

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	AVR
Core Size	8/16-Bit
Speed	32MHz
Connectivity	I²C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	50
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atxmega64a3u-aur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

10. System Clock and Clock options

10.1 Features

- Fast start-up time
- Safe run-time clock switching
- Internal oscillators:
 - 32MHz run-time calibrated and tuneable oscillator
 - 2MHz run-time calibrated oscillator
 - 32.768kHz calibrated oscillator
 - 32kHz ultra low power (ULP) oscillator with 1kHz output
- External clock options
 - 0.4MHz 16MHz crystal oscillator
 - 32.768kHz crystal oscillator
 - External clock
- PLL with 20MHz 128MHz output frequency
 - Internal and external clock options and 1x to 31x multiplication
 - Lock detector
- Clock prescalers with 1x to 2048x division
- Fast peripheral clocks running at two and four times the CPU clock
- Automatic run-time calibration of internal oscillators
- External oscillator and PLL lock failure detection with optional non-maskable interrupt

10.2 Overview

Atmel AVR XMEGA A3U devices have a flexible clock system supporting a large number of clock sources. It incorporates both accurate internal oscillators and external crystal oscillator and resonator support. A high-frequency phase locked loop (PLL) and clock prescalers can be used to generate a wide range of clock frequencies. A calibration feature (DFLL) is available, and can be used for automatic run-time calibration of the internal oscillators to remove frequency drift over voltage and temperature. An oscillator failure monitor can be enabled to issue a non-maskable interrupt and switch to the internal oscillator if the external oscillator or PLL fails.

When a reset occurs, all clock sources except the 32kHz ultra low power oscillator are disabled. After reset, the device will always start up running from the 2MHz internal oscillator. During normal operation, the system clock source and prescalers can be changed from software at any time.

Figure 10-1 on page 23 presents the principal clock system in the XMEGA A3U family of devices. Not all of the clocks need to be active at a given time. The clocks for the CPU and peripherals can be stopped using sleep modes and power reduction registers, as described in "Power Management and Sleep Modes" on page 25.

22. TWI – Two-Wire Interface

22.1 Features

- Two Identical two-wire interface peripherals
 - Bidirectional, two-wire communication interface
 - Phillips I²C compatible
 - System Management Bus (SMBus) compatible
- Bus master and slave operation supported
 - Slave operation
 - Single bus master operation
 - Bus master in multi-master bus environment
 - Multi-master arbitration
- Flexible slave address match functions
 - 7-bit and general call address recognition in hardware
 - 10-bit addressing supported
 - Address mask register for dual address match or address range masking
 - Optional software address recognition for unlimited number of addresses
- Slave can operate in all sleep modes, including power-down
- Slave address match can wake device from all sleep modes
- 100kHz and 400kHz bus frequency support
- Slew-rate limited output drivers
- Input filter for bus noise and spike suppression
- Support arbitration between start/repeated start and data bit (SMBus)
- Slave arbitration allows support for address resolve protocol (ARP) (SMBus)

22.2 Overview

The two-wire interface (TWI) is a bidirectional, two-wire communication interface. It is I²C and System Management Bus (SMBus) compatible. The only external hardware needed to implement the bus is one pull-up resistor on each bus line.

A device connected to the bus must act as a master or a slave. The master initiates a data transaction by addressing a slave on the bus and telling whether it wants to transmit or receive data. One bus can have many slaves and one or several masters that can take control of the bus. An arbitration process handles priority if more than one master tries to transmit data at the same time. Mechanisms for resolving bus contention are inherent in the protocol.

The TWI module supports master and slave functionality. The master and slave functionality are separated from each other, and can be enabled and configured separately. The master module supports multi-master bus operation and arbitration. It contains the baud rate generator. Both 100kHz and 400kHz bus frequency is supported. Quick command and smart mode can be enabled to auto-trigger operations and reduce software complexity.

The slave module implements 7-bit address match and general address call recognition in hardware. 10-bit addressing is also supported. A dedicated address mask register can act as a second address match register or as a register for address range masking. The slave continues to operate in all sleep modes, including power-down mode. This enables the slave to wake up the device from all sleep modes on TWI address match. It is possible to disable the address matching to let this be handled in software instead.

25. IRCOM – IR Communication Module

25.1 Features

- Pulse modulation/demodulation for infrared communication
- IrDA compatible for baud rates up to 115.2Kbps
- Selectable pulse modulation scheme
 - 3/16 of the baud rate period
 - Fixed pulse period, 8-bit programmable
 - Pulse modulation disabled
- Built-in filtering
- Can be connected to and used by any USART

25.2 Overview

Atmel AVR XMEGA devices contain an infrared communication module (IRCOM) that is IrDA compatible for baud rates up to 115.2Kbps. It can be connected to any USART to enable infrared pulse encoding/decoding for that USART.

Table 36-10. Accuracy characteristics.

Symbol	Parameter		Condition ⁽²⁾	Min.	Тур.	Max.	Units
RES	Resolution	Programmab	le to 8 or 12 bit	8	12	12	Bits
		500	V_{CC} -1.0V < V_{REF} < V_{CC} -0.6V		±1.2	±2	
INIL (1)	Integral populingarity	SUUKSPS	All V _{REF}		±1.5	±3	lab
	Integral non-inteanty	2000kapa	$V_{\rm CC}$ -1.0V < $V_{\rm REF}$ < $V_{\rm CC}$ -0.6V		±1.0	±2	150
		2000kSpS	All V _{REF}		±1.5	±3	-
DNL ⁽¹⁾	Differential non-linearity	guaranteed monotonic			<±0.8	<±1	lsb
					-1		mV
	Offset Error	Temperature	drift		<0.01		mV/K
		Operating vo	Operating voltage drift		<0.6		mV/V
			External reference		-1		
		Differential	AV _{CC} /1.6		10		m\/
		mode	AV _{CC} /2.0		8		
	Gain Endi		Bandgap		±5		_
		Temperature	drift		<0.02		mV/K
		Operating vo	Itage drift		<0.5		mV/V
	Noise	Differential m 2msps, V _{CC} =	node, shorted input = 3.6V, Clk _{PER} = 16MHz		0.4		mV rms

Notes: 1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.

2. Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external V_{REF} is used.

Table 36-11. Gain stage characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units	
R _{in}	Input resistance	Switched in normal mode			4.0		kΩ
C _{sample}	Input capacitance	Switched in normal mode			4.4		pF
	Signal range	Gain stage output		0		V _{CC} - 0.6	V
	Propagation delay	ADC conversion rate			1		Clk _{ADC} cycles
	Sample rate	Same as ADC		100		1000	kHz
INL ⁽¹⁾	Integral Non-Linearity	500ksps	All gain settings		±1.5	±4	lsb
		1x gain, normal mode	1x gain, normal mode		-0.8		
	Gain Error	8x gain, normal mode			-2.5		%
		64x gain, normal mode			-3.5		

36.3.14.3 Calibrated and tunable 32MHz internal oscillator characteristics

Table 36-88.	32MHz internal	oscillator	characteristics.
--------------	----------------	------------	------------------

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Frequency range	DFLL can tune to this frequency over voltage and temperature	30		55	MHz
	Factory calibrated frequency			32		MHz
	Factory calibration accuracy	T = 85°C, V _{CC} = 3.0V	-1.5		1.5	%
	User calibration accuracy		-0.2		0.2	%
	DFLL calibration step size			0.23		%

36.3.14.4 32kHz Internal ULP Oscillator characteristics

Table 36-89. 32kHz internal ULP oscillator characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Output frequency			32		kHz
	Accuracy		-30		30	%

36.3.14.5 Internal Phase Locked Loop (PLL) characteristics

Table 36-90. Ir	nternal PLL	characteristics.
-----------------	-------------	------------------

Symbo I	Parameter	Condition	Min.	Тур.	Max.	Units
f _{IN}	Input Frequency	Output frequency must be within f _{OUT}	0.4		64	MHz
f	Output frequency ⁽¹⁾	V _{CC} = 1.6 - 1.8V	20		48	
OUT		V _{CC} = 2.7 - 3.6V	20		128	
	Start-up time			25		μs
	Re-lock time			25		μs

Note: 1. The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.

36.3.14.8 External 32.768kHz crystal oscillator and TOSC characteristics

Table 36-94. External 32.768kHz crystal oscillator and TOSC characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
ESR/R1	Recommended crystal equivalent	Crystal load capacitance 6.5pF			60	kO
	series resistance (ESR)	Crystal load capacitance 9.0pF			35	KΩ
C _{TOSC1}	Parasitic capacitance TOSC1 pin			4.2		pF
C _{TOSC2}	Parasitic capacitance TOSC2 pin			4.3		pF
	Recommended safety factor	capacitance load matched to crystal specification	3			

Note: 1. See Figure 36-4 for definition.

Figure 36-18. TOSC input capacitance.

The parasitic capacitance between the TOSC pins is $C_{L1} + C_{L2}$ in series as seen from the crystal when oscillating without external capacitors.

Table 36-101. Current consumption for modules and peripherals.

Symbol	Parameter	Condition ⁽¹⁾		Min.	Тур.	Max.	Units
	ULP oscillator				1.0		μA
	32.768kHz int. oscillator						μA
	2MHz int. applilator				85		
		DFLL enabled with	32.768kHz int. osc. as reference		115		μΑ
	32MHz int oscillator				270		
		DFLL enabled with	32.768kHz int. osc. as reference		460		μΑ
	PLL	20x multiplication f 32MHz int. osc. DI	actor, V4 as reference		220		μA
	Watchdog Timer				1		μA
	POD	Continuous mode			138		
	вор	Sampled mode, includes ULP oscillator			1.2		μΑ
	Internal 1.0V reference				100		μA
I _{CC}	Temperature sensor				95		μA
					3.0		mA
	ADC	250ksps	CURRLIMIT = LOW		2.6		
	ADC	V _{REF} = Ext ref	CURRLIMIT = MEDIUM		2.1		
			CURRLIMIT = HIGH		1.6		
	DAC	250ksps	Normal mode		1.9		mA
	DAC	No load	Low Power mode		1.1		mA
	10	High Speed Mode	1		330		
	AC	Low Power Mode			130		μΑ
	DMA	615KBps between	I/O registers and SRAM		115		μA
	Timer/Counter				16		μA
	USART	Rx and Tx enabled	I, 9600 BAUD		2.5		μA
	Flash memory and EEPRO	M programming			4		mA

Note: 1. All parameters measured as the difference in current consumption between module enabled and disabled. All data at V_{CC} = 3.0V, Clk_{SYS} = 1MHz external clock without prescaling, T = 25°C unless other conditions are givenAll parameters measured as the difference in current consumption between module enabled and disabled. All data at V_{CC} = 3.0V, Clk_{SYS} = 1MHz external clock without prescaling, T = 25°C unless other conditions are givenAll parameters measured as the difference in current consumption between module enabled and disabled. All data at V_{CC} = 3.0V, Clk_{SYS} = 1MHz external clock without prescaling, T = 25°C unless other conditions are given.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units	
		V _{CC} = 3.0V, T= 85°C	mode = HS		30	90	
+	Propagation dolay	mode = HS			30		ne
^L delay	FTOpagation delay	V _{CC} = 3.0V, T= 85°C	mode = LP		130	500	115
		mode = LP			130		_
	64-Level Voltage Scaler	Integral non-linearity (INL)			0.3	0.5	lsb

36.4.9 Bandgap and Internal 1.0V Reference Characteristics

Table 36-112.	Bandgap and Internal 1.0V reference charac	teristics.
---------------	--	------------

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Startup time	As reference for ADC or DAC	1 Clk _{PER} + 2.5µs			
		As input voltage to ADC and AC		1.5		μο
	Bandgap voltage			1.1		V
INT1V	Internal 1.00V reference	T= 85°C, after calibration	0.99	1	1.01	V
	Variation over voltage and temperature	Relative to T= 85°C, V_{CC} = 3.0V		±1.0		%

36.4.10 Brownout Detection Characteristics

Table 36-113. Brownout detection characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{BOT}	BOD level 0 falling V _{CC}		1.60	1.62	1.72	- V
	BOD level 1 falling V _{CC}			1.8		
	BOD level 2 falling V _{CC}			2.0		
	BOD level 3 falling V _{CC}			2.2		
	BOD level 4 falling V _{CC}			2.4		
	BOD level 5 falling V_{CC}			2.6		
	BOD level 6 falling V_{CC}			2.8		
	BOD level 7 falling V _{CC}			3.0		
t _{BOD}	Detection time	Continuous mode		0.4		μs
		Sampled mode		1000		
V _{HYST}	Hysteresis			1.6		%

36.4.15 SPI Characteristics

Figure 37-5. Active mode supply current vs. V_{CC} . $f_{SYS} = 2MHz$ internal oscillator.

37.1.10.5 32MHz internal oscillator calibrated to 48MHz

Figure 37-78. 48MHz internal oscillator frequency vs. temperature.

Figure 37-92. Idle mode supply current vs. frequency. $f_{SYS} = 1 - 32MHz$ external clock, $T = 25^{\circ}C$.

37.2.2.2 Output Voltage vs. Sink/Source Current

Figure 37-110. I/O pin output voltage vs. sink current. $V_{cc} = 1.8V.$

Figure 37-122. DNL error vs. sample rate. $T = 25 \,^{\circ}C$, $V_{CC} = 3.6V$, $V_{REF} = 3.0V$ external.

Figure 37-123. DNL error vs. input code.

Figure 37-199. I/O pin input threshold voltage vs. V_{CC} . V_{IL} I/O pin read as "0".

Figure 37-204. DNL error vs. external V_{REF} . $T = 25 \,$ C, $V_{CC} = 3.6V$, external reference.

37.4 ATxmega256A3U

37.4.1 Current consumption

37.4.1.1 Active mode supply current

Figure 37-308. BOD thresholds vs. temperature. BOD level = 1.6V.

