

Welcome to E-XFL.COM

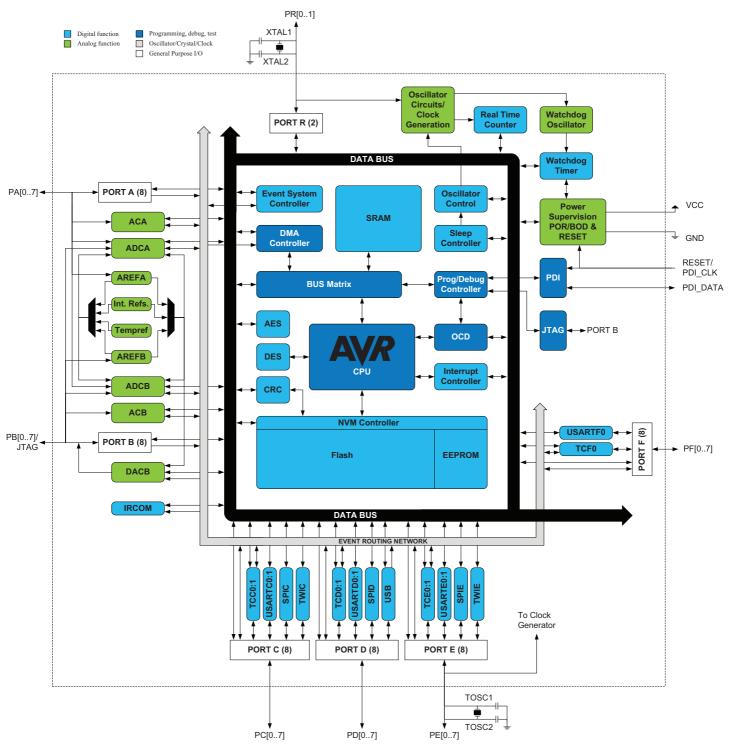
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF


Product Status	Active
Core Processor	AVR
Core Size	8/16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	50
Program Memory Size	192KB (96K x 16)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9×9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atxmega192a3u-m7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1 Block Diagram

Atmel

6.4 ALU - Arithmetic Logic Unit

The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a constant and a register. Single-register operations can also be executed. The ALU operates in direct connection with all 32 general purpose registers. In a single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are executed and the result is stored in the register file. After an arithmetic or logic operation, the status register is updated to reflect information about the result of the operation.

ALU operations are divided into three main categories – arithmetic, logical, and bit functions. Both 8- and 16-bit arithmetic is supported, and the instruction set allows for efficient implementation of 32-bit aritmetic. The hardware multiplier supports signed and unsigned multiplication and fractional format.

6.4.1 Hardware Multiplier

The multiplier is capable of multiplying two 8-bit numbers into a 16-bit result. The hardware multiplier supports different variations of signed and unsigned integer and fractional numbers:

- Multiplication of unsigned integers
- Multiplication of signed integers
- Multiplication of a signed integer with an unsigned integer
- Multiplication of unsigned fractional numbers
- Multiplication of signed fractional numbers
- Multiplication of a signed fractional number with an unsigned one

A multiplication takes two CPU clock cycles.

6.5 Program Flow

After reset, the CPU starts to execute instructions from the lowest address in the flash programmemory '0.' The program counter (PC) addresses the next instruction to be fetched.

Program flow is provided by conditional and unconditional jump and call instructions capable of addressing the whole address space directly. Most AVR instructions use a 16-bit word format, while a limited number use a 32-bit format.

During interrupts and subroutine calls, the return address PC is stored on the stack. The stack is allocated in the general data SRAM, and consequently the stack size is only limited by the total SRAM size and the usage of the SRAM. After reset, the stack pointer (SP) points to the highest address in the internal SRAM. The SP is read/write accessible in the I/O memory space, enabling easy implementation of multiple stacks or stack areas. The data SRAM can easily be accessed through the five different addressing modes supported in the AVR CPU.

6.6 Status Register

The status register (SREG) contains information about the result of the most recently executed arithmetic or logic instruction. This information can be used for altering program flow in order to perform conditional operations. Note that the status register is updated after all ALU operations, as specified in the instruction set reference. This will in many cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code.

The status register is not automatically stored when entering an interrupt routine nor restored when returning from an interrupt. This must be handled by software.

The status register is accessible in the I/O memory space.

18. AWeX – Advanced Waveform Extension

18.1 Features

- Waveform output with complementary output from each compare channel
- Four dead-time insertion (DTI) units
 - 8-bit resolution
 - Separate high and low side dead-time setting
 - Double buffered dead time
 - Optionally halts timer during dead-time insertion
- Pattern generation unit creating synchronised bit pattern across the port pins
 - Double buffered pattern generation
 - Optional distribution of one compare channel output across the port pins
- Event controlled fault protection for instant and predictable fault triggering

18.2 Overview

The advanced waveform extension (AWeX) provides extra functions to the timer/counter in waveform generation (WG) modes. It is primarily intended for use with different types of motor control and other power control applications. It enables low- and high side output with dead-time insertion and fault protection for disabling and shutting down external drivers. It can also generate a synchronized bit pattern across the port pins.

Each of the waveform generator outputs from the timer/counter 0 are split into a complimentary pair of outputs when any AWeX features are enabled. These output pairs go through a dead-time insertion (DTI) unit that generates the non-inverted low side (LS) and inverted high side (HS) of the WG output with dead-time insertion between LS and HS switching. The DTI output will override the normal port value according to the port override setting.

The pattern generation unit can be used to generate a synchronized bit pattern on the port it is connected to. In addition, the WG output from compare channel A can be distributed to and override all the port pins. When the pattern generator unit is enabled, the DTI unit is bypassed.

The fault protection unit is connected to the event system, enabling any event to trigger a fault condition that will disable the AWeX output. The event system ensures predictable and instant fault reaction, and gives flexibility in the selection of fault triggers.

The AWeX is available for TCC0. The notation of this is AWEXC.

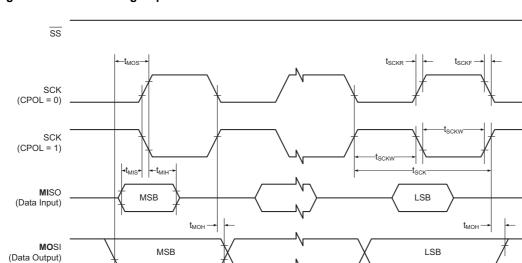
Atmel

Mnemonics	Operands	Description	Oper	ation		Flags	#Clocks
IN	Rd, A	In From I/O Location	Rd	←	I/O(A)	None	1
OUT	A, Rr	Out To I/O Location	I/O(A)	~	Rr	None	1
PUSH	Rr	Push Register on Stack	STACK	~	Rr	None	1 (1)
POP	Rd	Pop Register from Stack	Rd	~	STACK	None	2 (1)
ХСН	Z, Rd	Exchange RAM location	Temp Rd (Z)	$\begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \end{array}$	Rd, (Z), Temp	None	2
LAS	Z, Rd	Load and Set RAM location	Temp Rd (Z)	$\downarrow \downarrow \downarrow \downarrow$	Rd, (Z), Temp v (Z)	None	2
LAC	Z, Rd	Load and Clear RAM location	Temp Rd (Z)	$\begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \end{array}$	Rd, (Z), (\$FFh – Rd) ● (Z)	None	2
LAT	Z, Rd	Load and Toggle RAM location	Temp Rd (Z)	$\stackrel{\leftarrow}{\leftarrow}$	Rd, (Z), Temp ⊕ (Z)	None	2
		Bit and	bit-test instructions				
LSL	Rd	Logical Shift Left	Rd(n+1) Rd(0) C	$\begin{array}{c} \leftarrow \\ \leftarrow \\ \leftarrow \end{array}$	Rd(n), 0, Rd(7)	Z,C,N,V,H	1
LSR	Rd	Logical Shift Right	Rd(n) Rd(7) C	$\begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \end{array}$	Rd(n+1), 0, Rd(0)	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	Rd(0) Rd(n+1) C	$\begin{array}{c} \leftarrow \\ \leftarrow \\ \leftarrow \end{array}$	C, Rd(n), Rd(7)	Z,C,N,V,H	1
ROR	Rd	Rotate Right Through Carry	Rd(7) Rd(n) C	$\begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \end{array}$	C, Rd(n+1), Rd(0)	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	Rd(n)	←	Rd(n+1), n=06	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)	\leftrightarrow	Rd(74)	None	1
BSET	S	Flag Set	SREG(s)	←	1	SREG(s)	1
BCLR	S	Flag Clear	SREG(s)	←	0	SREG(s)	1
SBI	A, b	Set Bit in I/O Register	I/O(A, b)	←	1	None	1
CBI	A, b	Clear Bit in I/O Register	I/O(A, b)	←	0	None	1
BST	Rr, b	Bit Store from Register to T	Т	←	Rr(b)	Т	1
BLD	Rd, b	Bit load from T to Register	Rd(b)	←	т	None	1
SEC		Set Carry	C	←	1	С	1
CLC		Clear Carry	C	←	0	С	1
SEN		Set Negative Flag	N	←	1	N	1
CLN		Clear Negative Flag	Ν	←	0	N	1
SEZ		Set Zero Flag	Z	←	1	Z	1
CLZ		Clear Zero Flag	Z	←	0	Z	1
SEI		Global Interrupt Enable	I	←	1	I	1
CLI		Global Interrupt Disable	I	←	0	I	1
SES		Set Signed Test Flag	S	←	1	S	1
CLS		Clear Signed Test Flag	S	←	0	S	1

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units	
Offset Error,		1x gain, normal mode			-2		
	Offset Error, input referred	8x gain, normal mode			-5		mV
		64x gain, normal mode			-4		
		1x gain, normal mode	V _{CC} = 3.6V Ext. V _{REF}		0.5		
	Noise	8x gain, normal mode			1.5		mV rms
		64x gain, normal mode			11		

Note: 1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.

36.1.7 DAC Characteristics


Table 36-12. Power supply, reference and output range.

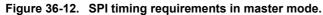
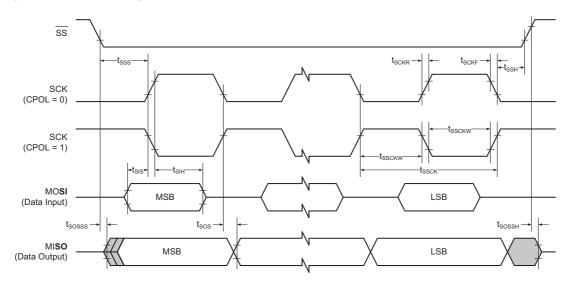
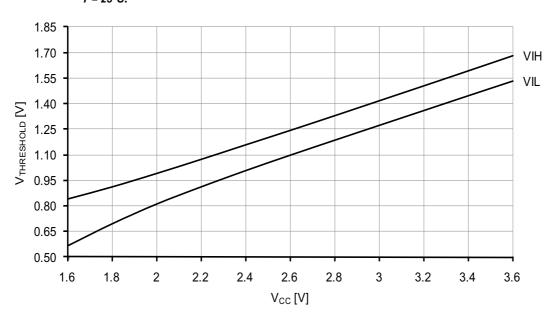

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
AV _{CC}	Analog supply voltage		V _{CC} - 0.3		V _{CC} + 0.3	
AV _{REF}	External reference voltage		1.0		V _{CC} - 0.6	V
R _{channel}	DC output impedance				50	Ω
	Linear output voltage range		0.15		AV _{CC} -0.15	V
R _{AREF}	Reference input resistance			>10		MΩ
CAREF	Reference input capacitance	Static load		7		pF
	Minimum Resistance load		1			kΩ
	Maximum capacitance load				100	pF
	Maximum capacitance load	1000 Ω serial resistance			1	nF
	Output sink/source	Operating within accuracy specification			AV _{CC} /1000	mA
		Safe operation			10	

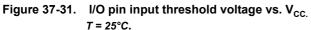
Table 36-13.Clock and timing.

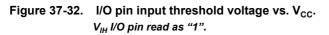
Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
f	Conversion rate	C _{load} =100pF,	Normal mode	0		1000	kana
f _{DAC} Conversion rate	maximum step size	Low power mode	0		500	ksps	

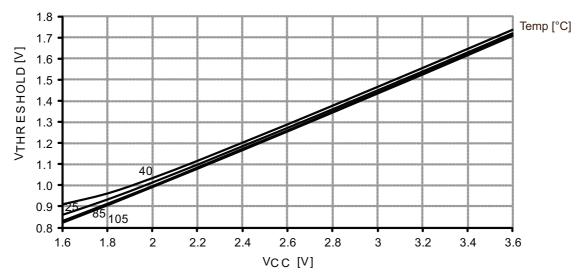
36.2.15 SPI Characteristics




 Table 36-63.
 SPI timing characteristics and requirements.


Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
t _{scк}	SCK Period	Master		(See Table 21-4 in XMEGA AU Manual)		
t _{scкw}	SCK high/low width	Master		0.5*SCK		
t _{SCKR}	SCK Rise time	Master		2.7		
t _{SCKF}	SCK Fall time	Master		2.7		
t _{MIS}	MISO setup to SCK	Master		11		
t _{MIH}	MISO hold after SCK	Master		0		
t _{MOS}	MOSI setup SCK	Master		0.5*t _{SCK}		
t _{MOH}	MOSI hold after SCK	Master		1		
t _{sscк}	Slave SCK Period	Slave	>4*t Clk _{PER}			
t _{sscкw}	SCK high/low width	Slave	>2*t Clk _{PER}			ns
t _{SSCKR}	SCK Rise time	Slave			1600	
t _{SSCKF}	SCK Fall time	Slave			1600	
t _{SIS}	MOSI setup to SCK	Slave	3			
t _{SIH}	MOSI hold after SCK	Slave	t _{SCK}			
t _{SSS}	SS setup to SCK	Slave	20			
t _{SSH}	SS hold after SCK	Slave	20			
t _{sos}	MISO setup SCK	Slave		8		
t _{SOH}	MISO hold after SCK	Slave		13		
t _{soss}	MISO setup after SS low	Slave		11		
t _{SOSH}	MISO hold after \overline{SS} high	Slave		8		


Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
		XOSCPWR=0, FRQRANGE=0		2.4k			
			1MHz crystal, CL=20pF	8.7k			
			2MHz crystal, CL=20pF	2.1k			
			4.2k				
			8MHz crystal	250			
		CL=20pF	9MHz crystal	195			-
		XOSCPWR=0,	8MHz crystal	360			
		FRQRANGE=2,	9MHz crystal	285			
		CL=20pF	12MHz crystal	155			-
		XOSCPWR=0,	9MHz crystal	365			
R _Q	Negative impedance	FRQRANGE=3, CL=20pF	12MHz crystal	200			Ω
··Q			16MHz crystal	105			
		XOSCPWR=1, FRQRANGE=0, CL=20pF	9MHz crystal	435			-
			12MHz crystal	235			
			16MHz crystal	125			
		XOSCPWR=1, FRQRANGE=1, CL=20pF	9MHz crystal	495			
			12MHz crystal	270			
			16MHz crystal	145			
		XOSCPWR=1, FRQRANGE=2, CL=20pF	12MHz crystal	305			
			16MHz crystal	160			
		XOSCPWR=1,	12MHz crystal	380			-
		FRQRANGE=3, CL=20pF	16MHz crystal	205			
	ESR	SF = Safety factor				min(R _Q)/SF	kΩ
C _{XTAL1}	Parasitic capacitance XTAL1 pin				5.2		pF
C _{XTAL2}	Parasitic capacitance XTAL2 pin				6.8		pF
C _{LOAD}	Parasitic capacitance load		but augranteed from decign and chara		2.95		pF


Note: 1. Numbers for negative impedance are not tested in production but guaranteed from design and characterization.

37.1.2.3 Thresholds and Hysteresis

37.1.10.4 32MHz Internal Oscillator

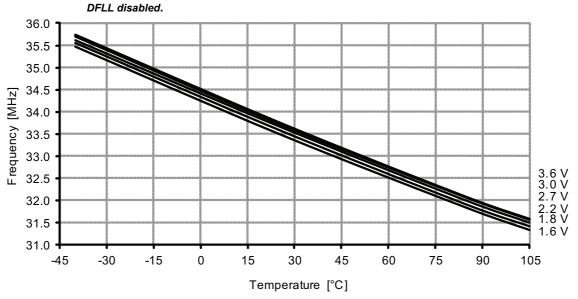
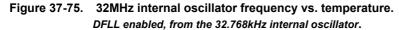
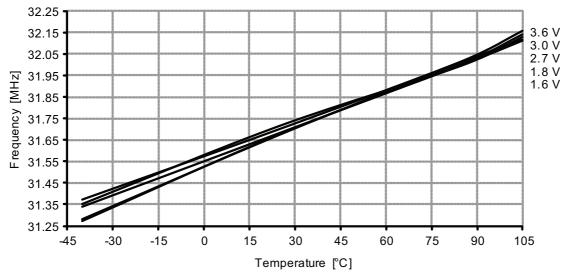
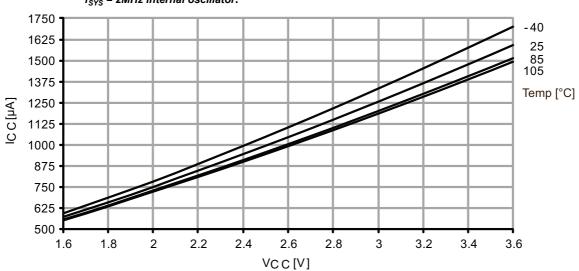
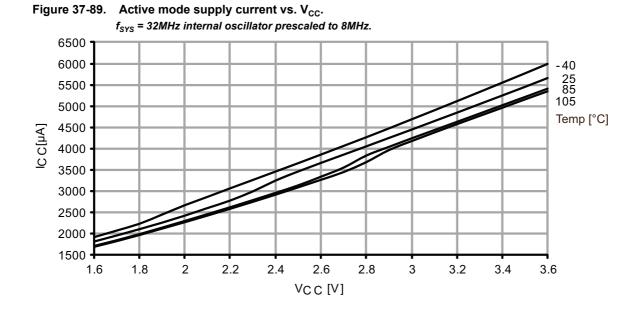
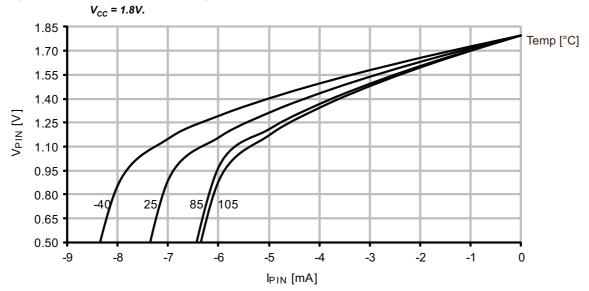
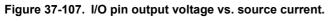
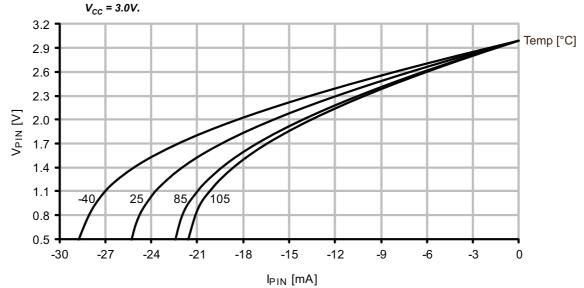




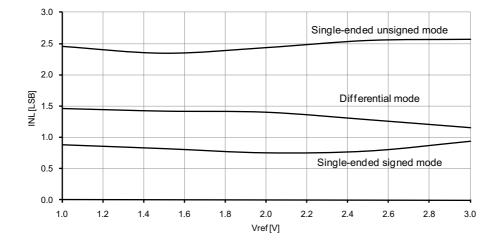
Figure 37-74. 32MHz internal oscillator frequency vs. temperature.

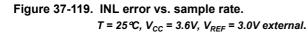




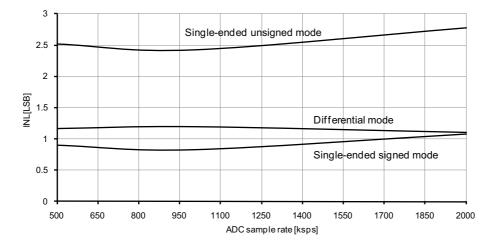

Figure 37-88. Active mode supply current vs. V_{CC} . $f_{SYS} = 2MHz$ internal oscillator.



37.2.2.2 Output Voltage vs. Sink/Source Current

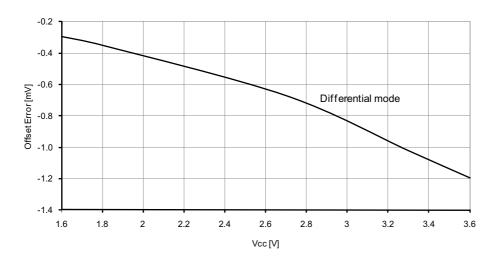


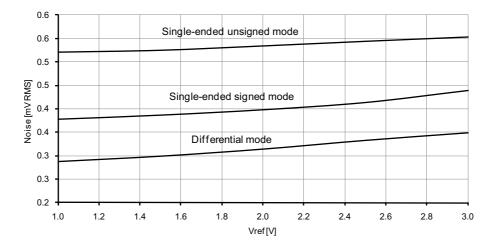




37.2.3 ADC Characteristics

Figure 37-118. INL error vs. external V_{REF} . $T = 25 \,$ C, $V_{CC} = 3.6V$, external reference.





37.2.5 Analog Comparator Characteristics

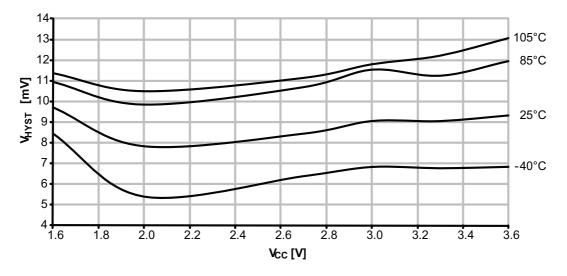
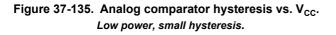
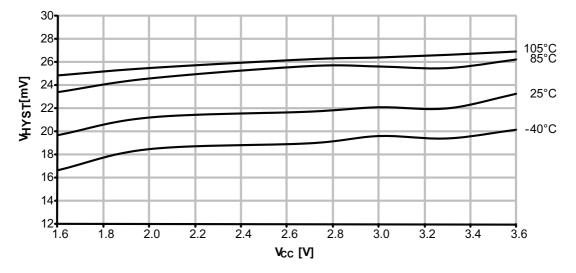
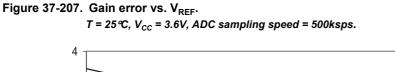
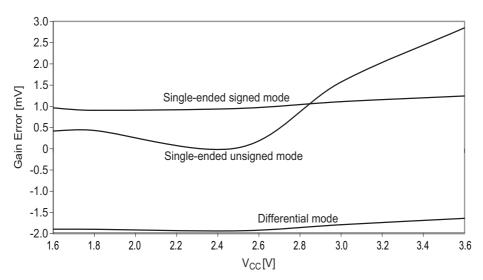
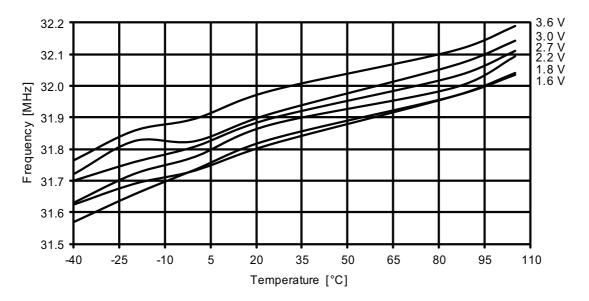






Figure 37-134. Analog comparator hysteresis vs. V_{CC}. *High-speed, small hysteresis.*



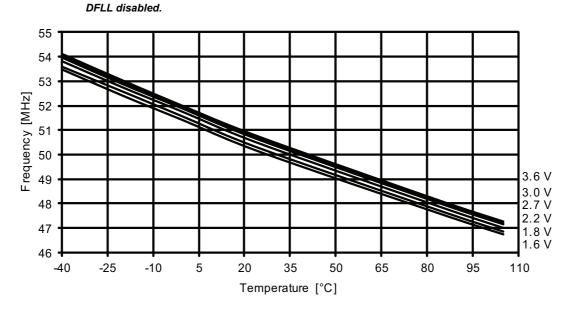
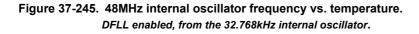
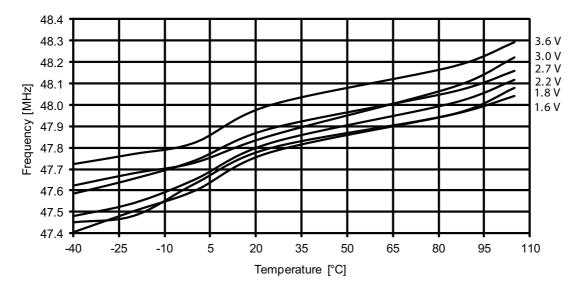
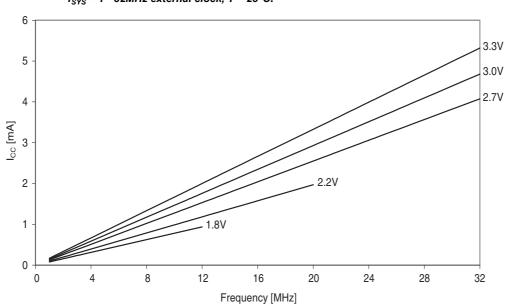

Atmel

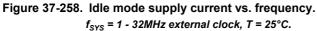
37.3.10.4 32MHz Internal Oscillator

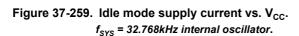
Figure 37-240. 32MHz internal oscillator frequency vs. temperature. *DFLL disabled*.

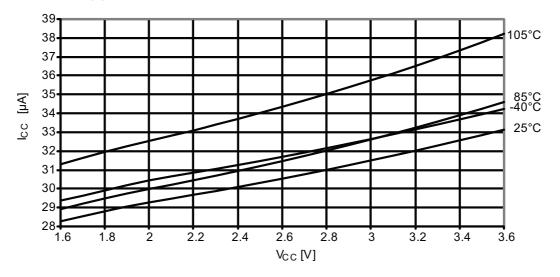
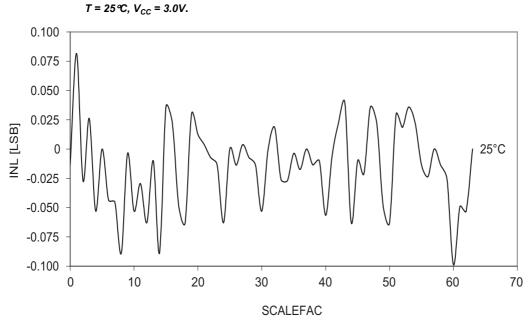
Figure 37-241. 32MHz internal oscillator frequency vs. temperature. DFLL enabled, from the 32.768kHz internal oscillator.

37.3.10.5 32MHz internal oscillator calibrated to 48MHz


Figure 37-244. 48MHz internal oscillator frequency vs. temperature.



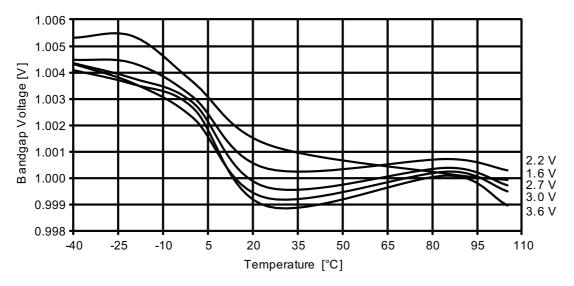


Figure 37-306. Voltage scaler INL vs. SCALEFAC.

37.4.6 Internal 1.0V reference Characteristics

