

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	Coldfire V3
Core Size	32-Bit Single-Core
Speed	240MHz
Connectivity	EBI/EMI, Ethernet, I ² C, Memory Card, SPI, SSI, UART/USART, USB OTG
Peripherals	DMA, PWM, WDT
Number of I/O	61
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.08V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	208-LQFP
Supplier Device Package	208-TQFP (28x28)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf53010cqt240

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 MCF5301*x* Family Comparison

The following table compares the various device derivatives available within the MCF5301*x* family.

Table 1. MCF5301x Family Configurations

Module	MCF53010	MCF53011	MCF53012	MCF53013	MCF53014	MCF53015	MCF53016	MCF53017
Version 3 ColdFire Core with EMAC (enhanced multiply-accumulate unit)	•	•	•	•	•	•	•	•
Core (system) clock				up to 2	40 MHz			
Peripheral and external bus clock (Core clock ÷ 3)				up to 8	30 MHz			
Performance (Dhrystone/2.1 MIPS)				up to	211			
Unified data/instruction cache				16 K	bytes			
Static RAM (SRAM)				128 k	Coytes			
Voice-over-IP software	—	_	•	•	—	—	•	•
Cryptography acceleration unit (CAU)	—	•	_	•	—	•	_	•
Random number generator	—	•	—	•	—	•	—	•
Smart card interface (SIM)	1 port 2 ports					orts		
Voice-band audio codec	•	•	•	•	•	•	•	•
Integrated audio amplifiers	_	—	—	—	•	•	•	•
IC identification module (IIM)	2 Kbits							
Enhanced Secure Digital host controller (eSDHC)	•	•	•	•	•	•	•	•
SDR/DDR SDRAM controller	•	•	•	•	•	•	•	•
FlexBus external interface	•	•	•	•	•	•	•	•
USB 2.0 On-the-Go	•	•	•	•	•	•	•	•
USB 2.0 Host	—	—	—	—	•	•	•	•
Synchronous serial interface (SSI)	•	•	•	•	•	•	•	•
Fast Ethernet controller (FEC)	2	2	2	2	2	2	2	2
UARTs	3	3	3	3	3	3	3	3
l ² C	•	•	•	•	•	•	•	•
DSPI	•	•	•	•	•	•	•	•
Real-time clock	•	•	•	•	•	•	•	•
32-bit DMA timers	4	4	4	4	4	4	4	4
Watchdog timer (WDT)	•	•	•	•	•	•	•	•
Periodic interrupt timers (PIT)	4	4	4	4	4	4	4	4
Edge port module (EPORT)	•	•	•	•	•	•	•	•
Interrupt controllers (INTC)	2	2	2	2	2	2	2	2

Figure 1. System PLL V_{DD} Power Filter

3.2 USB Power Filtering

To minimize noise, external filters are required for each of the USB power pins. The filter shown in Figure 2 should be connected between the board EV_{DD} and each of the USBV_{DD} pins. The resistor and capacitors should be placed as close to the dedicated USBV_{DD} pin as possible.

NOTE

In addition to the above filter circuitry, a 0.01 F capacitor is also recommended in parallel with those shown.

3.3 Supply Voltage Sequencing

Figure 3 shows situations in sequencing the I/O V_{DD} (EV_{DD}), SDRAM V_{DD} (SDV_{DD}), PLL V_{DD} (PV_{DD}), and internal logic / core V_{DD} (IV_{DD}). The relationship between SDV_{DD} and EV_{DD} is non-critical during power-up and power-down sequences. Both SDV_{DD} (2.5V or 1.8V) and EV_{DD} are specified relative to IV_{DD}.

Notes:

- 1 IV_{DD} should not exceed EV_{DD}, SDV_{DD} or PV_{DD} by more than 0.4V at any time, including power-up.
- ² Recommended that IV_{DD}/PV_{DD} should track EV_{DD}/SDV_{DD} up to 0.9V then separate for completion of ramps
- ³ Input voltage must not be greater than the supply voltage (EV_{DD}, SDV_{DD}, IV_{DD}, or PV_{DD}) by more than 0.5V at any time, including during power-up.
- ⁴ Use 1 microsecond or slower rise time for all supplies.

Figure 3. Supply Voltage Sequencing and Separation Cautions

3.3.1 Power Up Sequence

If EV_{DD}/SDV_{DD} are powered up with the IV_{DD} at 0V, then the sense circuits in the I/O pads will cause all pad output drivers connected to the EV_{DD}/SDV_{DD} to be in a high impedance state. There is no limit on how long after EV_{DD}/SDV_{DD} powers up before IV_{DD} must power up. IV_{DD} should not lead the EV_{DD} , SDV_{DD} or PV_{DD} by more than 0.4V during power ramp up or there will be high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 1 microsecond to avoid turning on the internal ESD protection clamp diodes.

The recommended power up sequence is as follows:

- 1. Use 1 microsecond or slower rise time for all supplies.
- 2. IV_{DD}/PV_{DD} and EV_{DD}/SDV_{DD} should track up to 0.9V and then separate for the completion of ramps with EV_{DD}/SDV_{DD} going to the higher external voltages. One way to accomplish this is to use a low drop-out voltage regulator.

3.3.2 Power Down Sequence

If IV_{DD}/PV_{DD} are powered down first, then sense circuits in the I/O pads will cause all output drivers to be in a high impedance state. There is no limit on how long after IV_{DD} and PV_{DD} power down before EV_{DD} or SDV_{DD} must power down. IV_{DD} should not lag EV_{DD} , SDV_{DD} , or PV_{DD} going low by more than 0.4V during power down or there will be undesired high current in the ESD protection diodes. There are no requirements for the fall times of the power supplies.

The recommended power down sequence is as follows:

- 1. Drop IV_{DD}/PV_{DD} to 0V.
- 2. Drop EVDD/SDVDD supplies.

Pin Assignments and Reset States

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	oltage Domain	MCF53010 MCF53011 MCF53012 MCF53013	MCF53014 MCF53015 MCF53016 MCF53017 256 MAPBGA
SD CAS				_	0	> SDVDD	154	D15
SD_CKE					0	SDVDD	151	B15
 SD_CLK					0	SDVDD	190	A7
SD_CLK				_	0	SDVDD	191	A6
SD_CS0	_				0	SDVDD	155	A15
SD_DQS[1:0]	_			—	0	SDVDD	196, 167	C12, A5
SD_RAS	—			—	0	SDVDD	152	C15
SD_SDR_DQS	—	_		—	I	SDVDD	207	D5
SD_WE	—	_	—	—	0	SDVDD	150	D14
		Extern	al Interrupts Port	1 ^{4,5}				
IRQ1DEBUG[7:4]	PIRQ1DEBUG [7:4]	DDATA[3:0]	_	—	I	EVDD	_	H1, H4-2
IRQ1DEBUG[3:0]	PIRQ1DEBUG [3:0]	PST[3:0]		—	I	EVDD	—	K14, H14, K15, J13
IRQ1FEC7	PIRQ1FEC7	RMII1_CRS_DV	MII0_CRS	—	I	EVDD	29	J1
IRQ1FEC6	PIRQ1FEC6	RMII1_RXER	MII0_RXCLK	—	I	EVDD	30	J2
IRQ1FEC5	PIRQ1FEC5	RMII1_TXEN	MII0_TXCLK	_	I	EVDD	31	K4
IRQ1FEC4	PIRQ1FEC4	RMII1_REF_CLK	_	D	I	EVDD	32	J3
IRQ1FEC[3:2]	PIRQ1FEC[3:2]	RMII1_RXD[1:0]	MII0_RXD[3:2]	—	I	EVDD	33, 34	J4, K1
IRQ1FEC[1:0]	PIRQ1FEC[1:0]	RMII1_TXD[1:0]	MII0_TXD[3:2]	—	I	EVDD	35, 36	K2, L1
		Exter	nal Interrupts Port	0 ⁵				
IRQ07	PIRQ07	_	—	U	I	EVDD	10	E4
IRQ06	PIRQ06	_	USB_CLKIN	U	I	EVDD	—	L13
IRQ04	PIRQ04	DREQ0	—	U	I	EVDD	19	D1
IRQ01	PIRQ01	DREQ1	—	U	I	EVDD	11	F4
		Enhanced Se	ecure Digital Host (Controlle	er			
SDHC_DAT3	PSDHC5	_	_	UD	I/O	EVDD	60	N4
SDHC_DAT[2:0]	PSDHC[4:2]		—	U	I/O	EVDD	61–63	R5, N6, N5
SDHC_CMD	PSDHC1	—	—	U	I/O	EVDD	59	R4
SDHC_CLK	PSDHC0		—	—	0	EVDD	58	R3

Table 6. MCF5301x Signal Information and Muxing (continued)

Pin Assignments and Reset States

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	oltage Domain	MCF53010 MCF53011 MCF53012 MCF53013	MCF53014 MCF53015 MCF53016 MCF53017	
			USB Host			Š	208 LQFP	256 MAPBGA	
	[0	LISB		B1	
		_			Ŭ	VDD		D1	
USBH_DP	—	—	—	_	0	USB VDD	—	C1	
FEC 1									
RMII1_MDC	PFECI2C5	—	MII0_TXER	—		EVDD	22	E1	
RMII1_MDIO	PFECI2C4	_	MII0_COL	—		EVDD	23	F1	
			FEC 0		•				
RMII0_CRS_DV	PFEC06	—	MII0_RXDV	—		EVDD	131	G16	
RMII0_RXD[1:0]	PFEC0[5:4]	—	MII0_RXD[1:0]	—		EVDD	130, 129	H15, H16	
RMII0_RXER	PFEC03	—	MII0_RXER	—		EVDD	127	J16	
RMII0_TXD[1:0]	PFEC0[2:1]	_	MII0_TXD[1:0]	—		EVDD	125, 124	J15, J14	
RMII0_TXEN	PFEC00	_	MII0_TXEN	D		EVDD	123	K16	
RMII0_MDC	PFECI2C3	_	MII0_MDC	—		EVDD	133	G14	
RMII0_MDIO	PFECI2C2	_	MII0_MDIO	—		EVDD	132	G15	
		F	Real Time Clock						
RTC_EXTAL	—	—	_	_	I	EVDD	_	P1	
RTC_XTAL	—	—	_	—	0	EVDD	—	R1	
		Synchr	onous Serial Interf	ace					
SSI_RXD	PSSI4	_	U1RXD	UD	I	EVDD	_	N3	
SSI_TXD	PSSI3	—	U1TXD	UD	0	EVDD	_	P3	
SSI_FS	PSSI2	—	U1RTS	_	I/O	EVDD	—	R2	
SSI_MCLK	PSSI1	—	SSI_CLKIN	—	0	EVDD	—	P4	
SSI_BCLK	PSSI0	—	U1CTS	_	I/O	EVDD	_	P5	
			l ² C						
I2C_SCL	PFECI2C1	U2RXD	RMII1_MDC	U	I/O	EVDD	37	M1	
I2C_SDA	PFECI2C0	U2TXD	RMII1_MDIO	U	I/O	EVDD	38	К3	
			DSPI		•				
DSPI_PCS3	PDSPI6	USBH_VBUS_EN	_	_	I/O	EVDD	_	P2	
DSPI_PCS2	PDSPI5	USBH_VBUS_OC		—	I/O	EVDD	_	N2	

Table 6. MCF5301x Signal Information and Muxing (continued)

Pin Assignments and Reset States

4.2 Pinout—208 LQFP

The pinout for the 208 LQFP devices is shown in Figure 5 and Figure 6.

		SDR_DQS	3D_A10	B_D31	B_D30	B_D29	B_D28	B_D27	B_D26	B_D25	B_D24	B_BE/BWE3	sD_DQS1	VDD	/SS	VDD	'SS	SD_CLK	SD_CLK	B_D8		בי היים היים	B_D11			ם ב ב
Γ	• •		9	5	4 1 1	3 F	2 F	Ē			8		9	2	₹ 	3		5		6	<u> </u>		9	2 ·		2
FB_OE FB_RAW FB_TA FB_TA FB_CS1 IRQ01 T2IN T3IN U2RXD VSS IRQ04 U0CTS U0RXD U0RXD U0RXD U0RXD IRQ14 IRQ12	 1 2 3 4 5 6 7 8 9 10 11 2 3 4 15 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11 11 11 11	207]SDR_DQS	206]SD_A10	205]FB_D31	204 EB_D30	203[FB_D29	202]]FB_D28	201][FB_D27	200]FB_D26	199][FB_D25	198 EB_D24	197 J FB_BE/BWE3	196]SD_DQS1	195 EVDD	194[VSS	193] IVDD	192]VSS	191]SD_CLK	190 SD_CLK	189 LFB_D8	188 FB_D9		186 FB_D11		184] FB_U13	
IRQ11 _ IRQ10 [IRQ10] I2C_SCL [I2C_SDA] VSS] EVDD [RESET] RESET [ALLPST] IVDD [35 36 37 38 39 40 41 42 43 44																									
VSS [VDD_OSC [EVDD [VSS [EXTAL] XTAL [EVDD [VSS]	45 46 47 48 49 50 51 52	2 5	55	90	22	89	6	0	1	52	33	7	55	90	2	89	6	0	-	2	٤ ٢	4	c,			Ø
L Figure 5. MCF53010, MCF53011, MCF530	12,		₽ BOOTMOD1]5	NSS]€		SDHC_CLK]	10 SDHC_CMD	SDHC_DAT3	EI SDHC_DAT2[[6	SDHC_DAT1[€	t sphc_parole				codec_dacp](۶ NSS		ft	<u>(</u> 2	<u>-</u>						

5.2 Thermal Characteristics

Characteristic		Symbol	256 MAPBGA	208 LQFP	Unit
Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JMA}	36 ^{1,2}	38 ^{1,2}	°C/W
Junction to ambient (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	32 ^{1,2}	33 ^{1,2}	°C/W
Junction to board		θ_{JB}	25 ³	29 ³	°C/W
Junction to case		θ_{JC}	14 ⁴	11 ⁴	°C/W
Junction to top of package		Ψ_{jt}	2 ^{1,5}	3 ^{1,5}	°C/W
Maximum operating junction temperature		Тj	105	105	°C

Table 8. Thermal Characteristics

 θ_{JMA} and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JmA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.

² Per JEDEC JESD51-6 with the board horizontal.

³ Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

- ⁴ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- ⁵ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \Theta_{JMA})$$
 Eqn. 1

Where:

For most applications $P_{I/O} < P_{INT}$ and can be ignored. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A \times 273^{\circ}C) + Q_{JMA} \times P_D^2$$
 Eqn. 3

Preliminary Electrical Characteristics

Chip-select, \overline{FB} cso can be dedicated to boot ROM access and can be programmed to be byte (8 bits), word (16 bits), or longword (32 bits) wide. Control signal timing is 1 compatible with common ROM/flash memories.

5.6.1.1 FlexBus AC Timing Characteristics

The following timing numbers indicate when data will be latched or driven onto the external bus, relative to the system clock.

Num	Characteristic	Symbol	Min	Мах	Unit	Notes
	Frequency of Operation		_	80	Mhz	f _{sys/3}
FB1	Clock Period (FB_CLK)	t _{FBCK}	12.5		ns	t _{cyc}
FB2	Address, Data, and Control Output Valid (A[23:0], D[31:0], FB_CS[5:0], R/W, TS, BE/BWE[3:0] and OE)	t _{FBCHDCV}		7.0	ns	1
FB3	Address, Data, and Control Output Hold (A[23:0], D[31:0], \overline{FB}_{CS} [5:0], $\overline{R/W}$, \overline{TS} , $\overline{BE/BWE}$ [3:0], and \overline{OE})	t _{FBCHDCI}	1	—	ns	1, 2
FB4	Data Input Setup	t _{DVFBCH}	3.5	_	ns	
FB5	Data Input Hold	t _{DIFBCH}	0		ns	
FB6	Transfer Acknowledge (TA) Input Setup	t _{CVFBCH}	4		ns	
FB7	Transfer Acknowledge (TA) Input Hold	t _{CIFBCH}	0	_	ns	

Table 12. FlexBus AC Timing Specifications

Timing for chip selects only applies to the FB_CS[5:0] signals. Please see Section 5.7.2, "DDR SDRAM AC Timing Characteristics" for SD_CS[3:0] timing.

² The FlexBus supports programming an extension of the address hold. Please consult the *MCF5301x Reference Manual* for more information.

NOTE

The processor drives the data lines during the first clock cycle of the transfer with the full 32-bit address. This may be ignored by standard connected devices using non-multiplexed address and data buses. However, some applications may find this feature beneficial.

The address and data busses are muxed between the FlexBus and SDRAM controller. At the end of the read and write bus cycles the address signals are indeterminate.

Figure 28. DSPI Classic SPI Timing — Slave Mode

5.16 eSDHC Electrical Specifications

This section describes the electrical information of the eSDHC.

5.16.1 eSDHC Timing

Figure 29 depicts the timing of eSDHC, and Table 29 lists the eSDHC timing characteristics.

Figure 29. eSDHC Timing

Parameter	Condition	Min	Тур	Мах	Units
Filter Group Delay	500Hz < f < 600Hz	_	_	260	μS
VCIHPF=logic high	600Hz < f < 800Hz	—	—	155	μS
CODEC_CLK=26MHz	800Hz < f < 1kHz	—	—	57	μS
(Relative to 1.6kHz)	1kHz < f < 1.6kHz	—	—	15	μS
	1.6kHz < f < 2.6kHz	—	—	95	μS
	2.6kHz < f < 2.8kHz	—	—	135	μS
	2.8kHz < f < 3.0kHz	—	—	190	μS
Filter Group Delay	f < 1.6kHz	-40	_	0	μS
VCIHPF=logic low	1.6kHz < f < 2.6kHz	0	—	100	μS
CODEC_CLK=26MHz	2.6kHz < f < 2.8kHz	—	—	150	μS
(Relative to 1.6kHz)	2.8kHz < f < 3.0kHz	—	—	200	μS
Filter Absolute Group Delay VCIHPF=logic high	f=1.6kHz	—		300	μS
Filter Absolute Group Delay VCIHPF=logic low	f=1.6kHz	—		235	μS
Out of Band input fold-in spurious	with 0dBm0 input signal from 4.6 kHz to 8.4 kHz			-50	dB

Table 33.	Voice Codec	ADC Specifi	ications ¹ ((continued)
-----------	-------------	--------------------	-------------------------	-------------

¹ All analog signals are referenced to VAG unless otherwise noted.

² Power Supply Rejection Ratio is for Longjing IC only. Total PSRR from battery to output is obtained by summing the PSRR from Neptune to the one from the Regulator in Seaweed. It is assumed that the regulators in Seaweed will have a minimum PSRR of 45 dB.

³ For A/D differential input (ADC_P - ADC_M) 0dBm0 = 340mV_{rms}. The codec output will not "foldback" or oscillate if overdriven, but clip.

⁴ The digital word corresponding to +3dBm0 is '011111111111'b. Therefore if the audio level is set to +3dBm0, any variation in gain could cause large distortion if the digital number exceeds '01111111111111'b. For this reason the maximum recommended signal for low distortion is +3dBm0 – (Absolute Gain Error) = +2dBm0.

⁵ GSM Spec = -64 0dB.

⁶ This value is a preliminary target. The final number will be specified after obtaining the production statistical data.

⁷ Small frequency response deviation from straight line in the 60:200 Hz range is acceptable by spec requirements.

⁸ Small frequency response deviation from straight line in the 3400:4000 Hz range is acceptable by spec requirements.

⁹ Small frequency response deviation from straight line in the 3400:4000 Hz range is acceptable by spec requirements.

Preliminary Electrical Characteristics

Figure 34 and Figure 35 show the filter frequency response for the audio signal for voice coding path. (All filter frequencies increase by 8.1/8.0 if VCLK is selected to generate $f_{SYNC}=8.1$ kHz).

Figure 34. Voice Signal Frequency Response Requirements at the ADC Path (VCIHPF=0, LPF Alone Without HPF)

Figure 35. Voice Signal Frequency Response Requirements at the ADC Path (VCIHPF=1, HPF and LPF Together)

5.19.2 Voice Codec DAC Specifications

Voice-decoding function includes frequency ripple compensation, interpolation, digital-to-analog conversion, and anti-imaging filter. The input signal for the voice-decoding function is in linear 16-bit two's compliment PCM words at an 8 kHz or 8.1 kHz rate. Table 34 shows the voice decoding specifications.

Parameter	Condition	Min	Тур	Max	Units
Output Level	+3dbm0 ² (clipping level) on an individual differential output pin (CODEC_DACP or CODEC_DACN)	VAG-0.5		VAG+0.5	V
Output Source Impedance	10kΩ Load	_	100	—	Ω
Output Power Supply Rejection Ratio	20Hz to 100kHz with 100 mVrms, noise applied to AVDD (CODEC_REGBYP)	50	60	_	dBa
Absolute Gain	0dBm0@1.02kHz	-1.0	_	1.0	dB
Gain vs. Signal	-10dBm0@1.02kHz				
	+3 to -40dBm0 -40 to -50dB -50 to -55dBm0	-0.25 -1.2 -1.3		0.25 1.2 1.3	dB dB dB

Table 34. Voice Codec DAC Specifications¹

Parameter	Condition	Min	Тур	Max	Units
Filter Group Delay	500Hz < f < 600Hz	_	_	300	μS
VCOHPF = logic high	600Hz < f < 800Hz	—	—	200	μS
CODEC_CLK=26 MHz	800Hz < f < 1kHz		—	70	μS
(Relative to 1.6kHz)	1kHz < f < 1.6kHz	—	—	30	μS
	1.6kHz < f < 2.6kHz	—	—	95	μS
	2.6kHz < f < 2.8kHz	—	—	135	μS
	2.8kHz < f < 3.0kHz	—	—	190	μS
Filter Group Delay	f < 1.6kHz	-40	_	0	μS
VCOHPF = logic low	1.6kHz < f < 2.6kHz	0	—	100	μS
CODEC_CLK=26 MHz (Relative	2.6kHz < f < 2.8kHz	—	—	160	μs
to 1.6kHz)	2.8kHz < f < 3.0kHz	—	—	200	μS
Filter Absolute Group Delay VCOHPF = logic high	f=1.6kHz	_	_	350	μS
Filter Absolute Group Delay VCOHPF = logic low	f=1.6kHz	—	—	320	μS

Table 34. Voice Codec DAC Specifications¹ (continued)

¹ All analog signals are referenced to VAG unless otherwise noted. Output is 0dbm0 unless noted.

² For D/A differential output (CODEC_DACP - CODEC_DACN) 0dBm0 = 500 mV_{rms}.

³ GSM Spec = -64.

⁴ Small frequency response deviation from straight line in the 60:200 Hz range is acceptable by spec requirements.

⁵ Small frequency response deviation from straight line in the 3400:4000 Hz range is acceptable by spec requirements.

⁶ Small frequency response deviation from straight line in the 3400:4000 Hz range is acceptable by spec requirements.

Preliminary Electrical Characteristics

Figure 36 and Figure 37 show the filter frequency response for the audio signal for voice decoding. The requirements for the decoding path at 3.4 kHz are slightly different from the coding path. (All filter frequencies increase by 8.1/8.0 if VCLK is selected to generate $f_{SYNC} = 8.1$ kHz).

Figure 36. Voice Signal Frequency Response Requirements at the DAC Path (VCOHPF=0, LPF Alone Without HPF)

Figure 37. Voice Signal Frequency Response Requirements at the DAC Path (VCOHPF=1, HPF and LPF Together)

5.20 Integrated Amplifiers

5.20.1 Speaker Amplifier

The speaker amplifier boosts the power from the DAC and drives the speaker. It also provides analog volume control to optimize the noise performance of the entire channel. Table 35 shows the specifications for the speaker amplifier.

Table 35.	Speaker	Amplifier	Specifications
-----------	---------	-----------	----------------

Parameter	Conditions		Min	Тур	Max	Units
Quiescent Current			—	800	-	μA
Shutdown Current			—	TBD		
Input Reference Offset			_	2	5	mV
Max Output Power	F_{in} = 1kHz, THD+N = 1%, R_L = 4 Ω		—	600	_	mW
Total Harmonic Distortion (THD)	Gain = 0dB,	Full Power, 500mW	—	0.050	_	%
	$R_L = 4\Omega$, $F_{in} = 1$ KHZ	Half Power, 250mW	—	0.050	_	
Gain = 0dB,	Full Power, 500mW	_	0.1	_		
	$R_L = 4\Omega$, $F_{in} = 4KHZ$	Half Power, 250mW	—	0.1	_	
Integrated Output Noise	Gain = 0dB, BW = 20Hz – 20kHz		_	15	—	μV

5.20.3 Headphone Amplifier

The headphone amplifier boosts the power from the DAC and drives the headphone. It also provides analog volume control to optimize the noise performance of the entire channel. Table 37 shows the specifications for the microphone amplifier.

Parameter	Conditions		Min	Тур	Max	Units
Quiescent Current			—	600	—	μA
Shutdown Current			—	TBD	—	
Input Reference Offset			_	2	5	mV
Output Power	F _{in} = 1kHz, THD+N	$N = 1\%, R_{L} = 16\Omega$		40	_	mW
Total Harmonic Distortion (THD)	Gain = 0dB, $R_L = 16\Omega$,	Full Power, 31.25mW	—	0.05	—	%
	BW = 200Hz – 4kHz Ha		_	0.05	—	
Integrated Output Noise	Gain = 0dB, BW = 20Hz – 20kHz		_	15	_	μV
Signal to Noise Ratio (SNR)	Gain = 0dB, $V_{OUT} = 0.7V_{RMS}$, BW = 20Hz - 20kHz		_	93		dB
Power Supply Rejection Ratio	Gain = 0dB,	Gain = 0dB, f = 217Hz		60	—	dB
(PSRR)	$V_{ripple} = 200 m V_{pp}$	f = 1kHz	—	60	—	
		f = 4kHz	_	60	_	
Maximum Cap Load Drive	No Sustained Oscillations			300	_	pF
Output SC Current			—	150	—	mA
Gain Error	Gain = -45, -21, -12, -6, -2, 0 dB			±0.5	—	dB

Table 37. Headphone Amplifier Specifications

5.20.4 Microphone Amplifier

The microphone amplifier boosts the signal from the microphone and provides it to the ADC. The gain control present in the microphone amplifier helps in optimizing the noise performance of the entire channel. Table 38 shows the specifications for the microphone amplifier.

Parameter	Conditions	Min	Тур	Max	Units
Quiescent Current		_	500	_	μA
Shutdown Current		_	TBD	_	
nput Reference Offset			2	5	mV

Table 38. Microphone Amplifier Specifications

Preliminary Electrical Characteristics

Parameter	Condi	itions	Min	Тур	Max	Units
Total Harmonic Distortion (THD)	Gain = 0dB, Fin = 1k	$V_{OUT} = 0.5 V_{RMS}$	_	0.01	—	%
		$V_{OUT} = 0.35 V_{RMS}$	_	0.01	—	
	Gain = 20dB, Fin = 1k	$V_{OUT} = 0.5 V_{RMS}$	_	0.01	—	
		$V_{OUT} = 0.35 V_{RMS}$	_	0.01	—	
	Gain = 0dB, Fin = $4k$	$V_{OUT} = 0.5 V_{RMS}$	_	0.01	—	
		$V_{OUT} = 0.35 V_{RMS}$	_	0.01	—	
	Gain = 20dB, Fin = 4k	$V_{OUT} = 0.5 V_{RMS}$	—	0.01	—	
		$V_{OUT} = 0.35 V_{RMS}$	_	0.01	—	
Integrated Output Noise	BW = 20Hz - 20kHz	Gain = 0dB	_	12	—	μV
		Gain = 20dB	_	40	—	
Signal to Noise Ratio (SNR)	$V_{OUT} = 0.5V_{RMS},$ BW = 20Hz – 20kHz	Gain = 0dB	_	92.4	—	dB
		Gain = 20dB	_	81.9	—	
THD plus Noise	$V_{OUT} = 0.35 V_{RMS},$	Gain = 0dB	—	80	—	dB
	BM = 20HZ - 20KHZ	Gain = 20dB	_	80	—	
Power Supply Rejection Ratio	Gain = 0dB,	f = 1kHz	_	60	—	dB
	$v_{ripple} = 200 m v_{pp}$	f = 4kHz	_	60	—	
Commom Mode Rejection Ratio Gain = 0dB,		f = 1kHz	_	50	—	dB
	$V_{ripple} = 100 m V_{pp}$	f = 4kHz	_	50	—	
Gain Error	Gain = 0, 6, 9.56, 15.56, 20, 24, 29.56, 39.9 dB			±0.5	_	dB
Input Impedance	Depends on the Gain Setting		1.5	—	24.0	kΩ

5.21 JTAG and Boundary Scan Timing

Table 39. JTAG and Boundary Scan Timing

Num	Characteristics ¹	Symbol	Min	Max	Unit
J1	TCLK Frequency of Operation	f _{JCYC}	DC	1/4	f _{sys/3}
J2	TCLK Cycle Period	t _{JCYC}	4	_	t _{CYC}
J3	TCLK Clock Pulse Width	t _{JCW}	26	_	ns
J4	TCLK Rise and Fall Times	t _{JCRF}	0	3	ns
J5	Boundary Scan Input Data Setup Time to TCLK Rise	t _{BSDST}	4	_	ns
J6	Boundary Scan Input Data Hold Time after TCLK Rise	t _{BSDHT}	26	_	ns
J7	TCLK Low to Boundary Scan Output Data Valid	t _{BSDV}	0	33	ns
J8	TCLK Low to Boundary Scan Output High Z	t _{BSDZ}	0	33	ns
J9	TMS, TDI Input Data Setup Time to TCLK Rise	t _{TAPBST}	4	—	ns
J10	TMS, TDI Input Data Hold Time after TCLK Rise	t _{TAPBHT}	10	—	ns

Num	Characteristics ¹	Symbol	Min	Max	Unit
J11	TCLK Low to TDO Data Valid	t _{TDODV}	0	26	ns
J12	TCLK Low to TDO High Z	t _{TDODZ}	0	8	ns
J13	TRST Assert Time	t _{TRSTAT}	100	—	ns
J14	TRST Setup Time (Negation) to TCLK High	t _{TRSTST}	10	—	ns

Table 39. JTAG and Boundary Scan Timing (continued)

¹ JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.

Figure 38. Test Clock Input Timing

Figure 39. Boundary Scan (JTAG) Timing

Figure 40. Test Access Port Timing

Figure 41. TRST Timing

5.22 Debug AC Timing Specifications

Table 40 lists specifications for the debug AC timing parameters shown in Figure 42.

Table 40. Debug AC Timing Specification

Num	Characteristic	Min	Max	Units	
D0	PSTCLK cycle time	1.5	1.5	t _{SYS}	
D1	PSTCLK rising to PSTDDATA valid	_	3.0	ns	
D2	PSTCLK rising to PSTDDATA invalid	1.5	—	ns	
D3	DSI-to-DSCLK setup	1	_	PSTCLK	
D4 ¹	DSCLK-to-DSO hold	4	—	PSTCLK	
D5	DSCLK cycle time	5	—	PSTCLK	
D6	BKPT assertion time	1	_	PSTCLK	
DSCLK and DSL are synchronized internally D4 is measured from the synchronized					

DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of PSTCLK.

Package Information

Figure 42. Real-Time Trace AC Timing

Figure 43. BDM Serial Port AC Timing

6 Package Information

The latest package outline drawings are available on the product summary pages on our web site:

http://www.freescale.com/coldfire. The following table lists the package case number per device. Use these numbers in the web page keyword search engine to find the latest package outline drawings.

Device	Package Type	Case Outline Number		
MCF53010				
MCF53011	208 LQFP	0845523458\//		
MCF53012		307002040000		
MCF53013				
MCF53014				
MCF53015		08APH08210A		
MCF53016	200 WIAF DOA	30AN 1302 13A		
MCF53017				

Table 41. Package Information

7 Product Documentation

Documentation is available from a local Freescale distributor, a Freescale sales office, the Freescale Literature Distribution Center, or through the Freescale world-wide web address at http://www.freescale.com/coldfire.