchronization clock cycle, by writing a logical one to
the flag. When the SREG I-bit, and TOIE1 (Timer/Counter1 Overflow Interrupt Enable), and
TOV1 are set (one), the Timer/Counter1 Overflow interrupt is executed.

12.12.15 DT1 – Timer/Counter1 Dead Time Value

The dead time value register is an 8-bit read/write register.

The dead time delay of all Timer/Counter1 channels are adjusted by the dead time value regis-
ter, DT1. The register consists of two fields, DT1H3:0 and DT1L3:0, one for each
complementary output. Therefore a different dead time delay can be adjusted for the rising edge
of OC1x and the rising edge of OC1x.

• Bits 7:4 – DT1H3:DT1H0: Dead Time Value for OC1x Output

The dead time value for the OC1x output. The dead time delay is set as a number of the pres-
caled timer/counter clocks. The minimum dead time is zero and the maximum dead time is the
prescaled time/counter clock period multiplied by 15.

• Bits 3:0 – DT1L3:DT1L0: Dead Time Value for OC1x Output

The dead time value for the OC1x output. The dead time delay is set as a number of the pres-
caled timer/counter clocks. The minimum dead time is zero and the maximum dead time is the
prescaled time/counter clock period multiplied by 15.

Bit 7 6 5 4 3 2 1 0

0x24 (0x44) DT1H3 DT1H2 DT1H1 DT1H0 DT1L3 DT1L2 DT1L1 DT1L0 DT1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
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• Bit 1 – USICLK: Clock Strobe

Writing a one to this bit location strobes the USI Data Register to shift one step and the counter
to increment by one, provided that the USICS1:0 bits are set to zero and by doing so the soft-
ware clock strobe option is selected. The output will change immediately when the clock strobe
is executed, i.e., in the same instruction cycle. The value shifted into the USI Data Register is
sampled the previous instruction cycle. The bit will be read as zero.

When an external clock source is selected (USICS1 = 1), the USICLK function is changed from
a clock strobe to a Clock Select Register. Setting the USICLK bit in this case will select the
USITC strobe bit as clock source for the 4-bit counter (see Table 13-2).

• Bit 0 – USITC: Toggle Clock Port Pin

Writing a one to this bit location toggles the USCK/SCL value either from 0 to 1, or from 1 to 0.
The toggling is independent of the setting in the Data Direction Register, but if the PORT value is
to be shown on the pin the DDB2 must be set as output (to one). This feature allows easy clock
generation when implementing master devices. The bit will be read as zero.

When an external clock source is selected (USICS1 = 1) and the USICLK bit is set to one, writ-
ing to the USITC strobe bit will directly clock the 4-bit counter. This allows an early detection of
when the transfer is done when operating as a master device.

13.5.5 USIPP – USI Pin Position

• Bits 7:1 – Res: Reserved Bits

These bits are reserved and will always read as zero.

• Bit 0 – USIPOS: USI Pin Position

Setting this bit to one changes the USI pin position. As default pins PB2:PB0 are used for the
USI pin functions, but when writing this bit to one the USIPOS bit is set the USI pin functions are
on pins PA2:PA0.

1 1 0 External, negative edge External, both edges

1 0 1 External, positive edge Software clock strobe (USITC)

1 1 1 External, negative edge Software clock strobe (USITC)

Table 13-2. Relations between the USICS1:0 and USICLK Setting (Continued)

USICS1 USICS0 USICLK
USI Data Register Clock 
Source 4-bit Counter Clock Source

Bit 7 6 5 4 3 2 1 0

0x11 (0x31) - - - - - - - USIPOS USIPP

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0
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• When ADATE or ADEN is cleared.

• During conversion, minimum one ADC clock cycle after the trigger event.

• After a conversion, before the Interrupt Flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC
conversion.

15.6.1 ADC Input Channels

When changing channel selections, the user should observe the following guidelines to ensure
that the correct channel is selected:

In Single Conversion mode, always select the channel before starting the conversion. The chan-
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the
simplest method is to wait for the conversion to complete before changing the channel selection.

In Free Running mode, always select the channel before starting the first conversion. The chan-
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the
simplest method is to wait for the first conversion to complete, and then change the channel
selection. Since the next conversion has already started automatically, the next result will reflect
the previous channel selection. Subsequent conversions will reflect the new channel selection.

15.6.2 ADC Voltage Reference

The voltage reference for the ADC (VREF) indicates the conversion range for the ADC. Single
ended channels that exceed VREF will result in codes close to 0x3FF. VREF can be selected as
either VCC, or internal 1.1V / 2.56V voltage reference, or external AREF pin. The first ADC con-
version result after switching voltage reference source may be inaccurate, and the user is
advised to discard this result.

15.7 ADC Noise Canceler
The ADC features a noise canceler that enables conversion during sleep mode. This reduces
noise induced from the CPU core and other I/O peripherals. The noise canceler can be used
with ADC Noise Reduction and Idle mode. To make use of this feature, the following procedure
should be used:

• Make sure that the ADC is enabled and is not busy converting. Single Conversion mode must 
be selected and the ADC conversion complete interrupt must be enabled.

• Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion once the 
CPU has been halted.

• If no other interrupts occur before the ADC conversion completes, the ADC interrupt will 
wake up the CPU and execute the ADC Conversion Complete interrupt routine. If another 
interrupt wakes up the CPU before the ADC conversion is complete, that interrupt will be 
executed, and an ADC Conversion Complete interrupt request will be generated when the 
ADC conversion completes. The CPU will remain in active mode until a new sleep command 
is executed.

Note that the ADC will not automatically be turned off when entering other sleep modes than Idle
mode and ADC Noise Reduction mode. The user is advised to write zero to ADEN before enter-
ing such sleep modes to avoid excessive power consumption. 
149
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assuming calibration at room temperature. Better accuracies are achieved by using two
temperature points for calibration.

The values described in Table 15-2 are typical values. However, due to process variation the
temperature sensor output voltage varies from one chip to another. To be capable of achieving
more accurate results the temperature measurement can be calibrated in the application soft-
ware. The sofware calibration can be done using the formula:

T = k * [(ADCH << 8) | ADCL] + TOS

where ADCH and ADCL are the ADC data registers, k is the fixed slope coefficient and TOS is
the temperature sensor offset. Typically, k is very close to 1.0 and in single-point calibration the
coefficient may be omitted. Where higher accuracy is required the slope coefficient should be
evaluated based on measurements at two temperatures.

15.13 Register Description

15.13.1 ADMUX – ADC Multiplexer Selection Register

• Bits 7:6 – REFS1:REFS0: Voltage Reference Selection Bits

These bits together with the REFS2 bit from the ADC Control and Status Register B (ADCSRB)
select the voltage reference for the ADC, as shown in Table 15-3.

If these bits are changed during a conversion, the change will not go in effect until this conver-
sion is complete (ADIF in ADCSR is set). Also note, that when these bits are changed, the next
conversion will take 25 ADC clock cycles.

Table 15-2. Temperature vs. Sensor Output Voltage (Typical Case)

Temperature -40 C +25 C +85 C

ADC 230 LSB 300 LSB 370 LSB

Bit 7 6 5 4 3 2 1 0

0x07 (0x27) REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 ADMUX

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 15-3. Voltage Reference Selections for ADC

REFS2 REFS1 REFS0 Voltage Reference Selection

X 0 0
VCC used as voltage reference,
disconnected from AREF

X 0 1
External voltage reference at AREF pin,
internal voltage reference turned off

0 1 0 Internal 1.1V voltage reference

0 1 1 Reserved

1 1 0
Internal 2.56V voltage reference,
without external bypass capacitor,
disconnected from AREF

1 1 1
Internal 2.56V voltage reference,
with external bypass capacitor at AREF pin
155
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Note: 1. Temperature sensor

100000

N/A

ADC0(PA0) ADC1(PA1) 20x/32x

100001 ADC0(PA0) ADC1(PA1) 1x/8x

100010 ADC1(PA1 ADC0(PA0) 20x/32x

100011 ADC1(PA1) ADC0(PA0) 1x/8x

100100

N/A

ADC1(PA1) ADC2(PA2) 20x/32x

100101 ADC1(PA1) ADC2(PA2) 1x/8x

100110 ADC2(PA2 ADC1(PA1) 20x/32x

100111 ADC2(PA2) ADC1(PA1) 1x/8x

101000

N/A

ADC2(PA2) ADC0(PA0) 20x/32x

101001 ADC2(PA2) ADC0(PA0) 1x/8x

101010 ADC0(PA0) ADC2(PA2) 20x/32x

101011 ADC0(PA0) ADC2(PA2) 1x/8x

101100

N/A

ADC4(PA5) ADC5(PA6) 20x/32x

101101 ADC4(PA5) ADC5(PA6) 1x/8x

101110 ADC5(PA6) ADC4(PA5) 20x/32x

101111 ADC5(PA6) ADC4(PA5) 1x/8x

110000

N/A

ADC5(PA6) ADC6(PA7) 20x/32x

110001 ADC5(PA6) ADC6(PA7) 1x/8x

110010 ADC6(PA7) ADC5(PA6) 20x/32x

110011 ADC6(PA7) ADC5(PA6) 1x/8x

110100

N/A

ADC6(PA7) ADC4(PA5) 20x/32x

110101 ADC6(PA7) ADC4(PA5) 1x/8x

110110 ADC4(PA5) ADC6(PA7) 20x/32x

110111 ADC4(PA5) ADC6(PA7) 1x/8x

111000

N/A

ADC0(PA0) ADC0(PA0) 20x/32x

111001 ADC0(PA0) ADC0(PA0) 1x/8x

111010 ADC1(PA1) ADC1(PA1) 20x/32x

111011 ADC2(PA2) ADC2(PA2) 20x/32x

111100

N/A

ADC4(PA5) ADC4(PA5) 20x/32x

111101 ADC5(PA6) ADC5(PA6) 20x/32x

111110 ADC6(PA7) ADC6(PA7) 20x/32x

111111 ADC11 (1) N/A N/A N/A

Table 15-4. Input Channel Selections (Continued)

MUX5:0
Single-Ended 

Input

Differential Input

GainPositive Negative
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To read the Fuse High Byte (FHB), simply replace the address in the Z-pointer with 0x0003 and
repeat the procedure above. If successful, the contents of the destination register are as follows.

Refer to Table 18-4 on page 171 for detailed description and mapping of the Fuse High Byte.

To read the Fuse Extended Byte (FEB), replace the address in the Z-pointer with 0x0002 and
repeat the previous procedure. If successful, the contents of the destination register are as
follows.

Refer to Table 18-3 on page 171 for detailed description and mapping of the Fuse Extended
Byte.

17.7 Preventing Flash Corruption
During periods of low VCC, the Flash program can be corrupted because the supply voltage is
too low for the CPU and the Flash to operate properly. These issues are the same as for board
level systems using the Flash, and the same design solutions should be applied. 

A Flash program corruption can be caused by two situations when the voltage is too low. First, a
regular write sequence to the Flash requires a minimum voltage to operate correctly. Secondly,
the CPU itself can execute instructions incorrectly, if the supply voltage for executing instructions
is too low.

Flash corruption can easily be avoided by following these design recommendations (one is
sufficient):

1. Keep the AVR RESET active (low) during periods of insufficient power supply voltage. 
This can be done by enabling the internal Brown-out Detector (BOD) if the operating 
voltage matches the detection level. If not, an external low VCC reset protection circuit 
can be used. If a reset occurs while a write operation is in progress, the write operation 
will be completed provided that the power supply voltage is sufficient.

2. Keep the AVR core in Power-down sleep mode during periods of low VCC. This will pre-
vent the CPU from attempting to decode and execute instructions, effectively protecting 
the SPMCSR Register and thus the Flash from unintentional writes.

17.8 Programming Time for Flash when Using SPM
The calibrated RC Oscillator is used to time Flash accesses. Table 17-1 shows the typical pro-
gramming time for Flash accesses from the CPU.

Note: 1. Minimum and maximum programming time is per individual operation.

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

Bit 7 6 5 4 3 2 1 0

Rd FEB7 FEB6 FEB5 FEB4 FEB3 FEB2 FEB1 FEB0

Table 17-1. SPM Programming Time(1)

Symbol Min Programming Time Max Programming Time

Flash write (Page Erase, Page Write, and 
write Lock bits by SPM)

3.7 ms 4.5 ms
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After RESET is set low, the Programming Enable instruction needs to be executed first before
program/erase operations can be executed.

Note: In Table 18-9, above, the pin mapping for SPI programming is listed. Not all parts use the SPI pins 
dedicated for the internal SPI interface.

When programming the EEPROM, an auto-erase cycle is built into the self-timed programming
operation (in the Serial mode ONLY) and there is no need to first execute the Chip Erase
instruction. The Chip Erase operation turns the content of every memory location in both the
Program and EEPROM arrays into 0xFF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high periods
for the serial clock (SCK) input are defined as follows:

• Low:> 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

• High:> 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

18.6.1 Serial Programming Algorithm

When writing serial data to the ATtiny261/461/861, data is clocked on the rising edge of SCK.
When reading, data is clocked on the falling edge of SCK. See Figure 19-4 and Figure 19-5 for
timing details.

To program and verify the ATtiny261/461/861 in the Serial Programming mode, the following
sequence is recommended (see four byte instruction formats in Table 18-11):

1. Power-up sequence:
Apply power between VCC and GND while RESET and SCK are set to “0”. In some sys-
tems, the programmer can not guarantee that SCK is held low during power-up. In this 
case, RESET must be given a positive pulse after SCK has been set to '0'. The duration 
of the pulse must be at least tRST (the minimum pulse width on RESET pin, see Table 
19-4 on page 190) plus two CPU clock cycles.

2. Wait for at least 20 ms and enable serial programming by sending the Programming 
Enable serial instruction to pin MOSI.

3. The serial programming instructions will not work if the communication is out of syn-
chronization. When in sync. the second byte (0x53), will echo back when issuing the 
third byte of the Programming Enable instruction. Whether the echo is correct or not, all 
four bytes of the instruction must be transmitted. If the 0x53 did not echo back, give 
RESET a positive pulse and issue a new Programming Enable command. 

4. The Flash is programmed one page at a time. The memory page is loaded one byte at 
a time by supplying the 5 LSB of the address and data together with the Load Program 
memory Page instruction. To ensure correct loading of the page, the data low byte must 
be loaded before data high byte is applied for a given address. The Program memory 
Page is stored by loading the Write Program memory Page instruction with the 6 MSB 
of the address. If polling (RDY/BSY) is not used, the user must wait at least tWD_FLASH 
before issuing the next page. (See Table 18-10.) Accessing the serial programming 

Table 18-9. Pin Mapping Serial Programming

Symbol Pins I/O Description

MOSI PB0 I Serial Data in

MISO PB1 O Serial Data out

SCK PB2 I Serial Clock
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ATtiny261/461/861
The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a positive pulse.
The bit coding is shown in Table 18-14.

When pulsing WR or OE, the command loaded determines the action executed. The different
Commands are shown in Table 18-15.

18.7.2 Entering Programming Mode

The following algorithm puts the device in parallel programming mode:

1. Apply 4.5 - 5.5V between VCC and GND.

2. Set RESET to “0” and toggle XTAL1 at least six times.

3. Set Prog_enable pins listed in Table 18-13 on page 179 to “0000” and wait at least 100 
ns.

4. Apply 11.5 - 12.5V to RESET. Any activity on Prog_enable pins within 100 ns after 
+12V has been applied to RESET, will cause the device to fail entering programming 
mode.

5. Wait at least 50 µs before sending a new command.

Table 18-13. Pin Values Used to Enter Programming Mode

Pin Symbol Value

PAGEL/BS1 Prog_enable[3] 0

XA1/BS2 Prog_enable[2] 0

XA0 Prog_enable[1] 0

WR Prog_enable[0] 0

Table 18-14. XA1 and XA0 Coding

XA1 XA0 Action when XTAL1 is Pulsed

0 0 Load Flash or EEPROM Address (High or low address byte determined by BS1).

0 1 Load Data (High or Low data byte for Flash determined by BS1).

1 0 Load Command

1 1 No Action, Idle

Table 18-15. Command Byte Bit Coding

Command Byte Command Executed

1000 0000 Chip Erase

0100 0000 Write Fuse bits

0010 0000 Write Lock bits

0001 0000 Write Flash

0001 0001 Write EEPROM

0000 1000 Read Signature Bytes and Calibration byte

0000 0100 Read Fuse and Lock bits

0000 0010 Read Flash

0000 0011 Read EEPROM
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3. Load Data Low Byte:

a. Set XA1, XA0 to “01”. This enables data loading.

b. Set DATA = Data low byte (0x00 - 0xFF).

c. Give XTAL1 a positive pulse. This loads the data byte.

4. Load Data High Byte:

a. Set BS1 to “1”. This selects high data byte.

b. Keep XA1, XA0 at “01”. This enables data loading.

c. Set DATA = Data high byte (0x00 - 0xFF).

d. Give XTAL1 a positive pulse. This loads the data byte.

5. Repeat steps 2 to 4 until the entire buffer is filled or until all data within the page is 
loaded.

6. Load Address High byte:

a. Set XA1, XA0 to “00”. This enables address loading.

b. Set BS1 to “1”. This selects high address.

c. Set DATA = Address high byte (0x00 - 0xFF).

d. Give XTAL1 a positive pulse. This loads the address high byte.

7. Program Page:

a. Give WR a negative pulse. This starts programming of the entire page of data. 
RDY/BSY goes low.

b. Wait until RDY/BSY goes high.

8. Repeat steps 2 to 7 until the entire Flash is programmed or until all data has been 
programmed.

9. End Page Programming:

a. Set XA1, XA0 to “10”. This enables command loading.

b. Set DATA to “0000 0000”. This is the command for No Operation.

c. Give XTAL1 a positive pulse. This loads the command, and the internal write sig-
nals are reset.

While the lower bits in the address are mapped to words within the page, the higher bits address
the pages within the FLASH. This is illustrated in Figure 18-4. Note that if less than eight bits are
required to address words in the page (pagesize < 256), the most significant bit(s) in the address
low byte are used to address the page when performing a Page Write.
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18.7.8 Reading the EEPROM

The algorithm for reading the EEPROM memory is as follows (refer to “Programming the Flash”
on page 180 for details on Command and Address loading):

1. A: Load Command “0000 0011”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA.

5. Set OE to “1”.

18.7.9 Programming the Fuse Low Bits

The algorithm for programming the Fuse Low bits is as follows (refer to “Programming the Flash”
on page 180 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

18.7.10 Programming the Fuse High Bits

The algorithm for programming the Fuse High bits is as follows (refer to “Programming the
Flash” on page 180 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS1 to “1” and BS2 to “0”. This selects high data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS1 to “0”. This selects low data byte.

18.7.11 Programming the Extended Fuse Bits

The algorithm for programming the Extended Fuse bits is as follows (refer to “Programming the
Flash” on page 180 for details on Command and Data loading):

1. 1. A: Load Command “0100 0000”.

2. 2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. 3. Set BS1 to “0” and BS2 to “1”. This selects extended data byte.

4. 4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. 5. Set BS2 to “0”. This selects low data byte.
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19.7 Serial Programming Characteristics

Figure 19-4. Serial Programming Waveforms

Figure 19-5. Serial Programming Timing

Note: 1. 2 tCLCL for fck < 12 MHz, 3 tCLCL for fck >= 12 MHz

Table 19-8. Serial Programming Characteristics, TA = -40C to +85C, VCC = 1.8 - 5.5V 
(Unless Otherwise Noted)

Symbol Parameter Min Typ Max Units

1/tCLCL Oscillator Frequency (ATtiny261V/461V/861V) 0 4 MHz

tCLCL Oscillator Period (ATtiny261V/461V/861V) 250 ns

1/tCLCL
Oscillator Frequency
(ATtiny261/461/861, VCC = 4.5 - 5.5V)

0 20 MHz

tCLCL
Oscillator Period
(ATtiny261/461/861, VCC = 4.5 - 5.5V)

50 ns

tSHSL SCK Pulse Width High 2 tCLCL
(1) ns

tSLSH SCK Pulse Width Low 2 tCLCL
(1) ns

tOVSH MOSI Setup to SCK High tCLCL ns

tSHOX MOSI Hold after SCK High 2 tCLCL ns

tSLIV SCK Low to MISO Valid 100 ns

MSB

MSB

LSB

LSB

SERIAL CLOCK INPUT
(SCK)

SERIAL DATA INPUT
 (MOSI)

(MISO)

SAMPLE

SERIAL DATA OUTPUT

MOSI

MISO

SCK

tOVSH

tSHSL

tSLSHtSHOX

tSLIV
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Figure 20-18. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)

20.6 Pin Driver Strength

Figure 20-19. I/O Pin Output Voltage vs. Sink Current (VCC = 3V)
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Figure 20-44. Brownout Detector Current vs. VCC 

Figure 20-45. Programming Current vs. VCC
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– “Reset Pin Output Voltage vs. Sink Current (VCC = 3V)” on page 209

– “Reset Pin Output Voltage vs. Sink Current (VCC = 3V)” on page 209

– “Reset Pin Output Voltage vs. Sink Current (VCC = 3V)” on page 209

– “Reset Pin Output Voltage vs. Sink Current (VCC = 3V)” on page 209

– “Bandgap Voltage vs. Supply Voltage (VCC).” on page 216

6. Updated Figures:

– “Block Diagram” on page 4

– “Clock Distribution” on page 24

7. Added Table:

– “Capacitance for Low-Frequency Crystal Oscillator” on page 29

8. Updated Tables:

– “Start-up Times for the Internal Calibrated RC Oscillator Clock Selection” on page 28

– “Start-up Times for the 128 kHz Internal Oscillator” on page 29

– “Active Clock Domains and Wake-up Sources in Different Sleep Modes” on page 36

– “Serial Programming Characteristics, TA = -40°C to +85°C, VCC = 1.8 - 5.5V 
(Unless Otherwise Noted)” on page 193

9. Updated Register Descriptions:

– “TCCR1A – Timer/Counter1 Control Register A” on page 112

– “TCCR1C – Timer/Counter1 Control Register C” on page 117

– “ADMUX – ADC Multiplexer Selection Register” on page 155

10. Updated assembly program example in section “Write” on page 17.

11. Updated “DC Characteristics. TA = -40°C to +85°C, VCC = 1.8V to 5.5V (unless other-
wise noted).” on page 187.

26.5 Rev. 2588B – 11/06
1. Updated “Ordering Information” on page 227.

2. Updated “Packaging Information” on page 231.

26.6 Rev. 2588A – 10/06
1. Initial Revision.
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