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The calibrated Oscillator is used to time the EEPROM accesses. Make sure the Oscillator fre-
quency is within the requirements described in “OSCCAL – Oscillator Calibration Register” on
page 32.

5.3.6 Program Examples

The following code examples show one assembly and one C function for erase, write, or atomic
write of the EEPROM. The examples assume that interrupts are controlled (e.g., by disabling
interrupts globally) so that no interrupts will occur during execution of these functions.

Note: See “Code Examples” on page 6.

Assembly Code Example

EEPROM_write:

; Wait for completion of previous write

sbic EECR,EEPE

rjmp EEPROM_write 

; Set Programming mode

ldi r16, (0<<EEPM1)|(0<<EEPM0)

out EECR, r16

; Set up address (r18:r17) in address register

out  EEARH, r18

out  EEARL, r17

; Write data (r19) to data register

out  EEDR, r19

; Write logical one to EEMPE

sbi  EECR,EEMPE

; Start eeprom write by setting EEPE

sbi  EECR,EEPE

ret

C Code Example

void EEPROM_write(unsigned char ucAddress, unsigned char ucData)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEPE))

;

/* Set Programming mode */

EECR = (0<<EEPM1)|(0<<EEPM0);

/* Set up address and data registers */

EEAR = ucAddress;

EEDR = ucData;

/* Write logical one to EEMPE */

EECR |= (1<<EEMPE);

/* Start eeprom write by setting EEPE */

EECR |= (1<<EEPE);

}
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6.1.3 Flash Clock – clkFLASH

The Flash clock controls operation of the Flash interface. The Flash clock is usually active simul-
taneously with the CPU clock.

6.1.4 ADC Clock – clkADC

The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks
in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion
results.

6.1.5 Fast Peripheral Clock – clkPCK

Selected peripherals can be clocked at a frequency higher than the CPU core. The fast periph-
eral clock is generated by an on-chip PLL circuit.

6.1.6 PLL System Clock – clkADC

The PLL can also be used to generate a system clock. The clock signal can be prescaled to
avoid overclocking the CPU.

6.2 Clock Sources
The device has the following clock source options, selectable by Flash Fuse bits as shown
below. The clock from the selected source is input to the AVR clock generator, and routed to the
appropriate modules.

Note: 1. For all fuses “1” means unprogrammed and “0” means programmed.

The various choices for each clocking option is given in the following sections. When the CPU
wakes up from Power-down or Power-save, the selected clock source is used to time the start-
up, ensuring stable oscillator operation before instruction execution starts. When the CPU starts
from reset, there is an additional delay allowing the power to reach a stable level before com-

Table 6-1. Device Clocking Options Select(1) vs. PB4 and PB5 Functionality

Device Clocking Option  CKSEL3:0 PB4 PB5

External Clock (see page 26) 0000 XTAL1 I/O

High-Frequency PLL Clock (see page 26) 0001 I/O I/O

Calibrated Internal 8 MHz Oscillator (see page 28) 0010 I/O I/O

Internal 128 kHz Oscillator (see page 29) 0011 I/O I/O

Low-Frequency Crystal Oscillator (see page 29) 01xx XTAL1 XTAL2

Crystal Oscillator / Ceramic Resonator
0.4...0.9 MHz (see page 30)

1000
1001

XTAL1 XTAL2

Crystal Oscillator / Ceramic Resonator
0.9...3.0 MHz (see page 30)

1010
1011

XTAL1 XTAL2

Crystal Oscillator / Ceramic Resonator
3...8 MHz (see page 30)

1100
1101

XTAL1 XTAL2

Crystal Oscillator / Ceramic Resonator
8...20 MHz (see page 30)

1110
1111

XTAL1 XTAL2
25
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From the time the CLKPS values are written, it takes between T1 + T2 and T1 + 2*T2 before the
new clock frequency is active. In this interval, two active clock edges are produced. Here, T1 is
the previous clock period, and T2 is the period corresponding to the new prescaler setting.

6.4 Clock Output Buffer
The device can output the system clock on the CLKO pin (when not used as XTAL2 pin). To
enable the output, the CKOUT Fuse has to be programmed. This mode is suitable when the chip
clock is used to drive other circuits on the system. Note that the clock will not be output during
reset and the normal operation of I/O pin will be overridden when the fuse is programmed. Inter-
nal RC Oscillator, WDT Oscillator, PLL, and external clock (CLKI) can be selected when the
clock is output on CLKO. Crystal oscillators (XTAL1, XTAL2) can not be used for clock output on
CLKO. If the System Clock Prescaler is used, it is the divided system clock that is output.

6.5 Register Description

6.5.1 OSCCAL – Oscillator Calibration Register

• Bits 7:0 – CAL7:0: Oscillator Calibration Value

The Oscillator Calibration Register is used to trim the Calibrated Internal RC Oscillator to
remove process variations from the oscillator frequency. A pre-programmed calibration value is
automatically written to this register during chip reset, giving the Factory calibrated frequency as
specified in Table 19-2 on page 189. The application software can write this register to change
the oscillator frequency. The oscillator can be calibrated to frequencies as specified in Table 19-
2 on page 189. Calibration outside that range is not guaranteed.

Note that this oscillator is used to time EEPROM and Flash write accesses, and these write
times will be affected accordingly. If the EEPROM or Flash are written, do not calibrate to more
than 8.8 MHz. Otherwise, the EEPROM or Flash write may fail.

The CAL7 bit determines the range of operation for the oscillator. Setting this bit to 0 gives the
lowest frequency range, setting this bit to 1 gives the highest frequency range. The two fre-
quency ranges are overlapping, in other words a setting of OSCCAL = 0x7F gives a higher
frequency than OSCCAL = 0x80.

The CAL6:0 bits are used to tune the frequency within the selected range. A setting of 0x00
gives the lowest frequency in that range, and a setting of 0x7F gives the highest frequency in the
range.

6.5.2 CLKPR – Clock Prescale Register

• Bit 7 – CLKPCE: Clock Prescaler Change Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE
bit is only updated when the other bits in CLKPR are simultaniosly written to zero. CLKPCE is

Bit 7 6 5 4 3 2 1 0

0x31 (0x51) CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

Bit 7 6 5 4 3 2 1 0

0x28 (0x48) CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 CLKPR

Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description
32
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8.1.2 External Reset

An External Reset is generated by a low level on the RESET pin if enabled. Reset pulses longer
than the minimum pulse width (see “System and Reset Characteristics” on page 190) will gener-
ate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a
reset. When the applied signal reaches the Reset Threshold Voltage – VRST – on its positive
edge, the delay counter starts the MCU after the Time-out period – tTOUT – has expired.

Figure 8-4. External Reset During Operation

8.1.3 Brown-out Detection

ATtiny261/461/861 has an On-chip Brown-out Detection (BOD) circuit for monitoring the VCC

level during operation by comparing it to a fixed trigger level. The trigger level for the BOD can
be selected by the BODLEVEL Fuses. The trigger level has a hysteresis to ensure spike free
Brown-out Detection. The hysteresis on the detection level should be interpreted as VBOT+ =
VBOT + VHYST/2 and VBOT- = VBOT - VHYST/2.

When the BOD is enabled, and VCC decreases to a value below the trigger level (VBOT- in Figure
8-5), the Brown-out Reset is immediately activated. When VCC increases above the trigger level
(VBOT+ in Figure 8-5), the delay counter starts the MCU after the Time-out period tTOUT has
expired.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level for lon-
ger than tBOD given in “System and Reset Characteristics” on page 190.

Figure 8-5. Brown-out Reset During Operation
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8.1.4 Watchdog Reset

When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On
the falling edge of this pulse, the delay timer starts counting the Time-out period tTOUT. Refer to
“Watchdog Timer” on page 44 for details on operation of the Watchdog Timer.

Figure 8-6. Watchdog Reset During Operation

8.2 Internal Voltage Reference
ATtiny261/461/861 features an internal bandgap reference. This reference is used for Brown-out
Detection, and it can be used as an input to the Analog Comparator or the ADC. The bandgap
voltage varies with supply voltage and temperature, as can be seen in Figure 20-36 on page
216.

8.2.1 Voltage Reference Enable Signals and Start-up Time

The voltage reference has a start-up time that may influence the way it should be used. The
start-up time is given in “System and Reset Characteristics” on page 190. To save power, the
reference is not always turned on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2:0] Fuse bits).

2. When the bandgap reference is connected to the Analog Comparator (by setting the 
ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user
must always allow the reference to start up before the output from the Analog Comparator or
ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three
conditions above to ensure that the reference is turned off before entering Power-down mode.

8.3 Watchdog Timer
The Watchdog Timer is clocked from an on-chip oscillator, which runs at 128 kHz. By controlling
the Watchdog Timer prescaler, the Watchdog Reset interval can be adjusted as shown in Table
8-3 on page 49. The WDR – Watchdog Reset – instruction resets the Watchdog Timer. The
Watchdog Timer is also reset when it is disabled and when a device reset occurs. Ten different
clock cycle periods can be selected to determine the reset period. If the reset period expires
without another Watchdog Reset, the ATtiny261/461/861 resets and executes from the Reset
Vector. For timing details on the Watchdog Reset, refer to Table 8-3 on page 49.

CK

CC
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10.1 Ports as General Digital I/O
The ports are bi-directional I/O ports with optional internal pull-ups. Figure 10-2 shows a func-
tional description of one I/O-port pin, here generically called Pxn.

Figure 10-2. General Digital I/O(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O, 
SLEEP, and PUD are common to all ports.

10.1.1 Configuring the Pin

Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in “Register
Description” on page 69, the DDxn bits are accessed at the DDRx I/O address, the PORTxn bits
at the PORTx I/O address, and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one,
Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input
pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is
activated. To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to
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Figure 10-3. Synchronization when Reading an Externally Applied Pin value

Consider the clock period starting shortly after the first falling edge of the system clock. The latch
is closed when the clock is low, and goes transparent when the clock is high, as indicated by the
shaded region of the “SYNC LATCH” signal. The signal value is latched when the system clock
goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As indi-
cated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed
between ½ and 1½ system clock period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indi-
cated in Figure 10-4. The out instruction sets the “SYNC LATCH” signal at the positive edge of
the clock. In this case, the delay tpd through the synchronizer is one system clock period.

Figure 10-4. Synchronization when Reading a Software Assigned Pin Value
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• Port A, Bit 5 – ADC4/AIN2/PCINT5

• ADC4: Analog to Digital Converter, Channel 4.

• AIN2: Analog Comparator Input. Configure the port pin as input with the internal pull-up 
switched off to avoid the digital port function from interfering with the function of the Analog 
Comparator.

• PCINT5: Pin Change Interrupt source 5.

• Port A, Bit 4 – ADC3/ICP0/PCINT4

• ADC3: Analog to Digital Converter, Channel 3.

• ICP0: Timer/Counter0 Input Capture Pin. 

• PCINT4: Pin Change Interrupt source 4.

• Port A, Bit 3 – AREF/PCINT3

• AREF: External analog reference for ADC. Pullup and output driver are disabled on PA3 
when the pin is used as an external reference or internal voltage reference with external 
capacitor at the AREF pin.

• PCINT3: Pin Change Interrupt source 3.

• Port A, Bit 2 – ADC2/INT1/USCK/SCL/PCINT2

• ADC2: Analog to Digital Converter, Channel 2.

• INT1: The PA2 pin can serve as an External Interrupt source 1.

• USCK: Three-wire mode Universal Serial Interface Clock.

• SCL: Two-wire mode Serial Clock for USI Two-wire mode.

• PCINT2: Pin Change Interrupt source 2.

• Port A, Bit 1 – ADC1/DO/PCINT1

• ADC1: Analog to Digital Converter, Channel 1.

• DO: Three-wire mode Universal Serial Interface Data output. Three-wire mode Data output 
overrides PORTA1 value and it is driven to the port when data direction bit DDA1 is set. 
PORTA1 still enables the pull-up, if the direction is input and PORTA1 is set.

• PCINT1: Pin Change Interrupt source 1.

• Port A, Bit 0 – ADC0/DI/SDA/PCINT0

• ADC0: Analog to Digital Converter, Channel 0.

• DI: Data Input in USI Three-wire mode. USI Three-wire mode does not override normal port 
functions, so pin must be configure as an input for DI function.

• SDA: Two-wire mode Serial Interface Data.

• PCINT0: Pin Change Interrupt source 0.
64
2588F–AVR–06/2013

ATtiny261/461/861



counter value and so on. The definitions in Table 12-1 are used extensively throughout the
document.

12.3 Clock Sources
The Timer/Counter is clocked internally, either from CK or PCK. See bits CSxx in Table 12-17 on
page 116 and bit PCKE in “PLLCSR – PLL Control and Status Register” on page 120.

12.3.1 Prescaler

Figure 12-3 shows the Timer/Counter1 prescaler that supports two clocking modes, a synchro-
nous clocking mode and an asynchronous clocking mode. The synchronous clocking mode uses
the system clock (CK) as a clock timebase and asynchronous mode uses the fast peripheral
clock (PCK) as a clock time base. The PCKE bit from the PLLCSR register enables the asyn-
chronous mode when it is set (‘1’).

Figure 12-3. Timer/Counter1 Prescaler

In the asynchronous clocking mode the clock selections are from PCK to PCK/16384 and stop,
and in the synchronous clocking mode the clock selections are from CK to CK/16384 and stop.
The clock options are illustrated in Figure 12-3 and desribed in “TCCR1B – Timer/Counter1
Control Register B” on page 115. 

The frequency of the fast peripheral clock is 64 MHz or 32 MHz in Low Speed mode (the LSM bit
in PLLCSR register is set to one). The Low Speed Mode is recommended to use when the sup-
ply voltage below 2.7 volts are used.

Table 12-1. Definitions

Constant Description

BOTTOM The counter reaches BOTTOM when it becomes 0x00

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255)

TOP
The counter reaches the TOP when it becomes equal to the highest value in the count 
sequence. The TOP value can be assigned to be the fixed value 0xFF (MAX) or the 
value stored in the OCR0A Register. The assignment depends on the mode of operation
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actual value from the port register will be visible on the port pin. The configurations of the Output
Compare Pins are described in Table 12-4.

12.8.4 PWM6 Mode

The PWM6 Mode (PWM1A = 1, WGM11:10 = 1X) provide PWM waveform generation option
e.g. for controlling Brushless DC (BLDC) motors. In the PWM6 Mode the OCR1A Register con-
trols all six Output Compare waveforms as the same Waveform Output (OCW1A) from the
Waform Generator is used for generating all waveforms. The PWM6 Mode also provides an Out-
put Compare Override Enable Register (OC1OE) that can be used with an instant response for
disabling or enabling the Output Compare pins. If the Output Compare Override Enable bit is
cleared, the actual value from the port register will be visible on the port pin.

The PWM6 Mode provides two counter operation modes, a single-slope operation and a dual-
slope operation. If the single-slope operation is selected (the WGM10 bit is set to 0), the counter
counts from BOTTOM to TOP (defined as OCR1C) then restart from BOTTOM like in Fast PWM
Mode. The PWM waveform is generated by setting (or clearing) the Waveforn Output (OCW1A)
at the Compare Match between OCR1A and TCNT1, and clearing (or setting) the Waveform
Output at the timer clock cycle the counter is cleared (changes from TOP to BOTTOM). The
Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches the TOP and, if the
interrupt is enabled, the interrupt handler routine can be used for updating the compare value.

Whereas, if the dual-slope operation is selected (the WGM10 bit is set to 1), the counter counts
repeatedly from BOTTOM to TOP (defined as OCR1C) and then from TOP to BOTTOM like in
Phase and Frequency Correct PWM Mode. The PWM waveform is generated by setting (or
clearing) the Waveforn Output (OCW1A) at the Compare Match between OCR1A and TCNT1
when the counter increments, and clearing (or setting) the Waveform Output at the he Compare
Match between OCR1A and TCNT1 when the counter decrements. The Timer/Counter Overflow
Flag (TOV1) is set each time the counter reaches the BOTTOM and, if the interrupt is enabled,
the interrupt handler routine can be used for updating the compare value.

The timing diagram for the PWM6 Mode in single-slope operation when the COM1A1:0 bits are
set to “10” is shown in Figure 12-14. The counter is incremented until the counter value matches
the TOP value. The counter is then cleared at the following timer clock cycle. The TCNT1 value
is in the timing diagram shown as a histogram for illustrating the single-slope operation. The tim-
ing diagram includes Output Compare pins OC1A and OC1A, and the corresponding Output
Compare Override Enable bits (OC1OE1:OC1OE0).

Table 12-4. Output Compare pin configurations in Phase and Frequency Correct PWM Mode

COM1x1 COM1x0 OC1x Pin OC1x Pin

0 0 Disconnected Disconnected

0 1 OC1x OC1x

1 0 Disconnected OC1x

1 1 Disconnected OC1x
104
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12.12.3 TCCR1C – Timer/Counter1 Control Register C

• Bits 7,6 – COM1A1S, COM1A0S: Comparator A Output Mode, Shadow Bits 1 and 0

These are shadow bits of COM1A1 and COM1A0 in TCCR1A. Writing to bits COM1A1S and
COM1A0S will also change bits COM1A1 and COM1A0 in TCCR1A. Similary, changes written
to bits COM1A1 and COM1A0 in TCCR1A will show here.

See “TCCR1A – Timer/Counter1 Control Register A” on page 112 for information on bit usage.

• Bits 5,4 – COM1B1S, COM1B0S: Comparator B Output Mode, Shadow Bits 1 and 0

These are shadow bits of COM1B1 and COM1B0 in TCCR1A. Writing to bits COM1B1S and
COM1B0S will also change bits COM1B1 and COM1B0 in TCCR1A. Similary, changes written
to bits COM1B1 and COM1B0 in TCCR1A will show here.

See “TCCR1A – Timer/Counter1 Control Register A” on page 112 for information on bit usage.

• Bits 3,2 – COM1D1, COM1D0: Comparator D Output Mode, Bits 1 and 0

These bits control the behaviour of the Waveform Output (OCW1D) and the connection of the
Output Compare pin (OC1D). If one or both of the COM1D1:0 bits are set, the OC1D output
overrides the normal port functionality of the I/O pin it is connected to. The complementary
OC1D output is connected only in PWM modes when the COM1D1:0 bits are set to “01”. Note
that the Data Direction Register (DDR) bit corresponding to the OC1D pin must be set in order to
enable the output driver.

The function of the COM1D1:0 bits depends on the PWM1D and WGM11:10 bit settings. Table
12-18 shows the COM1D1:0 bit functionality when the PWM1D bit is set to a Normal Mode (non-
PWM).

Table 12-19 shows the COM1D1:0 bit functionality when the PWM1D and WGM11:10 bits are
set to Fast PWM Mode.

Bit 7 6 5 4 3 2 1 0

0x27 (0x47) COM1A1
S

COM1A0
S

COM1B1
S

COM1B0
S

COM1D1 COM1D0 FOC1D PWM1D TCCR1C

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Table 12-18. Compare Output Mode, Normal Mode (non-PWM)

COM1D1:0 OCW1D Behaviour OC1D Pin OC1D Pin

00 Normal port operation. Disconnected Disconnected

01 Toggle on Compare Match. Connected Disconnected

10 Clear on Compare Match. Connected Disconnected

11 Set on Compare Match. Connected Disconnected

Table 12-19. Compare Output Mode, Fast PWM Mode

COM1D1:0 OCW1D Behaviour OC1D Pin OC1D Pin

00 Normal port operation. Disconnected Disconnected

01 Cleared on Compare Match. Set when TCNT1=0x000. Connected Connected

10 Cleared on Compare Match. Set when TCNT1=0x000. Connected Disconnected

11 Set on Compare Match. Cleared when TCNT1=0x000. Connected Disconnected
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13.4 Alternative USI Usage
The flexible design of the USI allows it to be used for other tasks when serial communication is
not needed. Below are some examples.

13.4.1 Half-Duplex Asynchronous Data Transfer

Using the USI Data Register in three-wire mode it is possible to implement a more compact and
higher performance UART than by software, only.

13.4.2 4-Bit Counter

The 4-bit counter can be used as a stand-alone counter with overflow interrupt. Note that if the
counter is clocked externally, both clock edges will increment the counter value.

13.4.3 12-Bit Timer/Counter

Combining the 4-bit USI counter with one of the 8-bit timer/counters creates a 12-bit counter.

13.4.4 Edge Triggered External Interrupt

By setting the counter to maximum value (F) it can function as an additional external interrupt.
The Overflow Flag and Interrupt Enable bit are then used for the external interrupt. This feature
is selected by the USICS1 bit.

13.4.5 Software Interrupt

The counter overflow interrupt can be used as a software interrupt triggered by a clock strobe.

13.5 Register Descriptions

13.5.1 USIDR – USI Data Register

The USI Data Register can be accessed directly.

Depending on the USICS1:0 bits of the USI Control Register a (left) shift operation may be per-
formed. The shift operation can be synchronised to an external clock edge, to a Timer/Counter0
Compare Match, or directly to software via the USICLK bit. If a serial clock occurs at the same
cycle the register is written, the register will contain the value written and no shift is performed.

Note that even when no wire mode is selected (USIWM1:0 = 0) both the external data input
(DI/SDA) and the external clock input (USCK/SCL) can still be used by the USI Data Register.

The output pin (DO or SDA, depending on the wire mode) is connected via the output latch to
the most significant bit (bit 7) of the USI Data Register. The output latch ensures that data input
is sampled and data output is changed on opposite clock edges. The latch is open (transparent)
during the first half of a serial clock cycle when an external clock source is selected (USICS1 =
1) and constantly open when an internal clock source is used (USICS1 = 0). The output will be
changed immediately when a new MSB is written as long as the latch is open.

Note that the Data Direction Register bit corresponding to the output pin must be set to one in
order to enable data output from the USI Data Register.

Bit 7 6 5 4 3 2 1 0

0x0F (0x2F) MSB LSB USIDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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Note: 1. The DI and USCK pins are renamed to Serial Data (SDA) and Serial Clock (SCL) respectively 
to avoid confusion between the modes of operation.

• Bits 3:2 – USICS1:0: Clock Source Select

These bits set the clock source for the USI Data Registerr and counter. The data output latch
ensures that the output is changed at the opposite edge of the sampling of the data input
(DI/SDA) when using external clock source (USCK/SCL). When software strobe or
Timer/Counter0 Compare Match clock option is selected, the output latch is transparent and
therefore the output is changed immediately. Clearing the USICS1:0 bits enables software
strobe option. When using this option, writing a one to the USICLK bit clocks both the USI Data
Register and the counter. For external clock source (USICS1 = 1), the USICLK bit is no longer
used as a strobe, but selects between external clocking and software clocking by the USITC
strobe bit.

Table 13-2 on page 135 shows the relationship between the USICS1:0 and USICLK setting and
clock source used for the USI Data Register and the 4-bit counter.

1 0

Two-wire mode. Uses SDA (DI) and SCL (USCK) pins (1).

The Serial Data (SDA) and the Serial Clock (SCL) pins are bi-directional and 
use open-collector output drives. The output drivers are enabled by setting the 
corresponding bit for SDA and SCL in the DDRA register.

When the output driver is enabled for the SDA pin, the output driver will force 
the line SDA low if the output of the USI Data Register or the corresponding 
bit in the PORTA register is zero. Otherwise, the SDA line will not be driven (i.e., 
it is released). When the SCL pin output driver is enabled the SCL line will be 
forced low if the corresponding bit in the PORTA register is zero, or by the start 
detector. Otherwise the SCL line will not be driven.

The SCL line is held low when a start detector detects a start condition and the 
output is enabled. Clearing the Start Condition Flag (USISIF) releases the line. 
The SDA and SCL pin inputs is not affected by enabling this mode. Pull-ups on 
the SDA and SCL port pin are disabled in Two-wire mode.

1 1

Two-wire mode. Uses SDA and SCL pins.

Same operation as in two-wire mode above, except that the SCL line is also 
held low when a counter overflow occurs, and until the Counter Overflow Flag 
(USIOIF) is cleared.

Table 13-2. Relations between the USICS1:0 and USICLK Setting

USICS1 USICS0 USICLK
USI Data Register Clock 
Source 4-bit Counter Clock Source

0 0 0 No Clock No Clock

0 0 1
Software clock strobe 
(USICLK)

Software clock strobe 
(USICLK)

0 1 X
Timer/Counter0 Compare 
Match

Timer/Counter0 Compare 
Match

1 0 0 External, positive edge External, both edges

Table 13-1. Relationship between USIWM1:0 and USI Operation (Continued)

USIWM1 USIWM0 Description
135
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15.13.3 ADCL and ADCH – The ADC Data Register

15.13.3.1 ADLAR = 0

15.13.3.2 ADLAR = 1

When an ADC conversion is complete, the result is found in these two registers.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Consequently, if
the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read
ADCH. Otherwise, ADCL must be read first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is read from
the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared (default), the result
is right adjusted. 

• ADC9:0: ADC Conversion Result

These bits represent the result from the conversion, as detailed in “ADC Conversion Result” on
page 153.

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

Table 15-5. ADC Prescaler Selections (Continued)

ADPS2 ADPS1 ADPS0 Division Factor

Bit 15 14 13 12 11 10 9 8

0x05 (0x25) – – – – – – ADC9 ADC8 ADCH

0x04 (0x24) ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

0x05 (0x25) ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

0x04 (0x24) ADC1 ADC0 – – – – – – ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be
lost.

17.3 Performing a Page Write
To execute Page Write, set up the address in the Z-pointer, write “00000101” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE. Other bits in the Z-pointer must be written to
zero during this operation.

Note: The CPU is halted during the Page Write operation.

17.4 Addressing the Flash During Self-Programming
The Z-pointer is used to address the SPM commands.

Since the Flash is organized in pages (see Table 18-7 on page 173), the Program Counter can
be treated as having two different sections. One section, consisting of the least significant bits, is
addressing the words within a page, while the most significant bits are addressing the pages.
This is shown in Figure 17-1. Note that the Page Erase and Page Write operations are
addressed independently. Therefore it is of major importance that the software addresses the
same page in both the Page Erase and Page Write operation. 

The LPM instruction uses the Z-pointer to store the address. Since this instruction addresses the
Flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.

Figure 17-1. Addressing the Flash During SPM

Note: The different variables used in Figure 17-1 are listed in Table 18-7 on page 173. 

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0

PROGRAM MEMORY

0115

Z - REGISTER

BIT

0

ZPAGEMSB

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

ZPCMSB

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER
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After RESET is set low, the Programming Enable instruction needs to be executed first before
program/erase operations can be executed.

Note: In Table 18-9, above, the pin mapping for SPI programming is listed. Not all parts use the SPI pins 
dedicated for the internal SPI interface.

When programming the EEPROM, an auto-erase cycle is built into the self-timed programming
operation (in the Serial mode ONLY) and there is no need to first execute the Chip Erase
instruction. The Chip Erase operation turns the content of every memory location in both the
Program and EEPROM arrays into 0xFF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high periods
for the serial clock (SCK) input are defined as follows:

• Low:> 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

• High:> 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

18.6.1 Serial Programming Algorithm

When writing serial data to the ATtiny261/461/861, data is clocked on the rising edge of SCK.
When reading, data is clocked on the falling edge of SCK. See Figure 19-4 and Figure 19-5 for
timing details.

To program and verify the ATtiny261/461/861 in the Serial Programming mode, the following
sequence is recommended (see four byte instruction formats in Table 18-11):

1. Power-up sequence:
Apply power between VCC and GND while RESET and SCK are set to “0”. In some sys-
tems, the programmer can not guarantee that SCK is held low during power-up. In this 
case, RESET must be given a positive pulse after SCK has been set to '0'. The duration 
of the pulse must be at least tRST (the minimum pulse width on RESET pin, see Table 
19-4 on page 190) plus two CPU clock cycles.

2. Wait for at least 20 ms and enable serial programming by sending the Programming 
Enable serial instruction to pin MOSI.

3. The serial programming instructions will not work if the communication is out of syn-
chronization. When in sync. the second byte (0x53), will echo back when issuing the 
third byte of the Programming Enable instruction. Whether the echo is correct or not, all 
four bytes of the instruction must be transmitted. If the 0x53 did not echo back, give 
RESET a positive pulse and issue a new Programming Enable command. 

4. The Flash is programmed one page at a time. The memory page is loaded one byte at 
a time by supplying the 5 LSB of the address and data together with the Load Program 
memory Page instruction. To ensure correct loading of the page, the data low byte must 
be loaded before data high byte is applied for a given address. The Program memory 
Page is stored by loading the Write Program memory Page instruction with the 6 MSB 
of the address. If polling (RDY/BSY) is not used, the user must wait at least tWD_FLASH 
before issuing the next page. (See Table 18-10.) Accessing the serial programming 

Table 18-9. Pin Mapping Serial Programming

Symbol Pins I/O Description

MOSI PB0 I Serial Data in

MISO PB1 O Serial Data out

SCK PB2 I Serial Clock
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Figure 18-3. Parallel Programming.

Table 18-12. Pin Name Mapping 

Signal Name in 
Programming Mode

Pin 
Name I/O Function

WR PB0 I Write Pulse (Active low).

XA0 PB1 I XTAL Action Bit 0

XA1/BS2 PB2 I
XTAL Action Bit 1. Byte Select 2 (“0” selects low byte, “1” 
selects 2’nd high byte).

PAGEL/BS1 PB3 I
Byte Select 1 (“0” selects low byte, “1” selects high byte). 
Program Memory and EEPROM Data Page Load.

OE PB5 I Output Enable (Active low).

RDY/BSY PB6 O
0: Device is busy programming, 1: Device is ready for new 
command.

DATA I/O PA7-PA0 I/O Bi-directional Data bus (Output when OE is low).

VCC

+5V

GND

XTAL1/PB4

PB6

PB5

PB0

PB3

PB1

PB2

 PA7 - PA0 DATA

RESET +12 V

PAGEL/BS1

XA0

XA1/BS2

OE

RDY/BSY

WR

AVCC

+5V
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Notes: 1.  tWLRH is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock bits 
commands.

2. tWLRH_CE is valid for the Chip Erase command.

tBVDV BS1 Valid to DATA valid 0 250 ns

tOLDV OE Low to DATA Valid 250 ns

tOHDZ OE High to DATA Tri-stated 250 ns

Table 19-9. Parallel Programming Characteristics, VCC = 5V ± 10%  (Continued)

Symbol Parameter Min Typ Max Units
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20.3 Idle Supply Current

Figure 20-6. Idle Supply Current vs. Low Frequency (0.1 - 1.0 MHz)

Figure 20-7. Idle Supply Current vs. Frequency (1 - 20 MHz)
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Figure 20-36. Bandgap Voltage vs. Supply Voltage (VCC).

20.9 Internal Oscillator Speed

Figure 20-37. Watchdog Oscillator Frequency vs. VCC
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