

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	33MHz
Connectivity	CANbus, EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	111
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	11K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-BQFP
Supplier Device Package	P-MQFP-144-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c167csl33mcakxuma2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2	Piı	n Definit	tions and Functions
Symbol	Pin Num.	Input Outp.	Function
P6		10	Port 6 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 6 outputs can be configured as push/ pull or open drain drivers. The Port 6 pins also serve for alternate functions:
P6.0	1	0	CS0 Chip Select 0 Output
P6.1	2	0	CS1 Chip Select 1 Output
P6.2	3	0	CS2 Chip Select 2 Output
P6.3	4	0	CS3 Chip Select 3 Output
P6.4	5	0	CS4 Chip Select 4 Output
P6.5	6	1	HOLD External Master Hold Request Input
P6.6	7	I/O	HLDA Hold Acknowledge Output (master mode) or Input (slave mode)
P6.7	8	0	BREQ Bus Request Output
P8		IO	Port 8 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 8 outputs can be configured as push/ pull or open drain drivers. The input threshold of Port 8 is selectable (TTL or special). Port 8 pins provide inputs/ outputs for CAPCOM2 and serial interface lines. ¹⁾
P8.0	9	I/O I I	CC16IO CAPCOM2: CC16 Capture Inp./Compare Outp., CAN1_RxD CAN 1 Receive Data Input, CAN2_RxD CAN 2 Receive Data Input
P8.1	10	I/O O O	CC17IO CAPCOM2: CC17 Capture Inp./Compare Outp., CAN1_TxD CAN 1 Transmit Data Output, CAN2_TxD CAN 2 Transmit Data Output
P8.2	11	/O 	CC18IO CAPCOM2: CC18 Capture Inp./Compare Outp., CAN1_RxD CAN 1 Receive Data Input, CAN2_RxD CAN 2 Receive Data Input
P8.3	12	/O 	CC19IO CAPCOM2: CC19 Capture Inp./Compare Outp., CAN1_TxD CAN 1 Transmit Data Output, CAN2_TxD CAN 2 Transmit Data Output
P8.4	13	I/O	CC20IO CAPCOM2: CC20 Capture Inp./Compare Outp.
P8.5	14	I/O	CC21IO CAPCOM2: CC21 Capture Inp./Compare Outp.
P8.6	15	I/O	CC22IO CAPCOM2: CC22 Capture Inp./Compare Outp.
P8.7	16	I/O	CC23IO CAPCOM2: CC23 Capture Inp./Compare Outp.

l able 2	Pir	n Definit	ions and Functions	(cont'd)					
Symbol	Pin Num.	Input Outp.	Function						
ALE	98	0	Address Latch Enable Output. Can be used for latching the address into external memory or an address latch in the multiplexed bus modes.						
ĒĀ	99	1	External Access Enable pin. A low level at this pin during and after Reset forces the C167CS to begin instruction execution out of external memory. A high level forces execution out of the internal program memory. "ROMless" versions must have this pin tied to '0'.						
PORT0 P0L.0-7 P0H.0-7	100- 107 108, 111-	10	PORT0 consists of the two 8-bit bidirectional I/O ports P0L and P0H. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output drive is put into high-impedance state. In case of an external bus configuration. PORT0 serves as						
	117		the address (A) and address/data (AD) bus in multiplexed bus modes and as the data (D) bus in demultiplexed bus modes.						
			Demultiplexed bus	modes:					
			Data Path Width:	8-bit	16-bit				
			P0L.0 – P0L.7:	D0 – D7	D0 – D7				
			P0H.0 – P0H.7:	I/O	D8 – D15				
			Multiplexed bus m	odes:					
			Data Path Width:	8-bit	16-bit				
			P0L.0 – P0L.7:	AD0 – AD7	AD0 – AD7				
			P0H.0 – P0H.7:	A8 – A15	AD8 – AD15				

External Bus Controller

All of the external memory accesses are performed by a particular on-chip External Bus Controller (EBC). It can be programmed either to Single Chip Mode when no external memory is required, or to one of four different external memory access modes, which are as follows:

- 16-/18-/20-/24-bit Addresses, 16-bit Data, Demultiplexed
- 16-/18-/20-/24-bit Addresses, 16-bit Data, Multiplexed
- 16-/18-/20-/24-bit Addresses, 8-bit Data, Multiplexed
- 16-/18-/20-/24-bit Addresses, 8-bit Data, Demultiplexed

In the demultiplexed bus modes, addresses are output on PORT1 and data is input/ output on PORT0 or P0L, respectively. In the multiplexed bus modes both addresses and data use PORT0 for input/output.

Important timing characteristics of the external bus interface (Memory Cycle Time, Memory Tri-State Time, Length of ALE and Read Write Delay) have been made programmable to allow the user the adaption of a wide range of different types of memories and external peripherals.

In addition, up to 4 independent address windows may be defined (via register pairs ADDRSELx / BUSCONx) which control the access to different resources with different bus characteristics. These address windows are arranged hierarchically where BUSCON4 overrides BUSCON3 and BUSCON2 overrides BUSCON1. All accesses to locations not covered by these 4 address windows are controlled by BUSCON0.

Up to 5 external \overline{CS} signals (4 windows plus default) can be generated in order to save external glue logic. The C167CS offers the possibility to switch the \overline{CS} outputs to an unlatched mode. In this mode the internal filter logic is switched off and the \overline{CS} signals are directly generated from the address. The unlatched \overline{CS} mode is enabled by setting CSCFG (SYSCON.6).

Access to very slow memories or memories with varying access times is supported via a particular 'Ready' function.

A HOLD/HLDA protocol is available for bus arbitration and allows to share external resources with other bus masters. The bus arbitration is enabled by setting bit HLDEN in register PSW. After setting HLDEN once, pins P6.7 ... P6.5 (BREQ, HLDA, HOLD) are automatically controlled by the EBC. In Master Mode (default after reset) the HLDA pin is an output. By setting bit DP6.7 to '1' the Slave Mode is selected where pin HLDA is switched to input. This allows to directly connect the slave controller to another master controller without glue logic.

For applications which require less than 16 MBytes of external memory space, this address space can be restricted to 1 MByte, 256 KByte, or to 64 KByte. In this case Port 4 outputs four, two, or no address lines at all. It outputs all 8 address lines, if an address space of 16 MBytes is used.

The CPU has a register context consisting of up to 16 wordwide GPRs at its disposal. These 16 GPRs are physically allocated within the on-chip RAM area. A Context Pointer (CP) register determines the base address of the active register bank to be accessed by the CPU at any time. The number of register banks is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 1024 words is provided as a storage for temporary data. The system stack is allocated in the on-chip RAM area, and it is accessed by the CPU via the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack pointer value upon each stack access for the detection of a stack overflow or underflow.

The high performance offered by the hardware implementation of the CPU can efficiently be utilized by a programmer via the highly efficient C167CS instruction set which includes the following instruction classes:

- Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

Table 3	C167CS Interrupt Nodes (cont'd)
---------	--------------------------	---------

Source of Interrupt or PEC Service Request	Request Flag	Enable Flag	Interrupt Vector	Vector Location	Trap Number
CAPCOM Register 30	CC30IR	CC30IE	CC30INT	00'0114 _H	45 _H
CAPCOM Register 31	CC31IR	CC31IE	CC31INT	00'0118 _H	46 _H
CAPCOM Timer 0	T0IR	TOIE	TOINT	00'0080 _H	20 _H
CAPCOM Timer 1	T1IR	T1IE	T1INT	00'0084 _H	21 _H
CAPCOM Timer 7	T7IR	T7IE	T7INT	00'00F4 _H	3D _H
CAPCOM Timer 8	T8IR	T8IE	T8INT	00'00F8 _H	3E _H
GPT1 Timer 2	T2IR	T2IE	T2INT	00'0088 _H	22 _H
GPT1 Timer 3	T3IR	T3IE	T3INT	00'008C _H	23 _H
GPT1 Timer 4	T4IR	T4IE	T4INT	00'0090 _H	24 _H
GPT2 Timer 5	T5IR	T5IE	T5INT	00'0094 _H	25 _H
GPT2 Timer 6	T6IR	T6IE	T6INT	00'0098 _H	26 _H
GPT2 CAPREL Reg.	CRIR	CRIE	CRINT	00'009C _H	27 _H
A/D Conversion Complete	ADCIR	ADCIE	ADCINT	00'00A0 _H	28 _H
A/D Overrun Error	ADEIR	ADEIE	ADEINT	00'00A4 _H	29 _H
ASC0 Transmit	S0TIR	SOTIE	SOTINT	00'00A8 _H	2A _H
ASC0 Transmit Buffer	S0TBIR	SOTBIE	SOTBINT	00'011C _H	47 _H
ASC0 Receive	S0RIR	SORIE	SORINT	00'00AC _H	2B _H
ASC0 Error	S0EIR	SOEIE	SOEINT	00'00B0 _H	2C _H
SSC Transmit	SCTIR	SCTIE	SCTINT	00'00B4 _H	2D _H
SSC Receive	SCRIR	SCRIE	SCRINT	00'00B8 _H	2E _H
SSC Error	SCEIR	SCEIE	SCEINT	00'00BC _H	2F _H
PWM Channel 0 3	PWMIR	PWMIE	PWMINT	00'00FC _H	3F _H
CAN Interface 1	XP0IR	XP0IE	XP0INT	00'0100 _H	40 _H
CAN Interface 2	XP1IR	XP1IE	XP1INT	00'0104 _H	41 _H
Unassigned node	XP2IR	XP2IE	XP2INT	00'0108 _H	42 _H
PLL/OWD and RTC	XP3IR	XP3IE	XP3INT	00'010C _H	43 _H

Capture/Compare (CAPCOM) Units

The CAPCOM units support generation and control of timing sequences on up to 32 channels with a maximum resolution of 16 TCL. The CAPCOM units are typically used to handle high speed I/O tasks such as pulse and waveform generation, pulse width modulation (PMW), Digital to Analog (D/A) conversion, software timing, or time recording relative to external events.

Four 16-bit timers (T0/T1, T7/T8) with reload registers provide two independent time bases for the capture/compare register array.

The input clock for the timers is programmable to several prescaled values of the internal system clock, or may be derived from an overflow/underflow of timer T6 in module GPT2. This provides a wide range of variation for the timer period and resolution and allows precise adjustments to the application specific requirements. In addition, external count inputs for CAPCOM timers T0 and T7 allow event scheduling for the capture/compare registers relative to external events.

Both of the two capture/compare register arrays contain 16 dual purpose capture/ compare registers, each of which may be individually allocated to either CAPCOM timer T0 or T1 (T7 or T8, respectively), and programmed for capture or compare function. Each register has one port pin associated with it which serves as an input pin for triggering the capture function, or as an output pin to indicate the occurrence of a compare event.

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('capture'd) into the capture/compare register in response to an external event at the port pin which is associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event. The contents of all registers which have been selected for one of the five compare modes are continuously compared with the contents of the allocated timers. When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the selected compare mode.

Parallel Ports

The C167CS provides up to 111 I/O lines which are organized into eight input/output ports and one input port. All port lines are bit-addressable, and all input/output lines are individually (bit-wise) programmable as inputs or outputs via direction registers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. The output drivers of five I/O ports can be configured (pin by pin) for push/pull operation or open-drain operation via control registers. During the internal reset, all port pins are configured as inputs.

The input threshold of Port 2, Port 3, Port 7, and Port 8 is selectable (TTL or CMOS like), where the special CMOS like input threshold reduces noise sensitivity due to the input hysteresis. The input threshold may be selected individually for each byte of the respective ports.

All port lines have programmable alternate input or output functions associated with them. All port lines that are not used for these alternate functions may be used as general purpose IO lines.

PORT0 and PORT1 may be used as address and data lines when accessing external memory, while Port 4 outputs the additional segment address bits A23/19/17 ... A16 in systems where segmentation is enabled to access more than 64 KBytes of memory.

Port 2, Port 8 and Port 7 (and parts of PORT1) are associated with the capture inputs or compare outputs of the CAPCOM units and/or with the outputs of the PWM module.

Port 6 provides optional bus arbitration signals (BREQ, HLDA, HOLD) and chip select signals.

Port 3 includes alternate functions of timers, serial interfaces, the optional bus control signal BHE/WRH, and the system clock output CLKOUT (or the programmable frequency output FOUT).

Port 5 (and parts of PORT1) is used for the analog input channels to the A/D converter or timer control signals.

The edge characteristics (transition time) and driver characteristics (output current) of the C167CS's port drivers can be selected via the Port Output Control registers (POCONx).

Table 7C167CS Registers, Ordered by Name (cont'd)

Name		Physica Address	ıl S	8-Bit Addr.	Description	Reset Value
SORBUF		FEB2 _H		59 _H	Serial Channel 0 Receive Buffer Reg. (read only)	XXH
SORIC	b	FF6E _H		B7 _H	Serial Channel 0 Receive Interrupt Control Register	0000 _H
SOTBIC	b	F19C _H	Ε	CEH	Serial Channel 0 Transmit Buffer Interrupt Control Register	0000 _H
SOTBUF		FEB0 _H		58 _H	Serial Channel 0 Transmit Buffer Register (write only)	00 _H
SOTIC	b	FF6C _H		B6 _H	Serial Channel 0 Transmit Interrupt Control Register	0000 _H
SP		FE12 _H		09 _H	CPU System Stack Pointer Register	FC00 _H
SSCBR		F0B4 _H	Ε	5A _H	SSC Baudrate Register	0000 _H
SSCCON	b	FFB2 _H		D9 _H	SSC Control Register	0000 _H
SSCEIC	b	FF76 _H		BB _H	SSC Error Interrupt Control Register	0000 _H
SSCRB		F0B2 _H	Ε	59 _H	SSC Receive Buffer	XXXX _H
SSCRIC	b	FF74 _H		BA _H	SSC Receive Interrupt Control Register	0000 _H
SSCTB		F0B0 _H	Ε	58 _H	SSC Transmit Buffer	0000 _H
SSCTIC	b	FF72 _H		B9 _H	SSC Transmit Interrupt Control Register	0000 _H
STKOV		FE14 _H		0A _H	CPU Stack Overflow Pointer Register	FA00 _H
STKUN		FE16 _H		0B _H	CPU Stack Underflow Pointer Register	FC00 _H
SYSCON	b	FF12 _H		89 _H	CPU System Configuration Register	¹⁾ 0XX0 _H
SYSCON1	b	F1DC _H	Ε	EEH	CPU System Configuration Register 1	0000 _H
SYSCON2	b	F1D0 _H	Ε	E8 _H	CPU System Configuration Register 2	0000 _H
SYSCON3	b	F1D4 _H	Ε	EA _H	CPU System Configuration Register 3	0000 _H
Т0		FE50 _H		28 _H	CAPCOM Timer 0 Register	0000 _H
T01CON	b	FF50 _H		A8 _H	CAPCOM Timer 0 and Timer 1 Ctrl. Reg.	0000 _H
TOIC	b	FF9C _H		CEH	CAPCOM Timer 0 Interrupt Ctrl. Reg.	0000 _H
T0REL		FE54 _H		2A _H	CAPCOM Timer 0 Reload Register	0000 _H
T1		FE52 _H		29 _H	CAPCOM Timer 1 Register	0000 _H
T1IC	b	FF9E _H		CF _H	CAPCOM Timer 1 Interrupt Ctrl. Reg.	0000 _H
T1REL		FE56 _H		2B _H	CAPCOM Timer 1 Reload Register	0000 _H

Table 7 CT07C5 negisters, Ordered by Name (cont d)										
Name		Physica Addres	al S	8-Bit Addr.	Description	Reset Value				
XP3IC	b	b F19E _H E		CF _H	RTC/PLL Interrupt Control Register	0000 _H				
XPERCON		F024 _H	Ε	12 _H	X-Peripheral Control Register	0401 _H				
ZEROS	b	FF1C _H		8E _H	Constant Value 0's Register (read only)	0000 _H				

Table 7 C167CS Registers, Ordered by Name (cont'd)

¹⁾ The system configuration is selected during reset.

²⁾ The reset value depends on the indicated reset source.

Absolute Maximum Ratings

		•				
Parameter	Symbol	Limit	Values	Unit	Notes	
		min.	max.			
Storage temperature	T _{ST}	-65	150	°C	-	
Junction temperature	T _J	-40	150	°C	under bias	
Voltage on V_{DD} pins with respect to ground (V_{SS})	V _{DD}	-0.5	6.5	V	-	
Voltage on any pin with respect to ground (V_{SS})	V _{IN}	-0.5	V _{DD} + 0.5	V	-	
Input current on any pin during overload condition	-	-10	10	mA	-	
Absolute sum of all input currents during overload condition	-	-	100	mA	_	
Power dissipation	P _{DISS}	-	1.5	W	-	

Table 8 Absolute Maximum Rating Parameters

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DD}$ or $V_{IN} < V_{SS}$) the voltage on V_{DD} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Figure 9 Idle and Power Down Supply Current as a Function of Oscillator Frequency

Figure 10 Supply/Idle Current as a Function of Operating Frequency

Direct Drive

When direct drive is configured (CLKCFG = 011_B) the on-chip phase locked loop is disabled and the CPU clock is directly driven from the internal oscillator with the input clock signal.

The frequency of f_{CPU} directly follows the frequency of f_{OSC} so the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the duty cycle of the input clock f_{OSC} .

The timings listed below that refer to TCLs therefore must be calculated using the minimum TCL that is possible under the respective circumstances. This minimum value can be calculated via the following formula:

 $TCL_{min} = 1/f_{OSC} \times DC_{min}$ (DC = duty cycle)

For two consecutive TCLs the deviation caused by the duty cycle of f_{OSC} is compensated so the duration of 2TCL is always $1/f_{OSC}$. The minimum value TCL_{min} therefore has to be used only once for timings that require an odd number of TCLs (1, 3, ...). Timings that require an even number of TCLs (2, 4, ...) may use the formula 2TCL = $1/f_{OSC}$.

AC Characteristics External Clock Drive XTAL1

(Operating Conditions apply)

Parameter	Symbol		Symbol		Direct Drive 1:1		Prescaler 2:1		PLL 1:N		Unit
			min.	max.	min.	max.	min.	max.			
Oscillator period	t _{OSC}	SR	25	-	20	-	37 ¹⁾	500 ¹⁾	ns		
High time ²⁾	<i>t</i> ₁	SR	12 ³⁾	-	5	-	10	_	ns		
Low time ²⁾	<i>t</i> ₂	SR	12 ³⁾	-	5	-	10	_	ns		
Rise time ²⁾	t ₃	SR	_	8	-	5	_	10	ns		
Fall time ²⁾	<i>t</i> ₄	SR	_	8	-	5	-	10	ns		

Table 12 External Clock Drive Characteristics

 The minimum and maximum oscillator periods for PLL operation depend on the selected CPU clock generation mode. Please see respective table above.

²⁾ The clock input signal must reach the defined levels V_{IL2} and V_{IH2} .

³⁾ The minimum high and low time refers to a duty cycle of 50%. The maximum operating frequency (f_{CPU}) in direct drive mode depends on the duty cycle of the clock input signal.

Figure 13 External Clock Drive XTAL1

Note: If the on-chip oscillator is used together with a crystal, the oscillator frequency is limited to a range of 4 MHz to 40 MHz.

It is strongly recommended to measure the oscillation allowance (or margin) in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the limits specified by the crystal supplier.

When driven by an external clock signal it will accept the specified frequency range. Operation at lower input frequencies is possible but is guaranteed by design only (not 100% tested).

Testing Waveforms

Figure 14 Input Output Waveforms

Parameter	Sym	bol	Li	Unit	
			min.	max.	
Output delay from CLKOUT falling edge Valid for: address (MUX on PORT0), write data out	<i>tc</i> ₁₀	CC	0	14	ns
Output delay from CLKOUT edge Valid for: latched CS, ALE (normal)	<i>tc</i> ₁₁	CC	-3	6	ns
Output delay from CLKOUT edge Valid for: WR, WRL, WRH, WrCS	<i>tc</i> ₁₂	CC	-4	7	ns
Output delay from CLKOUT edge Valid for: RD, RdCS	<i>tc</i> ₁₃	CC	-2	7	ns
Input setup time to CLKOUT falling edge Valid for: read data in	<i>tc</i> ₁₄	SR	10	-	ns
Input hold time after CLKOUT falling edge Valid for: read data in ¹⁾	<i>tc</i> ₁₅	SR	0	-	ns
Output delay from CLKOUT falling edge Valid for: address (on PORT1 and/or P4), BHE	<i>tc</i> ₁₆	CC	0	9 ²⁾	ns
Output hold time after CLKOUT falling edge Valid for: address, BHE ³⁾	<i>tc</i> ₁₇	CC	-2	8	ns
Output hold time after CLKOUT edge ⁴⁾ Valid for: write data out	<i>tc</i> ₁₈	CC	-1	-	ns
Output delay from CLKOUT falling edge Valid for: ALE (extended), early \overline{CS}	<i>tc</i> ₁₉	CC	-4	4	ns
Turn off delay after CLKOUT edge ⁴⁾ Valid for: write data out	<i>tc</i> ₂₀	CC	-	7	ns
Turn on delay after CLKOUT falling edge ⁴⁾ Valid for: write data out	<i>tc</i> ₂₁	CC	-5	-	ns
Output hold time after CLKOUT edge Valid for: early \overline{CS}	tc ₂₂	CC	-6	4	ns

Table 17 External Bus Cycle Timing (Operating Conditions apply)

1) Read data are latched with the same (internal) clock edge that triggers the address change and the rising edge of RD. Therefore address changes before the end of RD have no impact on (demultiplexed) read cycles.

²⁾ If the capacitive load on the respective output pins is limited to 30 pF the maximum output delay tc_{16} can be reduced to 8 ns.

³⁾ Due to comparable propagation delays the address does not change before $\overline{\text{WR}}$ goes high. The minimum output delay ($tc_{17\text{min}}$) is therefore the actual value of tc_{12} .

⁴⁾ Not 100% tested, guaranteed by design and characterization.

Figure 17 Demultiplexed Bus, Write Access

Figure 19 Multiplexed Bus, Write Access

Figure 20 Multiplexed Bus, Read Access

Figure 22 External Bus Arbitration, Releasing the Bus

- Notes ¹⁾ The C167CS will complete the currently running bus cycle before granting bus access.
- ²⁾ This is the first possibility for BREQ to get active.
- ³⁾ The \overline{CS} outputs will be resistive high (pullup) after t_{33} . Latched \overline{CS} outputs are driven high for 1 TCL before the output drivers are switched off.