

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	33MHz
Connectivity	CANbus, EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	111
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	11K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-BQFP
Supplier Device Package	P-MQFP-144-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c167csl33mcafxuma2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2	Pi	n Definit	tions and Functions (cont'd)						
Symbol	Pin Num.	Input Outp.	Function						
Ρ7		IO	Port 7 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- mpedance state. Port 7 outputs can be configured as push/ oull or open drain drivers. The input threshold of Port 7 is selectable (TTL or special). The following Port 7 pins also serve for alternate functions:						
P7.0	19	0	POUT0 PWM Channel 0 Output						
P7.1	20	0	POUT1 PWM Channel 1 Output						
P7.2	21	0	POUT2 PWM Channel 2 Output						
P7.3	22	0	POUT3 PWM Channel 3 Output						
P7.4	23	I/O	CC28IO CAPCOM2: CC28 Capture Inp./Compare Outp.						
P7.5	24	I/O	CC29IO CAPCOM2: CC29 Capture Inp./Compare Outp.						
P7.6	25	I/O	CC30IO CAPCOM2: CC30 Capture Inp./Compare Outp.						
P7.7	26	I/O	CC31IO CAPCOM2: CC31 Capture Inp./Compare Outp.						
P5		I	Port 5 is a 16-bit input-only port with Schmitt-Trigger char. The pins of Port 5 also serve as analog input channels for the A/D converter, or they serve as timer inputs:						
P5.0	27	1	ANO						
P5.1	28	1	AN1						
P5.2	29	1	AN2						
P5.3	30	1	AN3						
P5.4	31	1	AN4						
P5.5	32	1	AN5						
P5.6	33	1	AN6						
P5.7	34	1	AN7						
P5.8	35	1	AN8						
P5.9	36	1	AN9						
P5.10	39	1	AN10, T6EUD GPT2 Timer T6 Ext. Up/Down Ctrl. Inp.						
P5.11	40	1	AN11, T5EUD GPT2 Timer T5 Ext. Up/Down Ctrl. Inp.						
P5.12	41		AN12, T6IN GPT2 Timer T6 Count Inp.						
P5.13	42	1	AN13, T5IN GPT2 Timer T5 Count Inp.						
P5.14	43		AN14, T4EUD GPT1 Timer T4 Ext. Up/Down Ctrl. Inp.						
P5.15	44		AN15, T2EUD GPT1 Timer T2 Ext. Up/Down Ctrl. Inp.						

Symbol	Pin	Input	Function					
Gymbol	Num.	Outp.						
Ρ4		IO	Port 4 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. The Port 4 outputs can be configured as push/pull or open drain drivers. The input threshold of Port 4 is selectable (TTL or special). Port 4 can be used to output the segment address lines and for serial interface lines: ¹⁾					
P4.0	85	0	A16 Least Significant Segment Address Line					
P4.1	86	0	A17 Segment Address Line					
P4.2	87	0	A18 Segment Address Line					
P4.3	88	0	A19 Segment Address Line					
P4.4	89	0 I	A20 Segment Address Line, CAN2_RxD CAN 2 Receive Data Input					
P4.5	90	0	A21 Segment Address Line,					
P4.6	91	0 0 0	CAN1_RxD CAN 1 Receive Data Input A22 Segment Address Line, CAN1_TxD CAN 1 Transmit Data Output, CAN2_TxD CAN 2 Transmit Data Output					
P4.7	92	0 0 	A23 Most Significant Segment Address Line, CAN1_RxD CAN 1 Receive Data Input, CAN2_TxD CAN 2 Transmit Data Output, CAN2_RxD CAN 2 Receive Data Input					
RD	95	0	External Memory Read Strobe. $\overline{\text{RD}}$ is activated for every external instruction or data read access.					
WR/ WRL	96	0	External Memory Write Strobe. In WR-mode this pin is activated for every external data write access. In WRL-mode this pin is activated for low byte data write accesses on a 16-bit bus, and for every data write access on an 8-bit bus. See WRCFG in register SYSCON for mode selection.					
READY	97	1	Ready Input. When the Ready function is enabled, a high level at this pin during an external memory access will force the insertion of memory cycle time waitstates until the pin returns to a low level. An internal pullup device will hold this pin high when nothing is driving it.					

Data Sheet

Memory Organization

The memory space of the C167CS is configured in a Von Neumann architecture which means that code memory, data memory, registers and I/O ports are organized within the same linear address space which includes 16 MBytes. The entire memory space can be accessed bytewise or wordwise. Particular portions of the on-chip memory have additionally been made directly bitaddressable.

The C167CS incorporates 32 KBytes of on-chip mask-programmable ROM (not in the ROM-less derivative, of course) for code or constant data. The 32 KBytes of the on-chip ROM can be mapped either to segment 0 or segment 1.

3 KBytes of on-chip Internal RAM (IRAM) are provided as a storage for user defined variables, for the system stack, general purpose register banks and even for code. A register bank can consist of up to 16 wordwide (R0 to R15) and/or bytewide (RL0, RH0, ..., RL7, RH7) so-called General Purpose Registers (GPRs).

1024 bytes (2×512 bytes) of the address space are reserved for the Special Function Register areas (SFR space and ESFR space). SFRs are wordwide registers which are used for controlling and monitoring functions of the different on-chip units. Unused SFR addresses are reserved for future members of the C166 Family.

8 KBytes of on-chip Extension RAM (XRAM), organized as two blocks of 2 KByte and 6 KByte, respectively, are provided to store user data, user stacks, or code. The XRAM is accessed like external memory and therefore cannot be used for the system stack or for register banks and is not bitaddressable. The XRAM permits 16-bit accesses with maximum speed.

In order to meet the needs of designs where more memory is required than is provided on chip, up to 16 MBytes of external RAM and/or ROM can be connected to the microcontroller.

The CPU has a register context consisting of up to 16 wordwide GPRs at its disposal. These 16 GPRs are physically allocated within the on-chip RAM area. A Context Pointer (CP) register determines the base address of the active register bank to be accessed by the CPU at any time. The number of register banks is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 1024 words is provided as a storage for temporary data. The system stack is allocated in the on-chip RAM area, and it is accessed by the CPU via the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack pointer value upon each stack access for the detection of a stack overflow or underflow.

The high performance offered by the hardware implementation of the CPU can efficiently be utilized by a programmer via the highly efficient C167CS instruction set which includes the following instruction classes:

- Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

Interrupt System

With an interrupt response time within a range from just 5 to 12 CPU clocks (in case of internal program execution), the C167CS is capable of reacting very fast to the occurrence of non-deterministic events.

The architecture of the C167CS supports several mechanisms for fast and flexible response to service requests that can be generated from various sources internal or external to the microcontroller. Any of these interrupt requests can be programmed to being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).

In contrast to a standard interrupt service where the current program execution is suspended and a branch to the interrupt vector table is performed, just one cycle is 'stolen' from the current CPU activity to perform a PEC service. A PEC service implies a single byte or word data transfer between any two memory locations with an additional increment of either the PEC source or the destination pointer. An individual PEC transfer counter is implicitly decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source related vector location. PEC services are very well suited, for example, for supporting the transmission or reception of blocks of data. The C167CS has 8 PEC channels each of which offers such fast interrupt-driven data transfer capabilities.

A separate control register which contains an interrupt request flag, an interrupt enable flag and an interrupt priority bitfield exists for each of the possible interrupt sources. Via its related register, each source can be programmed to one of sixteen interrupt priority levels. Once having been accepted by the CPU, an interrupt service can only be interrupted by a higher prioritized service request. For the standard interrupt processing, each of the possible interrupt sources has a dedicated vector location.

Fast external interrupt inputs are provided to service external interrupts with high precision requirements. These fast interrupt inputs feature programmable edge detection (rising edge, falling edge or both edges).

Software interrupts are supported by means of the 'TRAP' instruction in combination with an individual trap (interrupt) number.

Table 3 shows all of the possible C167CS interrupt sources and the corresponding hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.

Note: Interrupt nodes which are not used by associated peripherals, may be used to generate software controlled interrupt requests by setting the respective interrupt request bit (xIR).

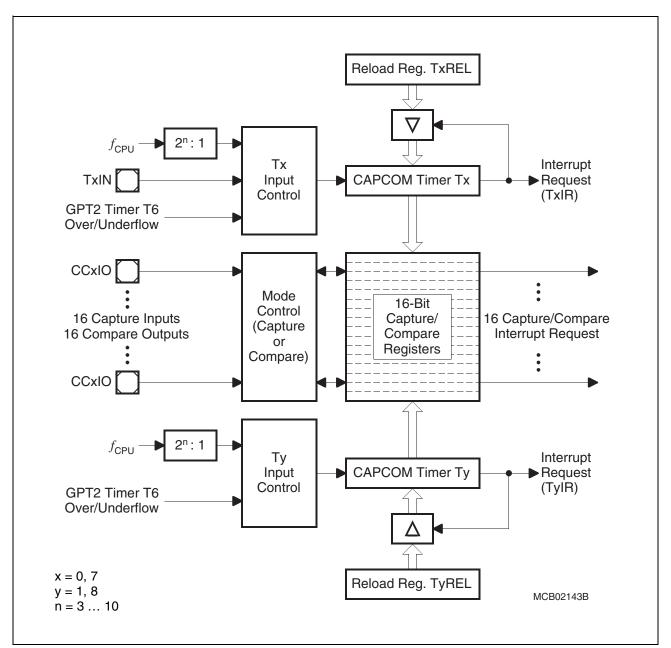
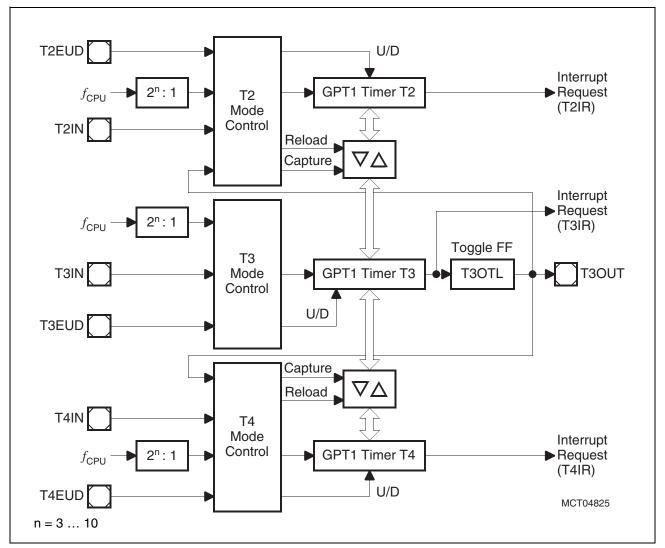



Figure 5 CAPCOM Unit Block Diagram

PWM Module

The Pulse Width Modulation Module can generate up to four PWM output signals using edge-aligned or center-aligned PWM. In addition the PWM module can generate PWM burst signals and single shot outputs. The frequency range of the PWM signals covers 5 Hz to 20 MHz (referred to a CPU clock of 40 MHz), depending on the resolution of the PWM output signal. The level of the output signals is selectable and the PWM module can generate interrupt requests.

Figure 6 Block Diagram of GPT1

With its maximum resolution of 8 TCL, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The count direction (up/ down) for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin (TxEUD). Concatenation of the timers is supported via the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin T6OUT. The overflows/underflows of timer T6 can additionally be used to clock the CAPCOM timers T0 or T1, and to cause a reload from the CAPREL register. The CAPREL register may capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN), and timer T5 may optionally be cleared

Parallel Ports

The C167CS provides up to 111 I/O lines which are organized into eight input/output ports and one input port. All port lines are bit-addressable, and all input/output lines are individually (bit-wise) programmable as inputs or outputs via direction registers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. The output drivers of five I/O ports can be configured (pin by pin) for push/pull operation or open-drain operation via control registers. During the internal reset, all port pins are configured as inputs.

The input threshold of Port 2, Port 3, Port 7, and Port 8 is selectable (TTL or CMOS like), where the special CMOS like input threshold reduces noise sensitivity due to the input hysteresis. The input threshold may be selected individually for each byte of the respective ports.

All port lines have programmable alternate input or output functions associated with them. All port lines that are not used for these alternate functions may be used as general purpose IO lines.

PORT0 and PORT1 may be used as address and data lines when accessing external memory, while Port 4 outputs the additional segment address bits A23/19/17 ... A16 in systems where segmentation is enabled to access more than 64 KBytes of memory.

Port 2, Port 8 and Port 7 (and parts of PORT1) are associated with the capture inputs or compare outputs of the CAPCOM units and/or with the outputs of the PWM module.

Port 6 provides optional bus arbitration signals (BREQ, HLDA, HOLD) and chip select signals.

Port 3 includes alternate functions of timers, serial interfaces, the optional bus control signal BHE/WRH, and the system clock output CLKOUT (or the programmable frequency output FOUT).

Port 5 (and parts of PORT1) is used for the analog input channels to the A/D converter or timer control signals.

The edge characteristics (transition time) and driver characteristics (output current) of the C167CS's port drivers can be selected via the Port Output Control registers (POCONx).

Oscillator Watchdog

The Oscillator Watchdog (OWD) monitors the clock signal generated by the on-chip oscillator (either with a crystal or via external clock drive). For this operation the PLL provides a clock signal which is used to supervise transitions on the oscillator clock. This PLL clock is independent from the XTAL1 clock. When the expected oscillator clock transitions are missing the OWD activates the PLL Unlock/OWD interrupt node and supplies the CPU with the PLL clock signal. Under these circumstances the PLL will oscillate with its basic frequency.

In direct drive mode the PLL base frequency is used directly ($f_{CPU} = 2 \dots 5 \text{ MHz}$). In prescaler mode the PLL base frequency is divided by 2 ($f_{CPU} = 1 \dots 2.5 \text{ MHz}$).

Note: The CPU clock source is only switched back to the oscillator clock after a hardware reset.

The oscillator watchdog can be disabled by setting bit OWDDIS in register SYSCON. In this case (OWDDIS = '1') the PLL remains idle and provides no clock signal, while the CPU clock signal is derived directly from the oscillator clock or via prescaler or SDD. Also no interrupt request will be generated in case of a missing oscillator clock.

Note: At the end of a reset bit OWDDIS reflects the inverted level of pin RD at that time. Thus the oscillator watchdog may also be disabled via hardware by (externally) pulling the RD line low upon a reset, similar to the standard reset configuration via PORT0.

Power Management

The C167CS provides several means to control the power it consumes either at a given time or averaged over a certain timespan. Three mechanisms can be used (partly in parallel):

• **Power Saving Modes** switch the C167CS into a special operating mode (control via instructions).

Idle Mode stops the CPU while the peripherals can continue to operate.

Sleep Mode and Power Down Mode stop all clock signals and all operation (RTC may optionally continue running). Sleep Mode can be terminated by external interrupt signals.

Clock Generation Management controls the distribution and the frequency of internal and external clock signals (control via register SYSCON2).
 Slow Down Mode lets the C167CS run at a CPU clock frequency of *f*_{OSC}/1 ... 32 (half for prescaler operation) which drastically reduces the consumed power. The PLL can be optionally disabled while operating in Slow Down Mode.

External circuitry can be controlled via the programmable frequency output FOUT.

• **Peripheral Management** permits temporary disabling of peripheral modules (control via register SYSCON3).

Each peripheral can separately be disabled/enabled. A group control option disables a major part of the peripheral set by setting one single bit.

The on-chip RTC supports intermittent operation of the C167CS by generating cyclic wakeup signals. This offers full performance to quickly react on action requests while the intermittent sleep phases greatly reduce the average power consumption of the system.

Special Function Registers Overview

Table 7 lists all SFRs which are implemented in the C167CS in alphabetical order. **Bit-addressable** SFRs are marked with the letter "**b**" in column "Name". SFRs within the **Extended SFR-Space** (ESFRs) are marked with the letter "**E**" in column "Physical Address". Registers within on-chip X-peripherals are marked with the letter "**X**" in column "Physical Address".

An SFR can be specified via its individual mnemonic name. Depending on the selected addressing mode, an SFR can be accessed via its physical address (using the Data Page Pointers), or via its short 8-bit address (without using the Data Page Pointers).

Name		Physical Address		8-Bit Addr.	Description	Reset Value
ADCIC	ADCIC b FF			CCH	A/D Converter End of Conversion Interrupt Control Register	0000 _H
ADCON	b	FFA0 _H		D0 _H	A/D Converter Control Register	0000 _H
ADDAT		FEA0 _H		50 _H	A/D Converter Result Register	0000 _H
ADDAT2		F0A0 _H	Ε	50 _H	A/D Converter 2 Result Register	0000 _H
ADDRSEL1		FE18 _H		0C _H	Address Select Register 1	0000 _H
ADDRSEL2	2	FE1A _H		0D _H	Address Select Register 2	0000 _H
ADDRSEL3	3	FE1C _H	FE1C _H		Address Select Register 3	0000 _H
ADDRSEL4	ŀ	FE1E _H		0F _H	Address Select Register 4	0000 _H
ADEIC	b	FF9A _H		CD _H	A/D Converter Overrun Error Interrupt Control Register	0000 _H
BUSCON0	b	FF0C _H		86 _H	Bus Configuration Register 0	0XX0 _H
BUSCON1	b	FF14 _H		8A _H	Bus Configuration Register 1	0000 _H
BUSCON2	b	FF16 _H		8B _H	Bus Configuration Register 2	0000 _H
BUSCON3	b	FF18 _H		8C _H	Bus Configuration Register 3	0000 _H
BUSCON4	b	FF1A _H		8D _H	Bus Configuration Register 4	0000 _H
C1BTR		EF04 _H	Χ		CAN1 Bit Timing Register	UUUU _H
C1CSR		EF00 _H	Χ		CAN1 Control/Status Register	XX01 _H
C1GMS		EF06 _H	Χ		CAN1 Global Mask Short	UFUU _H
C1PCIR		EF02 _H	Χ		CAN1 Port Control/Interrupt Register	XXXX _H
C1LGML		EF0A _H	Χ		CAN1 Lower Global Mask Long	UUUU _H
C1LMLM		EF0E _H	Χ		CAN1 Lower Mask of Last Message	UUUU _H

Table 7 C167CS Registers, Ordered by Name

Table 7C167CS Registers, Ordered by Name (cont'd)

Name		Physical Address	8-Bit Addr.	Description	Reset Value
ONES	b	FF1E _H	8F _H	Constant Value 1's Register (read only)	FFFF _H
P0H	b	FF02 _H	81 _H	Port 0 High Reg. (Upper half of PORT0)	00 _H
P0L	b	FF00 _H	80 _H	Port 0 Low Reg. (Lower half of PORT0)	00 _H
P1DIDIS		FEA4 _H	52 _H	Port 1 Digital Input Disable Register	0000 _H
P1H	b	FF06 _H	83 _H	Port 1 High Reg. (Upper half of PORT1)	00 _H
P1L	b	FF04 _H	82 _H	Port 1 Low Reg. (Lower half of PORT1)	00 _H
P2	b	FFC0 _H	E0 _H	Port 2 Register	0000 _H
P3	b	FFC4 _H	E2 _H	Port 3 Register	0000 _H
P4	b	FFC8 _H	E4 _H	Port 4 Register (8 bits)	00 _H
P5	b	FFA2 _H	D1 _H	Port 5 Register (read only)	XXXX _H
P5DIDIS	b	FFA4 _H	D2 _H	Port 5 Digital Input Disable Register	0000 _H
P6	b	FFCC _H	E6 _H	Port 6 Register (8 bits)	00 _H
P7	b	FFD0 _H	E8 _H	Port 7 Register (8 bits)	00 _H
P8	b	FFD4 _H	EA _H	Port 8 Register (8 bits)	00 _H
PECC0		FEC0 _H	60 _H	PEC Channel 0 Control Register	0000 _H
PECC1		FEC2 _H	61 _H	PEC Channel 1 Control Register	0000 _H
PECC2		FEC4 _H	62 _H	PEC Channel 2 Control Register	0000 _H
PECC3		FEC6 _H	63 _H	PEC Channel 3 Control Register	0000 _H
PECC4		FEC8 _H	64 _H	PEC Channel 4 Control Register	0000 _H
PECC5		FECA _H	65 _H	PEC Channel 5 Control Register	0000 _H
PECC6		FECC _H	66 _H	PEC Channel 6 Control Register	0000 _H
PECC7		FECE _H	67 _H	PEC Channel 7 Control Register	0000 _H
PICON	b	F1C4 _H E	E E2 _H	Port Input Threshold Control Register	0000 _H
POCON0H		F082 _H E	41 _H	Port P0H Output Control Register	0000 _H
POCON0L		F080 _H E	40 _H	Port P0L Output Control Register	0000 _H
POCON1H		F086 _H E	43 _H	Port P1H Output Control Register	0000 _H
POCON1L		F084 _H E	42 _H	Port P1L Output Control Register	0000 _H
POCON2		F088 _H E	44 _H	Port P2 Output Control Register	0000 _H
POCON20		F0AA _H E	55 _H	Dedicated Pin Output Control Register	0000 _H
POCON3		F08A _H E	45 _H	Port P3 Output Control Register	0000 _H

Table 7C167CS Registers, Ordered by Name (cont'd)

Name Physical Address			8-Bit Addr.	Description	Reset Value			
SORBUF		FEB2 _H		59 _H	Serial Channel 0 Receive Buffer Reg. (read only)	XX _H		
SORIC	b	FF6E _H		B7 _H	Serial Channel 0 Receive Interrupt Control Register	0000 _H		
SOTBIC	b	F19C _H	Ε	CEH	Serial Channel 0 Transmit Buffer Interrupt Control Register	0000 _H		
SOTBUF		FEB0 _H		58 _H	Serial Channel 0 Transmit Buffer Register (write only)	00 _H		
SOTIC	b	FF6C _H		B6 _H	Serial Channel 0 Transmit Interrupt Control Register	0000 _H		
SP		FE12 _H		09 _H	CPU System Stack Pointer Register	FC00 _H		
SSCBR		F0B4 _H	Ε	5A _H	SSC Baudrate Register	0000 _H		
SSCCON	b	FFB2 _H		D9 _H	SSC Control Register	0000 _H		
SSCEIC	b	FF76 _H		FF76 _H		BB _H	SSC Error Interrupt Control Register	0000 _H
SSCRB		F0B2 _H	Ε	59 _H	SSC Receive Buffer	XXXX _H		
SSCRIC	b	FF74 _H		BA _H	SSC Receive Interrupt Control Register	0000 _H		
SSCTB		F0B0 _H	Ε	58 _H	SSC Transmit Buffer	0000 _H		
SSCTIC	b	FF72 _H		B9 _H	SSC Transmit Interrupt Control Register	0000 _H		
STKOV		FE14 _H		0A _H	CPU Stack Overflow Pointer Register	FA00 _H		
STKUN		FE16 _H		0B _H	CPU Stack Underflow Pointer Register	FC00 _H		
SYSCON	b	FF12 _H		89 _H	CPU System Configuration Register	¹⁾ 0XX0 _H		
SYSCON1	b	F1DC _H	Ε	EEH	CPU System Configuration Register 1	0000 _H		
SYSCON2	b	F1D0 _H	Ε	E8 _H	CPU System Configuration Register 2	0000 _H		
SYSCON3	b	F1D4 _H	Ε	EA _H	CPU System Configuration Register 3	0000 _H		
Т0		FE50 _H		28 _H	CAPCOM Timer 0 Register	0000 _H		
T01CON	b	FF50 _H		A8 _H	CAPCOM Timer 0 and Timer 1 Ctrl. Reg.	0000 _H		
TOIC	b	FF9C _H C		CEH	CAPCOM Timer 0 Interrupt Ctrl. Reg.	0000 _H		
T0REL		FE54 _H		2A _H	CAPCOM Timer 0 Reload Register	0000 _H		
T1		FE52 _H		29 _H	CAPCOM Timer 1 Register	0000 _H		
T1IC	b	FF9E _H		CF _H	CAPCOM Timer 1 Interrupt Ctrl. Reg.	0000 _H		
T1REL		FE56 _H		2B _H	CAPCOM Timer 1 Reload Register	0000 _H		

Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation of the C167CS. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Parameter	Symbol	Lim	it Values	Unit	Notes	
		min.	max.			
Digital supply voltage	V _{DD}	4.5	5.5	V	Active mode, $f_{CPUmax} = 40 \text{ MHz}$	
		2.5 ¹⁾	5.5	V	PowerDown mode	
Digital ground voltage	V _{SS}		0	V	Reference voltage	
Overload current	I _{OV}	-	±5	mA	Per pin ²⁾³⁾	
Absolute sum of overload currents	$\Sigma I_{OV} $	-	50	mA	3)	
External Load Capacitance	CL	-	50	pF	Pin drivers in fast edge mode ⁴⁾	
Ambient temperature	T _A	0	70	°C	SAB-C167CS	
		-40	85	°C	SAF-C167CS	
		-40	125	°C	SAK-C167CS	

Table 9 Operating Condition Parameters

¹⁾ Output voltages and output currents will be reduced when V_{DD} leaves the range defined for active mode.

²⁾ Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range (i.e. V_{OV} > V_{DD} + 0.5 V or V_{OV} < V_{SS} - 0.5 V). The absolute sum of input overload currents on all pins may not exceed **50 mA**. The supply voltage must remain within the specified limits. Proper operation is not guaranteed if overload conditions occur on functional pins line XTAL1, RD, WR, etc.

³⁾ Not 100% tested, guaranteed by design and characterization.

⁴⁾ The timing is valid for pin drivers in high current or dynamic current mode. The reduced static output current in dynamic current mode must be respected when designing the system.

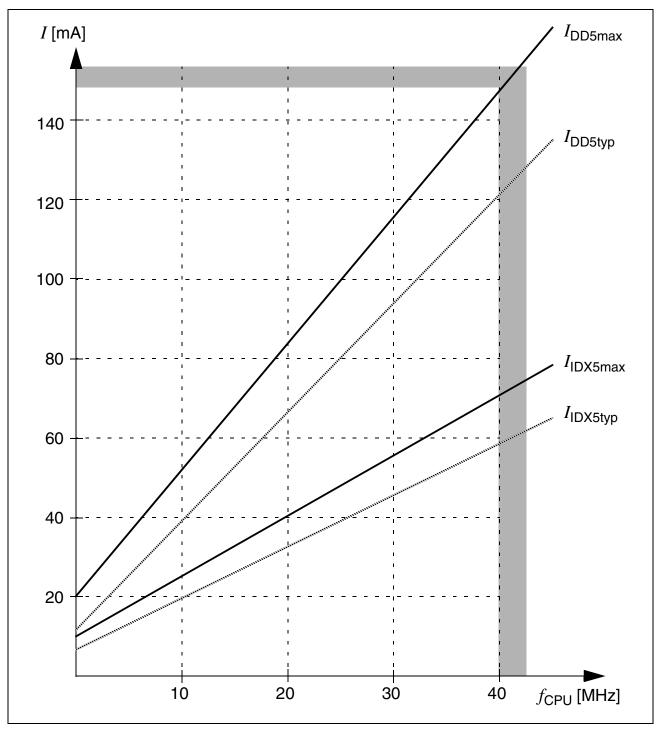


Figure 10 Supply/Idle Current as a Function of Operating Frequency

AC Characteristics External Clock Drive XTAL1

(Operating Conditions apply)

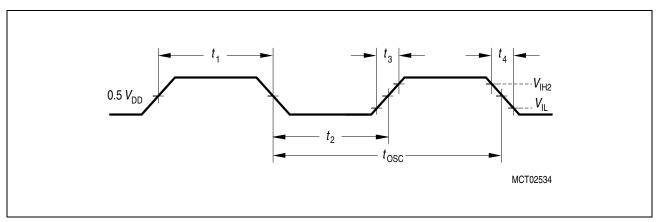

Parameter Symbol		bol	Direct Drive 1:1		Prescaler 2:1		PLL 1:N		Unit
			min.	max.	min.	max.	min.	max.]
Oscillator period	t _{OSC}	SR	25	_	20	_	37 ¹⁾	500 ¹⁾	ns
High time ²⁾	<i>t</i> ₁	SR	12 ³⁾	_	5	_	10	_	ns
Low time ²⁾	<i>t</i> ₂	SR	12 ³⁾	_	5	_	10	_	ns
Rise time ²⁾	t ₃	SR	-	8	-	5	-	10	ns
Fall time ²⁾	<i>t</i> ₄	SR	_	8	-	5	-	10	ns

Table 12 External Clock Drive Characteristics

 The minimum and maximum oscillator periods for PLL operation depend on the selected CPU clock generation mode. Please see respective table above.

²⁾ The clock input signal must reach the defined levels V_{IL2} and V_{IH2} .

³⁾ The minimum high and low time refers to a duty cycle of 50%. The maximum operating frequency (f_{CPU}) in direct drive mode depends on the duty cycle of the clock input signal.

Figure 13 External Clock Drive XTAL1

Note: If the on-chip oscillator is used together with a crystal, the oscillator frequency is limited to a range of 4 MHz to 40 MHz.

It is strongly recommended to measure the oscillation allowance (or margin) in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the limits specified by the crystal supplier.

When driven by an external clock signal it will accept the specified frequency range. Operation at lower input frequencies is possible but is guaranteed by design only (not 100% tested).

- ⁵⁾ As the default basic clock after reset is $f_{BC} = f_{CPU}$ / 4 the ADC's prescaler (ADCTC) must be programmed to a valid factor as early as possible. A timeframe of approx. 6000 CPU clock cycles is sufficient to ensure a proper reset calibration. This corresponds to minimum 300 instructions (worst case: external MUX bus with maximum waitstates). This is **required for** f_{CPU} > **33 MHz** and is recommended for f_{CPU} > 25 MHz. During the reset calibration conversions can be executed (with the current accuracy). The time required for these conversions is added to the total reset calibration time.
- ⁶⁾ During the conversion the ADC's capacitance must be repeatedly charged or discharged. The internal resistance of the reference voltage source must allow the capacitance to reach its respective voltage level within each conversion step. The maximum internal resistance results from the programmed conversion timing.
- ⁷⁾ Not 100% tested, guaranteed by design and characterization.
- ⁸⁾ During the sample time the input capacitance C_{AIN} can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S . After the end of the sample time t_S , changes of the analog input voltage have no effect on the conversion result. Values for the sample time t_S depend on programming and can be taken from Table 14.

Sample time and conversion time of the C167CS's A/D Converter are programmable. **Table 14** should be used to calculate the above timings.

The limit values for f_{BC} must not be exceeded when selecting ADCTC.

ADCON.15 14 (ADCTC)	A/D Converter Basic Clock $f_{\rm BC}$	ADCON.13 12 (ADSTC)	Sample time <i>t</i> S
00	<i>f</i> _{СРU} / 4	00	$t_{\rm BC} \times 8$
01	f _{CPU} / 2	01	$t_{\rm BC} imes$ 16
10	<i>f</i> _{СРU} / 16	10	$t_{\rm BC} imes 32$
11	f _{CPU} / 8	11	$t_{\rm BC} imes 64$

Table 14A/D Converter Computation Table

Converter Timing Example:

Assumptions:	$f_{\sf CPU}$	= 25 MHz (i.e. <i>t</i> _{CPU} = 40 ns), ADCTC = '00', ADSTC = '00'.
Basic clock	$f_{\sf BC}$	= f _{CPU} / 4 = 6.25 MHz, i.e. t _{BC} = 160 ns.
Sample time	t _S	$= t_{\rm BC} \times 8 = 1280$ ns.
Conversion time	t _C	$= t_{S} + 40 t_{BC} + 2 t_{CPU} = (1280 + 6400 + 80) \text{ ns} = 7.8 \mu\text{s}.$

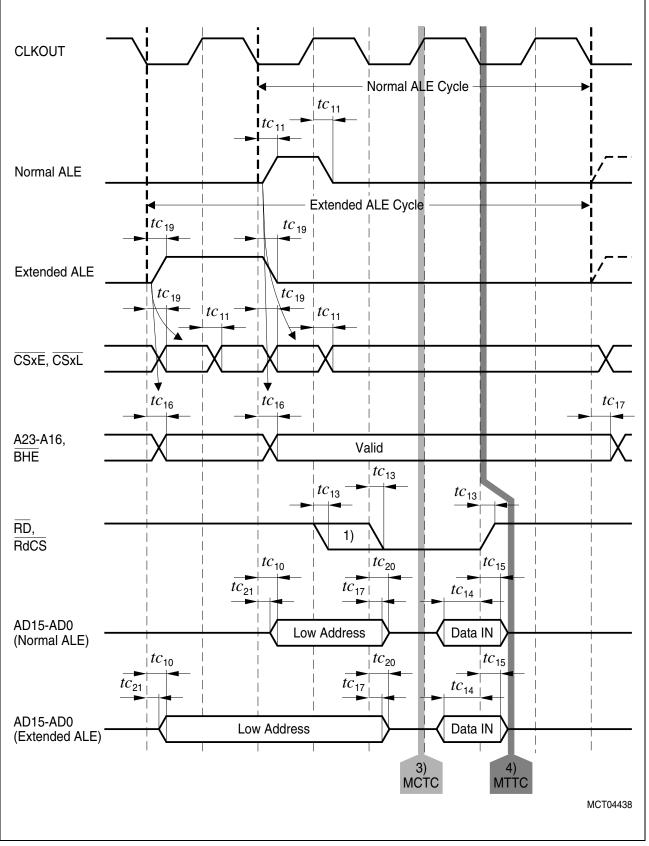


Figure 20 Multiplexed Bus, Read Access

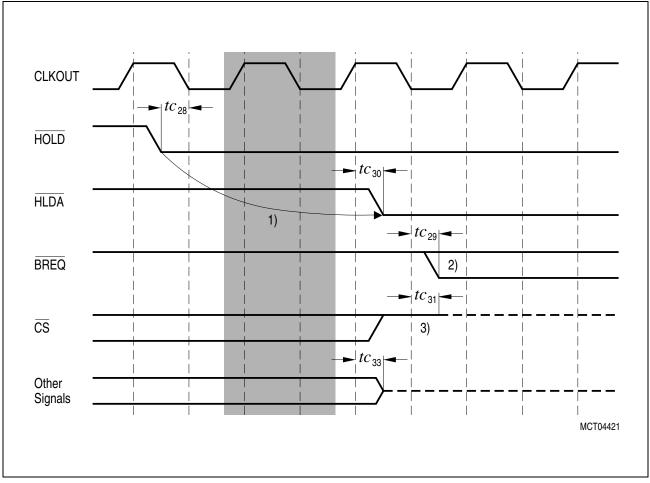


Figure 22 External Bus Arbitration, Releasing the Bus

- Notes ¹⁾ The C167CS will complete the currently running bus cycle before granting bus access.
- ²⁾ This is the first possibility for BREQ to get active.
- ³⁾ The \overline{CS} outputs will be resistive high (pullup) after t_{33} . Latched \overline{CS} outputs are driven high for 1 TCL before the output drivers are switched off.

External XRAM Access

If XPER-Share mode is enabled the on-chip XRAM of the C167CS can be accessed (during hold states) by an external master like an asynchronous SRAM.

Table 21	XRAM Access	Timing	(Operating	Conditions	apply)
I able 21	ANAIN ACCESS	rinning	(Operating	Conditions	appiy)

Parameter	Symbol		Limit Values		Unit	
				min.	max.	
Address setup time before RD/WR falling edge		<i>t</i> ₄₀	SR	4	-	ns
Address hold time after RD/WR rising edge		<i>t</i> ₄₁	SR	0	-	ns
Data turn on delay after \overline{RD} falling edge	q	<i>t</i> ₄₂	CC	2	-	ns
Data output valid delay after address latched	Read	t ₄₃	CC	-	37	ns
Data turn off delay after RD rising edge		<i>t</i> ₄₄	CC	0	10	ns
Write data setup time before \overline{WR} rising edge		t ₄₅	SR	10	-	ns
Write data hold time after \overline{WR} rising edge	ite	t ₄₆	SR	1	-	ns
WR pulse width	Write	t ₄₇	SR	18	-	ns
WR signal recovery time		t ₄₈	SR	t ₄₀	-	ns

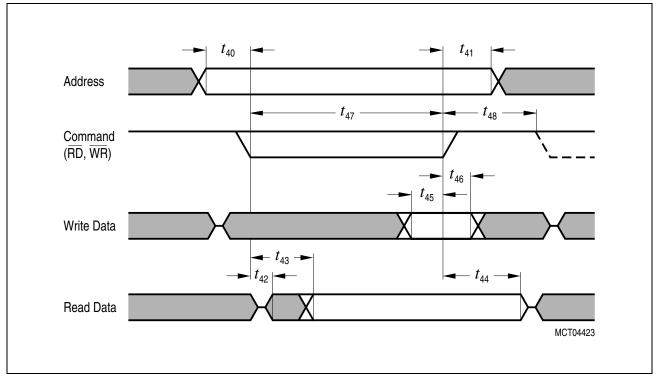


Figure 24 External Access to the XRAM