

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	AVR
Core Size	8/16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	50
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atxmega128a3u-mh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- 3. For packaging information, see "Packaging information" on page 71.
- 4. Tape and Reel.

	Package Type
64A	64-lead, 14 x 14mm body size, 1.0mm body thickness, 0.8mm lead pitch, thin profile plastic quad flat package (TQFP)
64M2	64-pad, 9 x 9 x 1.0mm body, lead pitch 0.50mm, 7.65mm exposed pad, quad flat no-lead package (QFN)

Typical Applications

Industrial control	Climate control	Low power battery applications
Factory automation	RF and ZigBee [®]	Power tools
Building control	USB connectivity	HVAC
Board control	Sensor control	Utility metering
White goods	Optical	Medical applications

11. Power Management and Sleep Modes

11.1 Features

- Power management for adjusting power consumption and functions
- Five sleep modes
 - Idle
 - Power down
 - Power save
 - Standby
 - Extended standby
- Power reduction register to disable clock and turn off unused peripherals in active and idle modes

11.2 Overview

Various sleep modes and clock gating are provided in order to tailor power consumption to application requirements. This enables the Atmel AVR XMEGA microcontroller to stop unused modules to save power.

All sleep modes are available and can be entered from active mode. In active mode, the CPU is executing application code. When the device enters sleep mode, program execution is stopped and interrupts or a reset is used to wake the device again. The application code decides which sleep mode to enter and when. Interrupts from enabled peripherals and all enabled reset sources can restore the microcontroller from sleep to active mode.

In addition, power reduction registers provide a method to stop the clock to individual peripherals from software. When this is done, the current state of the peripheral is frozen, and there is no power consumption from that peripheral. This reduces the power consumption in active mode and idle sleep modes and enables much more fine-tuned power management than sleep modes alone.

11.3 Sleep Modes

Sleep modes are used to shut down modules and clock domains in the microcontroller in order to save power. XMEGA microcontrollers have five different sleep modes tuned to match the typical functional stages during application execution. A dedicated sleep instruction (SLEEP) is available to enter sleep mode. Interrupts are used to wake the device from sleep, and the available interrupt wake-up sources are dependent on the configured sleep mode. When an enabled interrupt occurs, the device will wake up and execute the interrupt service routine before continuing normal program execution from the first instruction after the SLEEP instruction. If other, higher priority interrupts are pending when the wake-up occurs, their interrupt service routines will be executed according to their priority before the interrupt service routine for the wake-up interrupt is executed. After wake-up, the CPU is halted for four cycles before execution starts.

The content of the register file, SRAM and registers are kept during sleep. If a reset occurs during sleep, the device will reset, start up, and execute from the reset vector.

11.3.1 Idle Mode

In idle mode the CPU and nonvolatile memory are stopped (note that any ongoing programming will be completed), but all peripherals, including the interrupt controller, event system and DMA controller are kept running. Any enabled interrupt will wake the device.

11.3.2 Power-down Mode

In power-down mode, all clocks, including the real-time counter clock source, are stopped. This allows operation only of asynchronous modules that do not require a running clock. The only interrupts that can wake up the

12. System Control and Reset

12.1 Features

- Reset the microcontroller and set it to initial state when a reset source goes active
- Multiple reset sources that cover different situations
 - Power-on reset
 - External reset
 - Watchdog reset
 - Brownout reset
 - PDI reset
 - Software reset
- Asynchronous operation
 - No running system clock in the device is required for reset
- Reset status register for reading the reset source from the application code

12.2 Overview

The reset system issues a microcontroller reset and sets the device to its initial state. This is for situations where operation should not start or continue, such as when the microcontroller operates below its power supply rating. If a reset source goes active, the device enters and is kept in reset until all reset sources have released their reset. The I/O pins are immediately tri-stated. The program counter is set to the reset vector location, and all I/O registers are set to their initial values. The SRAM content is kept. However, if the device accesses the SRAM when a reset occurs, the content of the accessed location can not be guaranteed.

After reset is released from all reset sources, the default oscillator is started and calibrated before the device starts running from the reset vector address. By default, this is the lowest program memory address, 0, but it is possible to move the reset vector to the lowest address in the boot section.

The reset functionality is asynchronous, and so no running system clock is required to reset the device. The software reset feature makes it possible to issue a controlled system reset from the user software.

The reset status register has individual status flags for each reset source. It is cleared at power-on reset, and shows which sources have issued a reset since the last power-on.

12.3 Reset Sequence

A reset request from any reset source will immediately reset the device and keep it in reset as long as the request is active. When all reset requests are released, the device will go through three stages before the device starts running again:

- Reset counter delay
- Oscillator startup
- Oscillator calibration

If another reset requests occurs during this process, the reset sequence will start over again.

12.4 Reset Sources

12.4.1 Power-on Reset

A power-on reset (POR) is generated by an on-chip detection circuit. The POR is activated when the V_{CC} rises and reaches the POR threshold voltage (V_{POT}), and this will start the reset sequence.

The POR is also activated to power down the device properly when the V_{CC} falls and drops below the V_{POT} level. The V_{POT} level is higher for falling V_{CC} than for rising V_{CC} . Consult the datasheet for POR characteristics data.

13. WDT – Watchdog Timer

13.1 Features

- Issues a device reset if the timer is not reset before its timeout period
- Asynchronous operation from dedicated oscillator
- 1kHz output of the 32kHz ultra low power oscillator
- 11 selectable timeout periods, from 8ms to 8s
- Two operation modes:
 - Normal mode
 - Window mode
- Configuration lock to prevent unwanted changes

13.2 Overview

The watchdog timer (WDT) is a system function for monitoring correct program operation. It makes it possible to recover from error situations such as runaway or deadlocked code. The WDT is a timer, configured to a predefined timeout period, and is constantly running when enabled. If the WDT is not reset within the timeout period, it will issue a microcontroller reset. The WDT is reset by executing the WDR (watchdog timer reset) instruction from the application code.

The window mode makes it possible to define a time slot or window inside the total timeout period during which WDT must be reset. If the WDT is reset outside this window, either too early or too late, a system reset will be issued. Compared to the normal mode, this can also catch situations where a code error causes constant WDR execution.

The WDT will run in active mode and all sleep modes, if enabled. It is asynchronous, runs from a CPUindependent clock source, and will continue to operate to issue a system reset even if the main clocks fail.

The configuration change protection mechanism ensures that the WDT settings cannot be changed by accident. For increased safety, a fuse for locking the WDT settings is also available.

18. AWeX – Advanced Waveform Extension

18.1 Features

- Waveform output with complementary output from each compare channel
- Four dead-time insertion (DTI) units
 - 8-bit resolution
 - Separate high and low side dead-time setting
 - Double buffered dead time
 - Optionally halts timer during dead-time insertion
- Pattern generation unit creating synchronised bit pattern across the port pins
 - Double buffered pattern generation
 - Optional distribution of one compare channel output across the port pins
- Event controlled fault protection for instant and predictable fault triggering

18.2 Overview

The advanced waveform extension (AWeX) provides extra functions to the timer/counter in waveform generation (WG) modes. It is primarily intended for use with different types of motor control and other power control applications. It enables low- and high side output with dead-time insertion and fault protection for disabling and shutting down external drivers. It can also generate a synchronized bit pattern across the port pins.

Each of the waveform generator outputs from the timer/counter 0 are split into a complimentary pair of outputs when any AWeX features are enabled. These output pairs go through a dead-time insertion (DTI) unit that generates the non-inverted low side (LS) and inverted high side (HS) of the WG output with dead-time insertion between LS and HS switching. The DTI output will override the normal port value according to the port override setting.

The pattern generation unit can be used to generate a synchronized bit pattern on the port it is connected to. In addition, the WG output from compare channel A can be distributed to and override all the port pins. When the pattern generator unit is enabled, the DTI unit is bypassed.

The fault protection unit is connected to the event system, enabling any event to trigger a fault condition that will disable the AWeX output. The event system ensures predictable and instant fault reaction, and gives flexibility in the selection of fault triggers.

The AWeX is available for TCC0. The notation of this is AWEXC.

Table 36-5. Current consumption for modules and peripherals.

Symbol	Parameter	Condition ⁽¹⁾		Min.	Тур.	Max.	Units
	ULP oscillator				1.0		μA
	32.768kHz int. oscillator				26		μA
	2MHz int appillator				85		
		DFLL enabled with	a 32.768kHz int. osc. as reference		115		μΑ
	32MHz int oscillator				270		
		DFLL enabled with	a 32.768kHz int. osc. as reference		460		μΑ
	PLL	20x multiplication f 32MHz int. osc. DI	factor, V4 as reference		220		μA
	Watchdog Timer				1		μA
	POD	Continuous mode			138		
	вор	Sampled mode, includes ULP oscillator			1.2		μΑ
	Internal 1.0V reference				100		μA
I _{CC}	Temperature sensor				95		μA
	ADC	250ksps V _{REF} = Ext ref			3.0		mA
			CURRLIMIT = LOW		2.6		
			CURRLIMIT = MEDIUM		2.1		
			CURRLIMIT = HIGH		1.6		
	DAO	250ksps	Normal mode		1.9		
	DAC	No load	Low Power mode		1.1		mA
	10	High Speed Mode			330		
	AC	Low Power Mode			130		μA
	DMA	615KBps between	I/O registers and SRAM		115		μA
	Timer/Counter				16		μA
	USART	Rx and Tx enabled	d, 9600 BAUD		2.5		μA
	Flash memory and EEPRO	M programming			4		mA

Note:

All parameters measured as the difference in current consumption between module enabled and disabled. All data at V_{CC} = 3.0V, Clk_{SYS} = 1MHz external clock without prescaling, T = 25°C unless other conditions are given.

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
t _{delay}	Propagation delay	mode = HS	V _{CC} = 3.0V, T= 85°C		60	90	
			V _{CC} = 1.6V - 3.6V		30		ns
		mode = LP			160		
	64-Level Voltage Scaler	Integral non-linearity (INL)			0.3	0.5	lsb

36.1.9 Bandgap and Internal 1.0V Reference Characteristics

Table 36-16. Bandgap and Internal 1.0V reference characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
Charles times		As reference for ADC or DAC 1 Clk _{PER} +		Clk _{PER} + 2.5	ōµs	
	Startup time	As input voltage to ADC and AC		1.5		μs
	Bandgap voltage			1.1		V
INT1V	Internal 1.00V reference	T= 85°C, after calibration	0.99	1	1.01	V
	Variation over voltage and temperature	Relative to T= 85°C, V_{CC} = 3.0V		±1.0		%

36.1.10 Brownout Detection Characteristics

Table 36-17. Brownout detection characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units		
	BOD level 0 falling V _{CC}		1.60	1.62	1.72			
	BOD level 1 falling V _{CC}			1.8		-		
	BOD level 2 falling V _{CC}			2.0				
M	BOD level 3 falling V _{CC}			2.2		V		
V _{BOT}	BOD level 4 falling V _{CC}			2.4				
	BOD level 5 falling V _{CC}			2.6				
	BOD level 6 falling V _{CC}			2.8				
	BOD level 7 falling V _{CC}			3.0				
	Detection time	Continuous mode		0.4				
τ _{BOD}	Detection time	Sampled mode		1000		μs		
V _{HYST}	Hysteresis			1.6		%		

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
	1x gain, normal mode			-2			
	Offset Error, input referred	8x gain, normal mode			-5		mV
input followed		64x gain, normal mode			-4		
Noise		1x gain, normal mode	V _{CC} = 3.6V Ext. V _{REF}		0.5		
	Noise	8x gain, normal mode			1.5		mV rms
		64x gain, normal mode			11		

Note: 1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.

36.2.7 DAC Characteristics

Table 36-44. Power supply, reference and output range.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
AV _{CC}	Analog supply voltage		V _{CC} - 0.3		V _{CC} + 0.3	
AV _{REF}	External reference voltage		1.0		V _{CC} - 0.6	V
R _{channel}	DC output impedance				50	Ω
	Linear output voltage range		0.15		AV _{CC} -0.15	V
R _{AREF}	Reference input resistance			>10		MΩ
CAREF	Reference input capacitance	Static load		7		pF
	Minimum Resistance load		1			kΩ
	Maximum capacitance load				100	pF
	Maximum capacitance load	1000Ω serial resistance			1	nF
	Output sink/source	Operating within accuracy specification			AV _{CC} /1000	m۸
		Safe operation			10	ШA

Table 36-45. Clock and timing.

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
f _{DAC} Conversion rate	C _{load} =100pF,	Normal mode	0		1000	kene	
	Conversion rate	maximum step size	Low power mode	0		500	кара

36.3.15 SPI Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
+	Set-up time for a repeated START	$f_{SCL} \leq 100 kHz$	4.7			
^I SU;STA	condition	f _{SCL} > 100kHz	0.6			μs
+	Data hold time	$f_{SCL} \leq 100 kHz$	0		3.45	
^L HD;DAT		f _{SCL} > 100kHz	0		0.9	μs
	Data sotup timo	$f_{SCL} \leq 100 kHz$	250			ne
^I SU;DAT		f _{SCL} > 100kHz	100			115
+	Setup time for STOP condition	$f_{SCL} \leq 100 kHz$	4.0			116
L _{SU;STO}		f _{SCL} > 100kHz	0.6			μο
+	Bus free time between a STOP and	$f_{SCL} \leq 100 kHz$	4.7			μs
t _{BUF}	START condition	f _{SCL} > 100kHz	1.3			

Notes:

Required only for f_{SCL} > 100kHz.
 C_b = Capacitance of one bus line in pF.
 f_{PER} = Peripheral clock frequency.

Figure 37-45. Offset error vs. V_{CC} . $T = 25 \, \mathcal{C}, V_{REF} = external 1.0V, ADC sampling speed = 500ksps.$

Figure 37-70. 32.768kHz internal oscillator frequency vs. calibration value. $V_{\rm CC} = 3.0V, T = 25^{\circ}C.$

37.1.10.3 2MHz Internal Oscillator

Figure 37-71. 2MHz internal oscillator frequency vs. temperature.

Figure 37-116. I/O pin input threshold voltage vs. V_{cc} .

37.2.11 Two-Wire Interface characteristics

37.3.3 ADC Characteristics

Figure 37-202. INL error vs. sample rate.

Figure 37-231. Reset pin input threshold voltage vs. V_{cc}

Figure 37-232. Reset pin input threshold voltage vs. $V_{CC.}$ V_{IL} - Reset pin read as "0".

Figure 37-248. SDA hold time vs. supply voltage.

37.3.12 PDI characteristics

37.4 ATxmega256A3U

37.4.1 Current consumption

37.4.1.1 Active mode supply current

