

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Active
Core Processor	AVR
Core Size	8/16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	50
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atxmega128a3u-an

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

addressing. The most significant bits in the address (E2PAGE) give the page number and the least significant address bits (E2BYTE) give the byte in the page.

Devices	EEPROM	Page Size	E2BYTE	E2PAGE	No of Pages	
	Size	bytes				
ATxmega64A3U	2K	32	ADDR[4:0]	ADDR[10:5]	64	
ATxmega128A3U	2K	32	ADDR[4:0]	ADDR[10:5]	64	
ATxmega192A3U	2K	32	ADDR[4:0]	ADDR[10:5]	64	
ATxmega256A3U	4K	32	ADDR[4:0]	ADDR[11:5]	128	

9. Event System

9.1 Features

- System for direct peripheral-to-peripheral communication and signaling
- Peripherals can directly send, receive, and react to peripheral events
 - CPU and DMA controller independent operation
 - 100% predictable signal timing
 - Short and guaranteed response time
- Eight event channels for up to eight different and parallel signal routing configurations
- Events can be sent and/or used by most peripherals, clock system, and software
- Additional functions include
 - Quadrature decoders
 - Digital filtering of I/O pin state
- Works in active mode and idle sleep mode

9.2 Overview

The event system enables direct peripheral-to-peripheral communication and signaling. It allows a change in one peripheral's state to automatically trigger actions in other peripherals. It is designed to provide a predictable system for short and predictable response times between peripherals. It allows for autonomous peripheral control and interaction without the use of interrupts, CPU, or DMA controller resources, and is thus a powerful tool for reducing the complexity, size and execution time of application code. It also allows for synchronized timing of actions in several peripheral modules.

A change in a peripheral's state is referred to as an event, and usually corresponds to the peripheral's interrupt conditions. Events can be directly passed to other peripherals using a dedicated routing network called the event routing network. How events are routed and used by the peripherals is configured in software.

Figure 9-1 on page 21 shows a basic diagram of all connected peripherals. The event system can directly connect together analog and digital converters, analog comparators, I/O port pins, the real-time counter, timer/counters, IR communication module (IRCOM), and USB interface. It can also be used to trigger DMA transactions (DMA controller). Events can also be generated from software and the peripheral clock.

Atmel

12. System Control and Reset

12.1 Features

- Reset the microcontroller and set it to initial state when a reset source goes active
- Multiple reset sources that cover different situations
 - Power-on reset
 - External reset
 - Watchdog reset
 - Brownout reset
 - PDI reset
 - Software reset
- Asynchronous operation
 - No running system clock in the device is required for reset
- Reset status register for reading the reset source from the application code

12.2 Overview

The reset system issues a microcontroller reset and sets the device to its initial state. This is for situations where operation should not start or continue, such as when the microcontroller operates below its power supply rating. If a reset source goes active, the device enters and is kept in reset until all reset sources have released their reset. The I/O pins are immediately tri-stated. The program counter is set to the reset vector location, and all I/O registers are set to their initial values. The SRAM content is kept. However, if the device accesses the SRAM when a reset occurs, the content of the accessed location can not be guaranteed.

After reset is released from all reset sources, the default oscillator is started and calibrated before the device starts running from the reset vector address. By default, this is the lowest program memory address, 0, but it is possible to move the reset vector to the lowest address in the boot section.

The reset functionality is asynchronous, and so no running system clock is required to reset the device. The software reset feature makes it possible to issue a controlled system reset from the user software.

The reset status register has individual status flags for each reset source. It is cleared at power-on reset, and shows which sources have issued a reset since the last power-on.

12.3 Reset Sequence

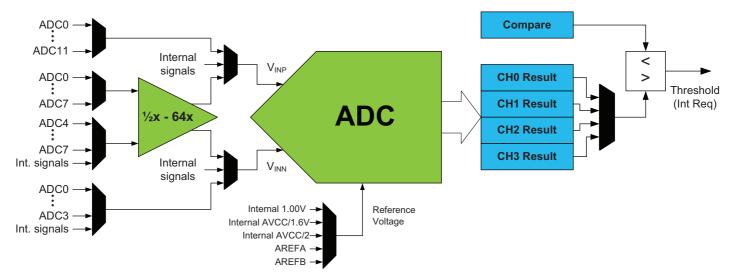
A reset request from any reset source will immediately reset the device and keep it in reset as long as the request is active. When all reset requests are released, the device will go through three stages before the device starts running again:

- Reset counter delay
- Oscillator startup
- Oscillator calibration

If another reset requests occurs during this process, the reset sequence will start over again.

12.4 Reset Sources

12.4.1 Power-on Reset


A power-on reset (POR) is generated by an on-chip detection circuit. The POR is activated when the V_{CC} rises and reaches the POR threshold voltage (V_{POT}), and this will start the reset sequence.

The POR is also activated to power down the device properly when the V_{CC} falls and drops below the V_{POT} level. The V_{POT} level is higher for falling V_{CC} than for rising V_{CC} . Consult the datasheet for POR characteristics data.

Both internal and external reference voltages can be used. An integrated temperature sensor is available for use with the ADC. The output from the DAC, $AV_{CC}/10$ and the bandgap voltage can also be measured by the ADC.

The ADC has a compare function for accurate monitoring of user defined thresholds with minimum software intervention required.

Figure 28-1. ADC overview.

Two inputs can be sampled simultaneously as both the ADC and the gain stage include sample and hold circuits, and the gain stage has 1x gain setting. Four inputs can be sampled within 1.5µs without any intervention by the application.

The ADC may be configured for 8- or 12-bit result, reducing the minimum conversion time (propagation delay) from 3.5µs for 12-bit to 2.5µs for 8-bit result.

ADC conversion results are provided left- or right adjusted with optional '1' or '0' padding. This eases calculation when the result is represented as a signed integer (signed 16-bit number).

PORTA and PORTB each has one ADC. Notation of these peripherals are ADCA and ADCB, respectively.

32. Pinout and Pin Functions

The device pinout is shown in "Pinout/Block Diagram" on page 5. In addition to general purpose I/O functionality, each pin can have several alternate functions. This will depend on which peripheral is enabled and connected to the actual pin. Only one of the pin functions can be used at time.

32.1 Alternate Pin Function Description

The tables below show the notation for all pin functions available and describe its function.

32.1.1 Operation/Power Supply

V _{CC}	Digital supply voltage
AV _{CC}	Analog supply voltage
GND	Ground

32.1.2 Port Interrupt functions

SYNC	Port pin with full synchronous and limited asynchronous interrupt function
ASYNC	Port pin with full synchronous and full asynchronous interrupt function

32.1.3 Analog functions

ACn	Analog Comparator input pin n
ACnOUT	Analog Comparator n Output
ADCn	Analog to Digital Converter input pin n
DACn	Digital to Analog Converter output pin n
A _{REF}	Analog Reference input pin

32.1.4 Timer/Counter and AWEX functions

OCnxLS	Output Compare Channel x Low Side for Timer/Counter n
OCnxHS	Output Compare Channel x High Side for Timer/Counter n

32.1.5 Communication functions

SCL	Serial Clock for TWI
SDA	Serial Data for TWI
SCLIN	Serial Clock In for TWI when external driver interface is enabled
SCLOUT	Serial Clock Out for TWI when external driver interface is enabled
SDAIN	Serial Data In for TWI when external driver interface is enabled
SDAOUT	Serial Data Out for TWI when external driver interface is enabled
XCKn	Transfer Clock for USART n
RXDn	Receiver Data for USART n

Table 32-5. Port E - alternate functions.

PORTE	PIN #	INTERRUPT	TCE0	TCE1	USART E0	USART E1	SPIE	TWIE	TWIE w/ext driver	тоѕс	CLOCKOUT	EVENTOUT
PE0	36	SYNC	OC0A					SDA	SDAIN			
PE1	37	SYNC	OC0B		XCK0			SCL	SCLIN			
PE2	38	SYNC/ASYNC	OC0C		RXD0				SDAOUT			
PE3	39	SYNC	OC0D		TXD0				SCLOUT			
PE4	40	SYNC		OC1A			SS					
PE5	41	SYNC		OC1B		XCK1	MOSI					
PE6	42	SYNC				RXD1	MISO			TOSC2		
PE7	43	SYNC				TXD1	SCK			TOSC1	clk _{PER}	EVOUT
GND	44											
vcc	45											

Notes: 1. Pin mapping of all TC0 can optionally be moved to high nibble of port.

2. If TC0 is configured as TC2 all eight pins can be used for PWM output.

- 3. Pin mapping of all USART0 can optionally be moved to high nibble of port.
- 4. Pins MOSI and SCK for all SPI can optionally be swapped.
- 5. CLKOUT can optionally be moved between port C, D and E and be on pin 4 or 7.
- 6. EVOUT can optionally be moved between port C, D and E and be on pin 4 or 7.

Table 32-6. Port F - alternate functions.

PORTF	PIN#	INTERRUPT	TCF0	USARTF0
PF0	46	SYNC	OC0A	
PF1	47	SYNC	OC0B	ХСКО
PF2	48	SYNC/ASYNC	0000	RXD0
PF3	49	SYNC	OC0D	TXD0
PF4	50	SYNC		
PF5	51	SYNC		
GND	52			
vcc	53			
PF6	54	SYNC		
PF7	55	SYNC		

Table 32-7. Port R - alternate functions.

PORTR	PIN#	INTERRUPT	PDI	XTAL
PDI	56		PDI_DATA	
RESET	57		PDI_CLOCK	
PR0	58	SYNC		XTAL2
PR1	59	SYNC		XTAL1

Mnemonics	Operands	Description	Operation	Flags	#Clocks
SEV		Set Two's Complement Overflow	V ← 1	V	1
CLV		Clear Two's Complement Overflow	$V \leftarrow 0$	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	$T \leftarrow 0$	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	н	1
		MCU d	control instructions		
BREAK		Break	(See specific descr. for BREAK)	None	1
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR)	None	1

Notes: 1. Cycle times for Data memory accesses assume internal memory accesses, and are not valid for accesses via the external RAM interface.

2. One extra cycle must be added when accessing Internal SRAM.

Atmel

Table 36-5. Current consumption for modules and peripherals.

Symbol	Parameter	Condition ⁽¹⁾		Min.	Тур.	Max.	Units
	ULP oscillator				1.0		μA
	32.768kHz int. oscillator				26		μA
	2MHz int. oscillator				85		
		DFLL enabled with	n 32.768kHz int. osc. as reference		115		μA
	32MHz int. oscillator				270		μA
		DFLL enabled with	n 32.768kHz int. osc. as reference		460		μΑ
	PLL	20x multiplication 32MHz int. osc. D			220		μA
	Watchdog Timer				1		μA
	BOD	Continuous mode	Continuous mode		138		
	вор	Sampled mode, includes ULP oscillator			1.2		μA
	Internal 1.0V reference				100		μA
I _{CC}	Temperature sensor				95		μA
					3.0		
	ADC	250ksps	CURRLIMIT = LOW		2.6		mA
	ADC	V _{REF} = Ext ref	CURRLIMIT = MEDIUM		2.1		
			CURRLIMIT = HIGH		1.6		
	DAC	250ksps	Normal mode		1.9		mA
	DAC	V _{REF} = Ext ref No load	Low Power mode		1.1		mA
	10	High Speed Mode			330		
	AC	Low Power Mode			130		μA
	DMA	615KBps between	I/O registers and SRAM		115		μA
	Timer/Counter				16		μA
	USART	Rx and Tx enable	d, 9600 BAUD		2.5		μA
	Flash memory and EEPRO	OM programming			4		mA

Note:

All parameters measured as the difference in current consumption between module enabled and disabled. All data at V_{CC} = 3.0V, Clk_{SYS} = 1MHz external clock without prescaling, T = 25°C unless other conditions are given.

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
		mode = HS	V _{CC} = 3.0V, T= 85°C		60	90	
t _{delay}	Propagation delay		V _{CC} = 1.6V - 3.6V		30		ns
		mode = LP	v _{CC} - 1.0v - 3.0v		160		
	64-Level Voltage Scaler	Integral non-linearity (I	NL)		0.3	0.5	lsb

36.1.9 Bandgap and Internal 1.0V Reference Characteristics

Table 36-16. Bandgap and Internal 1.0V reference characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Startup time	As reference for ADC or DAC		Clk _{PER} + 2.5	ōμs	
	Startup time	As input voltage to ADC and AC	1.5			μs
	Bandgap voltage			1.1		V
INT1V	Internal 1.00V reference	T= 85°C, after calibration	0.99	1	1.01	V
	Variation over voltage and temperature	Relative to T= 85°C, V_{CC} = 3.0V		±1.0		%

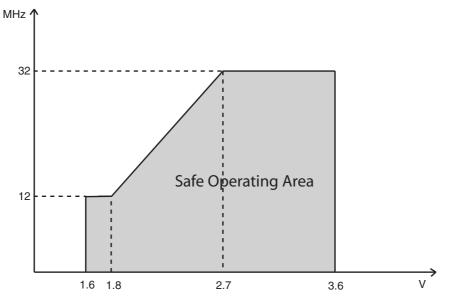

36.1.10 Brownout Detection Characteristics

Table 36-17. Brownout detection characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	BOD level 0 falling V _{CC}		1.60	1.62	1.72	
	BOD level 1 falling V _{CC}			1.8		-
	BOD level 2 falling V _{CC}			2.0		-
V	BOD level 3 falling V_{CC}			2.2		v
V _{BOT}	BOD level 4 falling V_{CC}			2.4		V
	BOD level 5 falling V_{CC}			2.6		_
	BOD level 6 falling V _{CC}			2.8		_
	BOD level 7 falling V _{CC}			3.0		_
+	Detection time	Continuous mode		0.4		
t _{BOD}		Sampled mode		1000		μs
V _{HYST}	Hysteresis			1.6		%

The maximum CPU clock frequency depends on V_{CC}. As shown in Figure 36-1 the Frequency vs. V_{CC} curve is linear between 1.8V < V_{CC} < 2.7V.

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
		mode = HS	V _{CC} = 3.0V, T= 85°C		90	100	
t _{delay}	Propagation delay	mode – HS	VCC = 1.6V - 3.6V		95		ns
		mode = LP	VCC - 1.0V - 3.0V		200	500	
	64-Level Voltage Scaler	Integral non-linearity	(INL)		0.5	1.0	lsb

36.2.9 Bandgap and Internal 1.0V Reference Characteristics

Table 36-48.	Bandgap and Internal 1.0V reference characteristics.
--------------	--

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Startup time	As reference for ADC or DAC	1 (Clk _{PER} + 2.	ōμs	
	Startup time	As input voltage to ADC and AC	1.5			μs
	Bandgap voltage			1.1		V
INT1V	Internal 1.00V reference	T= 85°C, after calibration	0.99	1	1.01	
	Variation over voltage and temperature	Relative to T= 85°C, V_{CC} = 3.0V		±1.0		%

36.2.10 Brownout Detection Characteristics

Table 36-49. Brownout detection characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	BOD level 0 falling V _{CC}		1.60	1.62	1.72	
	BOD level 1 falling V _{CC}			1.8		-
	BOD level 2 falling V _{CC}			2.0		V
V	BOD level 3 falling V _{CC}			2.2		
V _{BOT}	BOD level 4 falling V _{CC}			2.4		
	BOD level 5 falling V_{CC}			2.6		
	BOD level 6 falling V _{CC}			2.8		_
	BOD level 7 falling V _{CC}			3.0		_
+	Detection time	Continuous mode		0.4		ue
t _{BOD}		Sampled mode		1000		μs
V _{HYST}	Hysteresis			1.6		%

36.3.6 ADC characteristics

Table 36-72.	Power supply, reference and input range.
--------------	--

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
AV _{CC}	Analog supply voltage		V _{CC} - 0.3		V _{CC} + 0.3	V
V _{REF}	Reference voltage		1		AV _{CC} - 0.6	V
R _{in}	Input resistance	Switched		4.0		kΩ
C _{sample}	Input capacitance	Switched		4.4		pF
R _{AREF}	Reference input resistance	(leakage only)		>10		MΩ
C _{AREF}	Reference input capacitance	Static load		7		pF
V _{IN}	Input range		-0.1		AV _{CC} +0.1	V
	Conversion range	Differential mode, Vinp - Vinn	-V _{REF}		V _{REF}	V
V _{IN}	Conversion range	Single ended unsigned mode, Vinp	-ΔV		$V_{REF} \Delta V$	V
ΔV	Fixed offset voltage			190		LSB

Table 36-73. Clock and timing.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
Clk _{ADC}	ADC Clock frequency	Maximum is 1/4 of Peripheral clock frequency	100		2000	kHz
		Measuring internal signals	100		125	
	Sample rate	Current limitation (CURRLIMIT) off	100		2000	
4		CURRLIMIT = LOW	100		1500	liene
f _{ADC}		CURRLIMIT = MEDIUM	100		1000	ksps
		CURRLIMIT = HIGH	100		500	-
	Sampling Time	1/2 Clk _{ADC} cycle	0.25		5	μs
	Conversion time (latency)	(RES+2)/2+(GAIN !=0) RES (Resolution) = 8 or 12	5		8	Clk _{ADC} cycles
	Start-up time	ADC clock cycles		12	24	Clk _{ADC} cycles
	ADC settling time	After changing reference or input mode		7	7	Clk _{ADC}
		After ADC flush		1	1	cycles

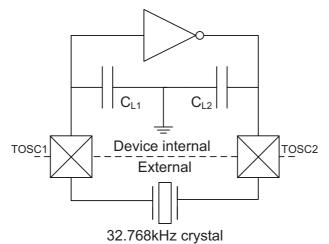

36.3.14.8 External 32.768kHz crystal oscillator and TOSC characteristics

Table 36-94. External 32.768kHz crystal oscillator and TOSC characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
ESR/R1	Recommended crystal equivalent	Crystal load capacitance 6.5pF			60	kΩ
ESR/RI	orion registered (ESD)	Crystal load capacitance 9.0pF			35	K22
C _{TOSC1}	Parasitic capacitance TOSC1 pin			4.2		pF
C _{TOSC2}	Parasitic capacitance TOSC2 pin			4.3		pF
	Recommended safety factor	capacitance load matched to crystal specification	3			

Note: 1. See Figure 36-4 for definition.

Figure 36-18. TOSC input capacitance.

The parasitic capacitance between the TOSC pins is $C_{L1} + C_{L2}$ in series as seen from the crystal when oscillating without external capacitors.

36.4.3 Current consumption

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
	Active Power consumption ⁽¹⁾		V _{CC} = 1.8V		60		μΑ
		32kHz, Ext. Clk	V _{CC} = 3.0V		140		
			V _{CC} = 1.8V		280		
		1MHz, Ext. Clk	V _{CC} = 3.0V		600		
		2MHz, Ext. Clk	V _{CC} = 1.8V		510	500	
			V - 2 0V		1.1	1.5	mA
		32MHz, Ext. Clk	V _{CC} = 3.0V		10.6	15	
	Idle Power consumption ⁽¹⁾	32kHz, Ext. Clk	V _{CC} = 1.8V		4.3		μΑ
			V _{CC} = 3.0V		4.8		
			V _{CC} = 1.8V		78		
I _{CC}		1MHz, Ext. Clk	V _{CC} = 3.0V		150		
		2MHz, Ext. Clk	V _{CC} = 1.8V		150	350	
					290	600	
		32MHz, Ext. Clk	V _{CC} = 3.0V		4.7	7.0	mA
	Power-down power consumption	T = 25°C			0.1	1.0	
		T = 85°C	V _{CC} = 3.0V		1.8	5.0	μΑ
		T = 105°C	_		6.5	17	
		WDT and Sampled BOD enabled, T = 25° C			1.3	3.0	
		WDT and Sampled BOD enabled, T = 85°C	V _{CC} = 3.0V		3.1	7.0	
		WDT and Sampled BOD enabled, T = 105°C			7.3	20	
	Power-save power consumption ⁽²⁾	RTC from ULP clock, WDT and sampled BOD enabled, T = 25°C	V _{CC} = 1.8V		1.2		
			V _{CC} = 3.0V		1.3		μΑ
		RTC from 1.024kHz low power 32.768kHz TOSC, T = 25°C	V _{CC} = 1.8V		0.6	2	
			V _{CC} = 3.0V		0.7	2	
		RTC from low power 32.768kHz	V _{CC} = 1.8V		0.8	3	
		TOSC, T = 25°C	V _{CC} = 3.0V		1.0	3	
	Reset power consumption	Current through RESET pin substracted	V _{CC} = 3.0V		250		μΑ

Table 36-100. Current consumption for active mode and sleep modes.

Notes: 1. All Power Reduction Registers set.

2. Maximum limits are based on characterization, and not tested in production.

36.4.14.8 External 32.768kHz crystal oscillator and TOSC characteristics

Table 36-126. External 32.768kHz crystal oscillator and TOSC characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
ESR/R1	Recommended crystal equivalent	Crystal load capacitance 6.5pF			60	kΩ
	series resistance (ESR)	Crystal load capacitance 9.0pF			35	
C _{TOSC1}	Parasitic capacitance TOSC1 pin			4.2		pF
C _{TOSC2}	Parasitic capacitance TOSC2 pin			4.3		pF
	Recommended safety factor	capacitance load matched to crystal specification	3			

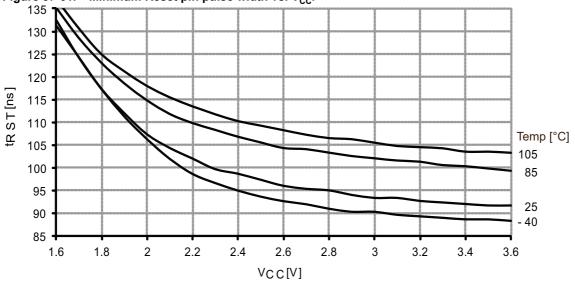
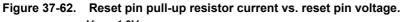
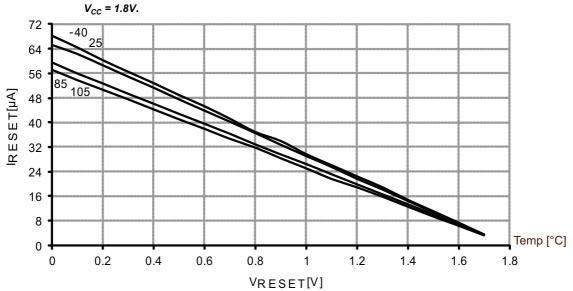

Note: 1. See Figure 36-4 for definition.

Figure 36-25. TOSC input capacitance.




The parasitic capacitance between the TOSC pins is $C_{L1} + C_{L2}$ in series as seen from the crystal when oscillating without external capacitors.

37.1.8 External Reset Characteristics



37.1.10 Oscillator Characteristics

37.1.10.1 Ultra Low-Power internal oscillator

^{37.1.10.2 32.768}kHz Internal Oscillator

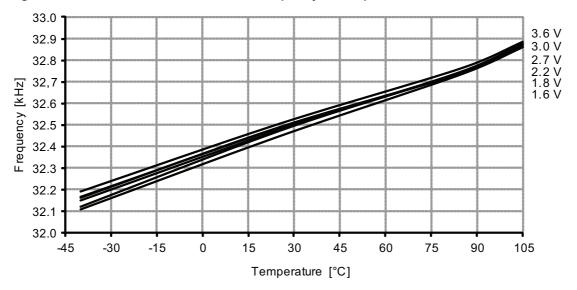


Figure 37-69. 32.768kHz internal oscillator frequency vs. temperature.

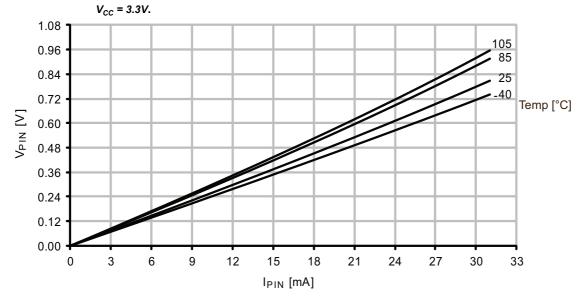
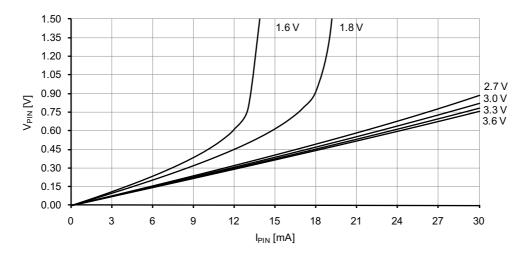
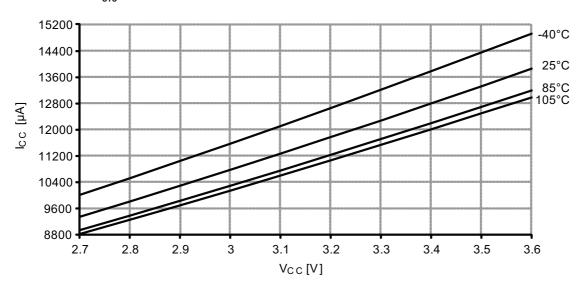
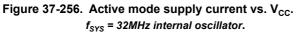
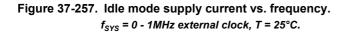
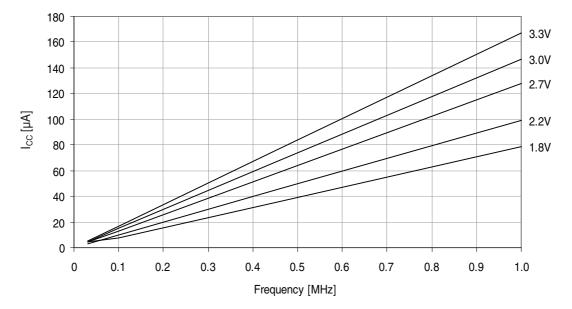
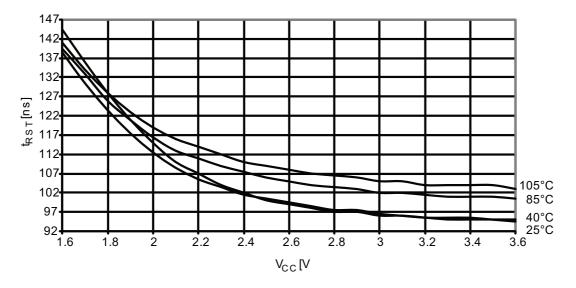





Figure 37-112. I/O pin output voltage vs. sink current.


Figure 37-113. I/O pin output voltage vs. sink current.




37.4.1.2 Idle mode supply current

