

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

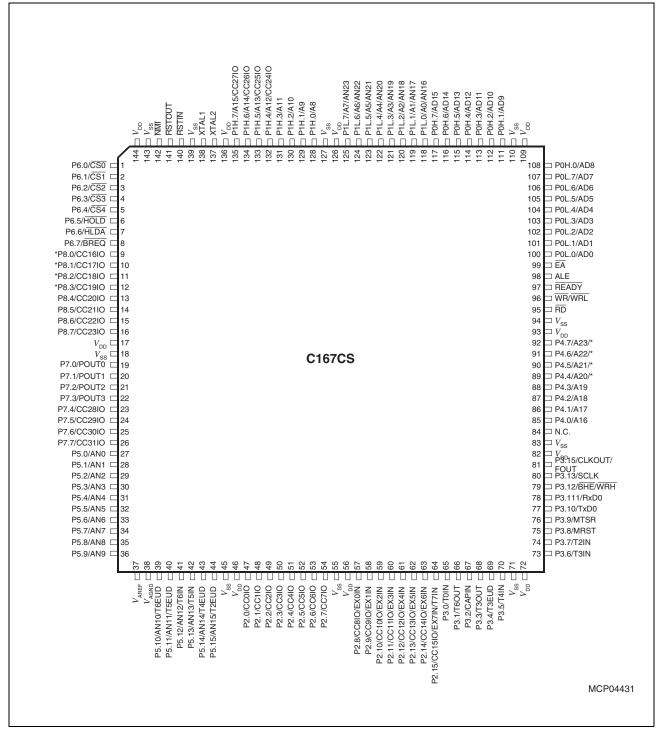
Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	40MHz
Connectivity	CANbus, EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	111
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	11K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	144-BQFP
Supplier Device Package	P-MQFP-144-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c167csl40mcabxqla2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

16-Bit Single-Chip Microcontroller C166 Family

C167CS


C167CS-4R, C167CS-L

- High Performance 16-bit CPU with 4-Stage Pipeline
 - 80/60/50 ns Instruction Cycle Time at 25/33/40 MHz CPU Clock
 - 400/303/250 ns Multiplication (16 × 16 bit), 800/606/500 ns Division (32-/16-bit)
 - Enhanced Boolean Bit Manipulation Facilities
 - Additional Instructions to Support HLL and Operating Systems
 - Register-Based Design with Multiple Variable Register Banks
 - Single-Cycle Context Switching Support
 - 16 MBytes Total Linear Address Space for Code and Data
 - 1024 Bytes On-Chip Special Function Register Area
- 16-Priority-Level Interrupt System with 56 Sources, Sample-Rate down to 40/30/25 ns
- 8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via Peripheral Event Controller (PEC)
- Clock Generation via on-chip PLL (factors 1:1.5/2/2.5/3/4/5), via prescaler or via direct clock input
- On-Chip Memory Modules
 - 3 KBytes On-Chip Internal RAM (IRAM)
 - 8 KBytes On-Chip Extension RAM (XRAM)
 - 32 KBytes On-Chip Program Mask ROM
- On-Chip Peripheral Modules
 - 24-Channel 10-bit A/D Converter with Programmable Conversion Time down to 7.8 μs
 - Two 16-Channel Capture/Compare Units
 - 4-Channel PWM Unit
 - Two Multi-Functional General Purpose Timer Units with 5 Timers
 - Two Serial Channels (Synchronous/Asynchronous and High-Speed-Synchronous)
 - Two On-Chip CAN Interfaces (Rev. 2.0B active) with 2×15 Message Objects (Full CAN/Basic CAN), can work on one bus with 30 objects
 - On-Chip Real Time Clock
- Up to 16 MBytes External Address Space for Code and Data
 - Programmable External Bus Characteristics for Different Address Ranges
 - Multiplexed or Demultiplexed External Address/Data Buses with 8-Bit or 16-Bit Data Bus Width
 - Five Programmable Chip-Select Signals
 - Hold- and Hold-Acknowledge Bus Arbitration Support
- Idle, Sleep, and Power Down Modes with Flexible Power Management
- Programmable Watchdog Timer and Oscillator Watchdog
- Up to 111 General Purpose I/O Lines, partly with Selectable Input Thresholds and Hysteresis

Pin Configuration

(top view)

Figure 2

*) The marked pins of Port 4 and Port 8 can have CAN interface lines assigned to them. Table 2 on the pages below lists the possible assignments.

Table 2	Pi	n Definit	tions and Functions (cont'd)							
Symbol	Pin Num.	Input Outp.	Function							
Ρ7		IO	Port 7 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 7 outputs can be configured as push/ pull or open drain drivers. The input threshold of Port 7 is selectable (TTL or special). The following Port 7 pins also serve for alternate functions:							
P7.0	19	0	POUT0 PWM Channel 0 Output							
P7.1	20	0	POUT1 PWM Channel 1 Output							
P7.2	21	0	POUT2 PWM Channel 2 Output							
P7.3	22	0	POUT3 PWM Channel 3 Output							
P7.4	23	I/O	CC28IO CAPCOM2: CC28 Capture Inp./Compare Outp.							
P7.5	24	I/O	CC29IO CAPCOM2: CC29 Capture Inp./Compare Outp.							
P7.6	25	I/O	CC30IO CAPCOM2: CC30 Capture Inp./Compare Outp.							
P7.7	26	I/O	CC31IO CAPCOM2: CC31 Capture Inp./Compare Outp.							
P5		I	Port 5 is a 16-bit input-only port with Schmitt-Trigger char. The pins of Port 5 also serve as analog input channels for the A/D converter, or they serve as timer inputs:							
P5.0	27	1	ANO							
P5.1	28	1	AN1							
P5.2	29	1	AN2							
P5.3	30	1	AN3							
P5.4	31	1	AN4							
P5.5	32	1	AN5							
P5.6	33	1	AN6							
P5.7	34	1	AN7							
P5.8	35	1	AN8							
P5.9	36	1	AN9							
P5.10	39	1	AN10, T6EUD GPT2 Timer T6 Ext. Up/Down Ctrl. Inp.							
P5.11	40	1	AN11, T5EUD GPT2 Timer T5 Ext. Up/Down Ctrl. Inp.							
P5.12	41		AN12, T6IN GPT2 Timer T6 Count Inp.							
P5.13	42	1	AN13, T5IN GPT2 Timer T5 Count Inp.							
P5.14	43		AN14, T4EUD GPT1 Timer T4 Ext. Up/Down Ctrl. Inp.							
P5.15	44		AN15, T2EUD GPT1 Timer T2 Ext. Up/Down Ctrl. Inp.							

Table 2	Pin Definitions and Functions (cont ² d)								
Symbol	Pin Num.	Input Outp.	Function						
PORT1		IO	PORT1 co	nsists of the two 8-bit bidirectional I/O ports P1L					
P1L.0-7	118-		and P1H. I	t is bit-wise programmable for input or output via					
	125		direction b	lirection bits. For a pin configured as input, the output driver					
P1H.0-7	128-		is put into	high-impedance state. PORT1 is used as the					
	135		16-bit addr	ess bus (A) in demultiplexed bus modes and also					
			after switching from a demultiplexed bus mode to a						
				d bus mode.					
				ing PORT1 pins also serve for alternate functions:					
P1L.0	118	1	AN16	Analog Input Channel 16					
P1L.1	119	1	AN17						
P1L.2	120	1	AN18	5 1					
P1L.3	121	1	AN19	Analog Input Channel 19					
P1L.4	122		AN20	Analog Input Channel 20					
P1L.5	123		AN21	Analog Input Channel 21					
P1L.6	124		AN22	Analog Input Channel 22					
P1L.7	125		AN23	Analog Input Channel 23					
P1H.4	132	I/O	CC24IO	CAPCOM2: CC24 Capture Inp./Compare Outp.					
P1H.5	133	I/O	CC25IO	CAPCOM2: CC25 Capture Inp./Compare Outp.					
P1H.6	134	I/O	CC26IO	CAPCOM2: CC26 Capture Inp./Compare Outp.					
P1H.7	135	I/O	CC27IO	CAPCOM2: CC27 Capture Inp./Compare Outp.					
XTAL2	137	0	XTAL2:	Output of the oscillator amplifier circuit.					
XTAL1	138	1	XTAL1:	Input to the oscillator amplifier and input to					
				the internal clock generator					
			To clock th	ne device from an external source, drive XTAL1,					
			while leaving XTAL2 unconnected. Minimum and maximum						
			high/low a	nd rise/fall times specified in the AC					
			Characteri	stics must be observed.					

External Bus Controller

All of the external memory accesses are performed by a particular on-chip External Bus Controller (EBC). It can be programmed either to Single Chip Mode when no external memory is required, or to one of four different external memory access modes, which are as follows:

- 16-/18-/20-/24-bit Addresses, 16-bit Data, Demultiplexed
- 16-/18-/20-/24-bit Addresses, 16-bit Data, Multiplexed
- 16-/18-/20-/24-bit Addresses, 8-bit Data, Multiplexed
- 16-/18-/20-/24-bit Addresses, 8-bit Data, Demultiplexed

In the demultiplexed bus modes, addresses are output on PORT1 and data is input/ output on PORT0 or P0L, respectively. In the multiplexed bus modes both addresses and data use PORT0 for input/output.

Important timing characteristics of the external bus interface (Memory Cycle Time, Memory Tri-State Time, Length of ALE and Read Write Delay) have been made programmable to allow the user the adaption of a wide range of different types of memories and external peripherals.

In addition, up to 4 independent address windows may be defined (via register pairs ADDRSELx / BUSCONx) which control the access to different resources with different bus characteristics. These address windows are arranged hierarchically where BUSCON4 overrides BUSCON3 and BUSCON2 overrides BUSCON1. All accesses to locations not covered by these 4 address windows are controlled by BUSCON0.

Up to 5 external \overline{CS} signals (4 windows plus default) can be generated in order to save external glue logic. The C167CS offers the possibility to switch the \overline{CS} outputs to an unlatched mode. In this mode the internal filter logic is switched off and the \overline{CS} signals are directly generated from the address. The unlatched \overline{CS} mode is enabled by setting CSCFG (SYSCON.6).

Access to very slow memories or memories with varying access times is supported via a particular 'Ready' function.

A HOLD/HLDA protocol is available for bus arbitration and allows to share external resources with other bus masters. The bus arbitration is enabled by setting bit HLDEN in register PSW. After setting HLDEN once, pins P6.7 ... P6.5 (BREQ, HLDA, HOLD) are automatically controlled by the EBC. In Master Mode (default after reset) the HLDA pin is an output. By setting bit DP6.7 to '1' the Slave Mode is selected where pin HLDA is switched to input. This allows to directly connect the slave controller to another master controller without glue logic.

For applications which require less than 16 MBytes of external memory space, this address space can be restricted to 1 MByte, 256 KByte, or to 64 KByte. In this case Port 4 outputs four, two, or no address lines at all. It outputs all 8 address lines, if an address space of 16 MBytes is used.

Table 3 C167CS Interrupt Nodes

Source of Interrupt or PEC Service Request	Request Flag	Enable Flag	Interrupt Vector	Vector Location	Trap Number
CAPCOM Register 0	CC0IR	CC0IE	CC0INT	00'0040 _H	10 _H
CAPCOM Register 1	CC1IR	CC1IE	CC1INT	00'0044 _H	11 _H
CAPCOM Register 2	CC2IR	CC2IE	CC2INT	00'0048 _H	12 _H
CAPCOM Register 3	CC3IR	CC3IE	CC3INT	00'004C _H	13 _H
CAPCOM Register 4	CC4IR	CC4IE	CC4INT	00'0050 _H	14 _H
CAPCOM Register 5	CC5IR	CC5IE	CC5INT	00'0054 _H	15 _H
CAPCOM Register 6	CC6IR	CC6IE	CC6INT	00'0058 _H	16 _H
CAPCOM Register 7	CC7IR	CC7IE	CC7INT	00'005C _H	17 _H
CAPCOM Register 8	CC8IR	CC8IE	CC8INT	00'0060 _H	18 _H
CAPCOM Register 9	CC9IR	CC9IE	CC9INT	00'0064 _H	19 _H
CAPCOM Register 10	CC10IR	CC10IE	CC10INT	00'0068 _H	1A _H
CAPCOM Register 11	CC11IR	CC11IE	CC11INT	00'006C _H	1B _H
CAPCOM Register 12	CC12IR	CC12IE	CC12INT	00'0070 _H	1C _H
CAPCOM Register 13	CC13IR	CC13IE	CC13INT	00'0074 _H	1D _H
CAPCOM Register 14	CC14IR	CC14IE	CC14INT	00'0078 _H	1E _H
CAPCOM Register 15	CC15IR	CC15IE	CC15INT	00'007C _H	1F _H
CAPCOM Register 16	CC16IR	CC16IE	CC16INT	00'00C0 _H	30 _H
CAPCOM Register 17	CC17IR	CC17IE	CC17INT	00'00C4 _H	31 _H
CAPCOM Register 18	CC18IR	CC18IE	CC18INT	00'00C8 _H	32 _H
CAPCOM Register 19	CC19IR	CC19IE	CC19INT	00'00CC _H	33 _H
CAPCOM Register 20	CC20IR	CC20IE	CC20INT	00'00D0 _H	34 _H
CAPCOM Register 21	CC21IR	CC21IE	CC21INT	00'00D4 _H	35 _H
CAPCOM Register 22	CC22IR	CC22IE	CC22INT	00'00D8 _H	36 _H
CAPCOM Register 23	CC23IR	CC23IE	CC23INT	00'00DC _H	37 _H
CAPCOM Register 24	CC24IR	CC24IE	CC24INT	00'00E0 _H	38 _H
CAPCOM Register 25	CC25IR	CC25IE	CC25INT	00'00E4 _H	39 _H
CAPCOM Register 26	CC26IR	CC26IE	CC26INT	00'00E8 _H	3A _H
CAPCOM Register 27	CC27IR	CC27IE	CC27INT	00'00EC _H	3B _H
CAPCOM Register 28	CC28IR	CC28IE	CC28INT	00'00E0 _H	3C _H
CAPCOM Register 29	CC29IR	CC29IE	CC29INT	00'0110 _H	44 _H

CAN-Modules

The integrated CAN-Modules handle the completely autonomous transmission and reception of CAN frames in accordance with the CAN specification V2.0 part B (active), i.e. the on-chip CAN-Modules can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers.

The modules provide Full CAN functionality on up to 15 message objects each. Message object 15 may be configured for Basic CAN functionality. Both modes provide separate masks for acceptance filtering which allows to accept a number of identifiers in Full CAN mode and also allows to disregard a number of identifiers in Basic CAN mode. All message objects can be updated independent from the other objects and are equipped for the maximum message length of 8 bytes.

The bit timing is derived from the XCLK and is programmable up to a data rate of 1 Mbit/ s. Each CAN-Module uses two pins of Port 4 or Port 8 to interface to an external bus transceiver. The interface pins are assigned via software.

Module CAN2 is identical with the first one, except that it uses a separate address area and a separate interrupt node.

The two CAN modules can be internally coupled by assigning their interface pins to the same two port pins, or they can interface to separate CAN buses.

Note: When any CAN interface is assigned to Port 4, the respective segment address lines on Port 4 cannot be used. This will limit the external address space.

Watchdog Timer

The Watchdog Timer represents one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after a reset of the chip, and can only be disabled in the time interval until the EINIT (end of initialization) instruction has been executed. Thus, the chip's start-up procedure is always monitored. The software has to be designed to service the Watchdog Timer before it overflows. If, due to hardware or software related failures, the software fails to do so, the Watchdog Timer overflows and generates an internal hardware reset and pulls the RSTOUT pin low in order to allow external hardware components to be reset.

The Watchdog Timer is a 16-bit timer, clocked with the system clock divided by 2/4/128/256. The high byte of the Watchdog Timer register can be set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the high byte of the Watchdog Timer is reloaded. Thus, time intervals between 12.8 μ s and 419 ms can be monitored (@ 40 MHz).

The default Watchdog Timer interval after reset is 3.27 ms (@ 40 MHz).

Oscillator Watchdog

The Oscillator Watchdog (OWD) monitors the clock signal generated by the on-chip oscillator (either with a crystal or via external clock drive). For this operation the PLL provides a clock signal which is used to supervise transitions on the oscillator clock. This PLL clock is independent from the XTAL1 clock. When the expected oscillator clock transitions are missing the OWD activates the PLL Unlock/OWD interrupt node and supplies the CPU with the PLL clock signal. Under these circumstances the PLL will oscillate with its basic frequency.

In direct drive mode the PLL base frequency is used directly ($f_{CPU} = 2 \dots 5 \text{ MHz}$). In prescaler mode the PLL base frequency is divided by 2 ($f_{CPU} = 1 \dots 2.5 \text{ MHz}$).

Note: The CPU clock source is only switched back to the oscillator clock after a hardware reset.

The oscillator watchdog can be disabled by setting bit OWDDIS in register SYSCON. In this case (OWDDIS = '1') the PLL remains idle and provides no clock signal, while the CPU clock signal is derived directly from the oscillator clock or via prescaler or SDD. Also no interrupt request will be generated in case of a missing oscillator clock.

Note: At the end of a reset bit OWDDIS reflects the inverted level of pin RD at that time. Thus the oscillator watchdog may also be disabled via hardware by (externally) pulling the RD line low upon a reset, similar to the standard reset configuration via PORT0.

Instruction Set Summary

 Table 6 lists the instructions of the C167CS in a condensed way.

The various addressing modes that can be used with a specific instruction, the operation of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the "C166 Family Instruction Set Manual".

This document also provides a detailed description of each instruction.

Mnemonic	Description	Bytes
ADD(B)	Add word (byte) operands	2/4
ADDC(B)	Add word (byte) operands with Carry	2/4
SUB(B)	Subtract word (byte) operands	2/4
SUBC(B)	Subtract word (byte) operands with Carry	2/4
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16-16-bit)	2
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2
CPL(B)	Complement direct word (byte) GPR	2
NEG(B)	Negate direct word (byte) GPR	2
AND(B)	Bitwise AND, (word/byte operands)	2/4
OR(B)	Bitwise OR, (word/byte operands)	2/4
XOR(B)	Bitwise XOR, (word/byte operands)	2/4
BCLR	Clear direct bit	2
BSET	Set direct bit	2
BMOV(N)	Move (negated) direct bit to direct bit	4
BAND, BOR, BXOR	AND/OR/XOR direct bit with direct bit	4
BCMP	Compare direct bit to direct bit	4
BFLDH/L	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data	4
CMP(B)	Compare word (byte) operands	2/4
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2	2/4
CMPI1/2	Compare word data to GPR and increment GPR by 1/2	2/4
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL / SHR	Shift left/right direct word GPR	2
ROL / ROR	Rotate left/right direct word GPR	2
ASHR	Arithmetic (sign bit) shift right direct word GPR	2

Table 6Instruction Set Summary

Table 6 Ins	struction Set Summary (cont'd)	
Mnemonic	Description	Bytes
MOV(B)	Move word (byte) data	2/4
MOVBS	Move byte operand to word operand with sign extension	2/4
MOVBZ	Move byte operand to word operand with zero extension	2/4
JMPA, JMPI, JMPR	Jump absolute/indirect/relative if condition is met	4
JMPS	Jump absolute to a code segment	4
J(N)B	Jump relative if direct bit is (not) set	4
JBC	Jump relative and clear bit if direct bit is set	4
JNBS	Jump relative and set bit if direct bit is not set	4
CALLA, CALLI, CALLR	Call absolute/indirect/relative subroutine if condition is met	4
CALLS	Call absolute subroutine in any code segment	4
PCALL	Push direct word register onto system stack and call absolute subroutine	4
TRAP	Call interrupt service routine via immediate trap number	2
PUSH, POP	Push/pop direct word register onto/from system stack	2
SCXT	Push direct word register onto system stack and update register with word operand	4
RET	Return from intra-segment subroutine	2
RETS	Return from inter-segment subroutine	2
RETP	Return from intra-segment subroutine and pop direct word register from system stack	2
RETI	Return from interrupt service subroutine	2
SRST	Software Reset	4
IDLE	Enter Idle Mode	4
PWRDN	Enter Power Down Mode (supposes NMI-pin being low)	4
SRVWDT	Service Watchdog Timer	4
DISWDT	Disable Watchdog Timer	4
EINIT	Signify End-of-Initialization on RSTOUT-pin	4
ATOMIC	Begin ATOMIC sequence	2
EXTR	Begin EXTended Register sequence	2
EXTP(R)	Begin EXTended Page (and Register) sequence	2/4
EXTS(R)	Begin EXTended Segment (and Register) sequence	2/4
NOP	Null operation	2

Table 7 CTOTCS negisters, Ordered by Marile (Contra)									
Name		Physical Address		8-Bit Addr.	Description	Reset Value			
XP3IC	XP3IC b F19E _H E		CF _H	RTC/PLL Interrupt Control Register	0000 _H				
XPERCON		F024 _H	Ε	12 _H	X-Peripheral Control Register	0401 _H			
ZEROS	b	FF1C _H		8E _H	Constant Value 0's Register (read only)	0000 _H			

Table 7 C167CS Registers, Ordered by Name (cont'd)

¹⁾ The system configuration is selected during reset.

²⁾ The reset value depends on the indicated reset source.

Absolute Maximum Ratings

Parameter	Symbol	Limit	Values	Unit	Notes	
		min.	max.			
Storage temperature	T _{ST}	-65	150	°C	-	
Junction temperature	TJ	-40	150	°C	under bias	
Voltage on V_{DD} pins with respect to ground (V_{SS})	V _{DD}	-0.5	6.5	V	-	
Voltage on any pin with respect to ground (V_{SS})	V _{IN}	-0.5	V _{DD} + 0.5	V	-	
Input current on any pin during overload condition	-	-10	10	mA	-	
Absolute sum of all input currents during overload condition	-	-	100	mA	-	
Power dissipation	P _{DISS}	-	1.5	W	-	

Table 8 Absolute Maximum Rating Parameters

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DD}$ or $V_{IN} < V_{SS}$) the voltage on V_{DD} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Parameter Interpretation

The parameters listed in the following partly represent the characteristics of the C167CS and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column "Symbol":

CC (Controller Characteristics):

The logic of the C167CS will provide signals with the respective characteristics.

SR (System Requirement):

The external system must provide signals with the respective characteristics to the C167CS.

DC Characteristics

(Operating Conditions apply)¹⁾

Parameter	Sym	bol	Limit	Values	Unit	Test Condition	
			min.	max.			
Input low voltage (TTL, all except XTAL1)	V_{IL}	SR	-0.5	0.2 V _{DD} - 0.1	V	_	
Input low voltage XTAL1	V_{IL2}	SR	-0.5	0.3 V _{DD}	V	_	
Input low voltage (Special Threshold)	V _{ILS}	SR	-0.5	2.0	V	_	
Input high voltage (TTL, all except RSTIN and XTAL1)	V_{IH}	SR	0.2 V _{DD} + 0.9	V _{DD} + 0.5	V	_	
Input high voltage RSTIN (when operated as input)	V _{IH1}	SR	0.6 V _{DD}	V _{DD} + 0.5	V	-	
Input high voltage XTAL1	V _{IH2}	SR	0.7 V _{DD}	V _{DD} + 0.5	V	-	
Input high voltage (Special Threshold)	V _{IHS}	SR	0.8 V _{DD} - 0.2	V _{DD} + 0.5	V	-	
Input Hysteresis (Special Threshold)	HYS		400	-	mV	Series resistance = 0 Ω	
Output low voltage ²⁾	V_{OL}	CC	_	1.0	V	$I_{OL} \le I_{OLmax}^{3)}$	
			_	0.45	V	$I_{OL} \le I_{OLnom}^{3)4)}$	
Output high voltage ⁵⁾	V _{OH}	CC	V _{DD} - 1.0	-	V	$I_{OH} \ge I_{OHmax}^{3)}$	
			V _{DD} - 0.45	-	V	$I_{OH} \ge I_{OHnom}^{3)4)$	
Input leakage current (Port 5)	I _{OZ1}	CC	_	±200	nA	$0 V < V_{IN} < V_{DD}$	

DC Characteristics (cont'd)

(Operating Conditions apply)¹⁾

Parameter	Symbol	Limit	Values	Unit	Test Condition
		min.	max.		
Input leakage current (all other)	I _{OZ2} CC	_	±500	nA	0.45 V < V _{IN} < V _{DD}
RSTIN inactive current ⁶⁾	I _{RSTH} ⁷⁾	_	-10	μA	$V_{\rm IN} = V_{\rm IH1}$
RSTIN active current ⁶⁾	I _{RSTL} ⁸⁾	-100	-	μA	$V_{\rm IN} = V_{\rm IL}$
READY/RD/WR inact. current ⁹⁾	I _{RWH} ⁷⁾	_	-40	μA	V_{OUT} = 2.4 V
READY/RD/WR active current ⁹⁾	I _{RWL} ⁸⁾	-500	-	μA	$V_{OUT} = V_{OLmax}$
ALE inactive current ⁹⁾	I _{ALEL} ⁷⁾	_	40	μA	$V_{OUT} = V_{OLmax}$
ALE active current ⁹⁾	I _{ALEH} ⁸⁾	500	-	μA	$V_{OUT} = 2.4 \text{ V}$
Port 6 inactive current ⁹⁾	I _{P6H} ⁷⁾	_	-40	μA	$V_{OUT} = 2.4 \text{ V}$
Port 6 active current ⁹⁾	I _{P6L} ⁸⁾	-500	-	μA	$V_{OUT} = V_{OL1max}$
PORT0 configuration current ¹⁰⁾	I _{P0H} ⁷⁾	_	-10	μA	$V_{\rm IN} = V_{\rm IHmin}$
	I _{P0L} ⁸⁾	-100	-	μA	$V_{\rm IN} = V_{\rm ILmax}$
XTAL1 input current	I _{IL} CC	_	±20	μA	$0 V < V_{IN} < V_{DD}$
Pin capacitance ¹¹⁾ (digital inputs/outputs)	C _{IO} CC	_	10	pF	f = 1 MHz $T_A = 25 \text{ °C}$

¹⁾ Keeping signal levels within the levels specified in this table, ensures operation without overload conditions. For signal levels outside these specifications also refer to the specification of the overload current I_{OV} .

²⁾ For pin RSTIN this specification is only valid in bidirectional reset mode.

³⁾ The maximum deliverable output current of a port driver depends on the selected output driver mode, see **Table 10, Current Limits for Port Output Drivers**. The limit for pin groups must be respected.

- ⁴⁾ As a rule, with decreasing output current the output levels approach the respective supply level ($V_{OL} \rightarrow V_{SS}$, $V_{OH} \rightarrow V_{DD}$). However, only the levels for nominal output currents are guaranteed.
- ⁵⁾ This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.
- ⁶⁾ These parameters describe the $\overline{\text{RSTIN}}$ pullup, which equals a resistance of ca. 50 to 250 k Ω .
- ⁷⁾ The maximum current may be drawn while the respective signal line remains inactive.
- ⁸⁾ The minimum current must be drawn in order to drive the respective signal line active.
- ⁹⁾ This specification is valid during Reset and during Hold-mode or Adapt-mode. During Hold-mode Port 6 pins are only affected, if they are used (configured) for CS output and the open drain function is not enabled. The READY-pullup is always active, except for Powerdown mode.
- ¹⁰⁾ This specification is valid during Reset and during Adapt-mode.
- ¹¹⁾ Not 100% tested, guaranteed by design and characterization.

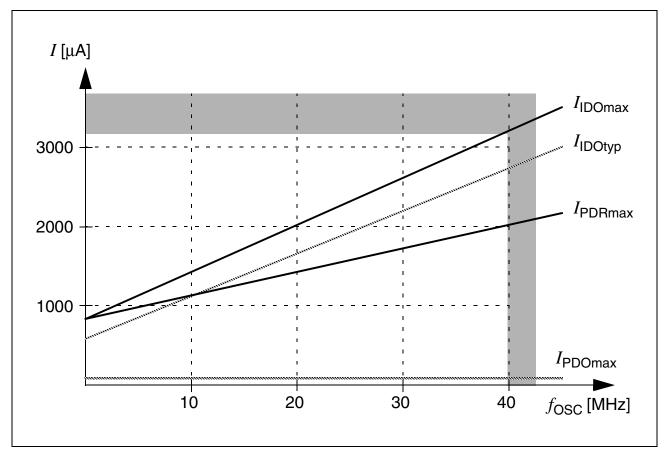


Figure 9 Idle and Power Down Supply Current as a Function of Oscillator Frequency

A/D Converter Characteristics

(Operating Conditions apply)

Parameter	Symbol		Limit	Values	Unit	Test	
			min.	max.		Condition	
Analog reference supply	VAREF	SR	4.0	V _{DD} + 0.1	V	1)	
Analog reference ground	VAGNE	SR	V _{SS} - 0.1	$V_{\rm SS}$ + 0.2	V	-	
Analog input voltage range	V_{AIN}	SR	V _{AGND}	V _{AREF}	V	2)	
Basic clock frequency	f _{BC}		0.5	6.25	MHz	3)	
Conversion time	t _C	CC	-	$40 t_{\rm BC} + t_{\rm S} \\ + 2t_{\rm CPU}$	-	4) $t_{CPU} = 1/f_{CPU}$	
Calibration time after reset	t _{CAL}	CC	-	3328 t _{BC}	_	5)	
Total unadjusted error	TUE	CC ¹⁾	_	±2	LSB	Channels 0 15	
			_	±10	LSB	Channels 16 23	
Internal resistance of reference voltage source	R _{AREF}	SR	_	t _{BC} /60 - 0.25	kΩ	<i>t</i> _{BC} in [ns] ⁶⁾⁷⁾	
Internal resistance of analog source	R _{ASRC}	; SR	_	t _S /450 - 0.25	kΩ	t _S in [ns] ⁷⁾⁸⁾	
ADC input capacitance	C_{AIN}	CC	-	33	pF	7)	

Table 13 A/D Converter Characteristics

¹⁾ TUE is tested at $V_{AREF} = 5.0 \text{ V}$, $V_{AGND} = 0 \text{ V}$, $V_{DD} = 4.9 \text{ V}$. It is guaranteed by design for all other voltages within the defined voltage range.

If the analog reference supply voltage exceeds the power supply voltage by up to 0.2 V

(i.e. $V_{AREF} = V_{DD} = +0.2 \text{ V}$) the maximum TUE is increased to $\pm 3/11 \text{ LSB}$. This range is not 100% tested. The specified TUE is guaranteed only if the absolute sum of input overload currents on Port 5 pins and P1H pins (see I_{OV} specification) does not exceed 10 mA.

During the reset calibration sequence the maximum TUE may be \pm 4 LSB (\pm 12 LSB for channels 16 ... 23).

- ²⁾ V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.
- ³⁾ The limit values for f_{BC} must not be exceeded when selecting the CPU frequency and the ADCTC setting.
- ⁴⁾ This parameter includes the sample time t_{S} , the time for determining the digital result and the time to load the result register with the conversion result.

Values for the basic clock t_{BC} depend on programming and can be taken from Table 14.

This parameter depends on the ADC control logic. It is not a real maximum value, but rather a fixum.

Parameter		bol	Li	Unit	
			min.	max.	
Output delay from CLKOUT falling edge Valid for: address (MUX on PORT0), write data out	<i>tc</i> ₁₀	CC	0	14	ns
Output delay from CLKOUT edge Valid for: latched \overline{CS} , ALE (normal)	<i>tc</i> ₁₁	CC	-3	6	ns
Output delay from CLKOUT edge Valid for: WR, WRL, WRH, WrCS	<i>tc</i> ₁₂	CC	-4	7	ns
Output delay from CLKOUT edge Valid for: RD, RdCS	tc ₁₃	CC	-2	7	ns
Input setup time to CLKOUT falling edge Valid for: read data in	<i>tc</i> ₁₄	SR	10	-	ns
Input hold time after CLKOUT falling edge Valid for: read data in ¹⁾	tc ₁₅	SR	0	-	ns
Output delay from CLKOUT falling edge Valid for: address (on PORT1 and/or P4), BHE	<i>tc</i> ₁₆	CC	0	9 ²⁾	ns
Output hold time after CLKOUT falling edge Valid for: address, BHE ³⁾	<i>tc</i> ₁₇	CC	-2	8	ns
Output hold time after CLKOUT edge ⁴⁾ Valid for: write data out	<i>tc</i> ₁₈	CC	-1	-	ns
Output delay from CLKOUT falling edge Valid for: ALE (extended), early \overline{CS}	<i>tc</i> ₁₉	CC	-4	4	ns
Turn off delay after CLKOUT edge ⁴⁾ Valid for: write data out	<i>tc</i> ₂₀	CC	-	7	ns
Turn on delay after CLKOUT falling edge ⁴⁾ Valid for: write data out	<i>tc</i> ₂₁	CC	-5	-	ns
Output hold time after CLKOUT edge Valid for: early \overline{CS}	tc ₂₂	CC	-6	4	ns

Table 17 External Bus Cycle Timing (Operating Conditions apply)

1) Read data are latched with the same (internal) clock edge that triggers the address change and the rising edge of RD. Therefore address changes before the end of RD have no impact on (demultiplexed) read cycles.

²⁾ If the capacitive load on the respective output pins is limited to 30 pF the maximum output delay tc_{16} can be reduced to 8 ns.

³⁾ Due to comparable propagation delays the address does not change before $\overline{\text{WR}}$ goes high. The minimum output delay ($tc_{17\text{min}}$) is therefore the actual value of tc_{12} .

⁴⁾ Not 100% tested, guaranteed by design and characterization.

External Bus Arbitration

Table 20Bus Arbitration Timing (Operating Conditions apply)

Parameter		Symbol		Limit Values	
			min.	max.	
HOLD input setup time to CLKOUT falling edge	tc ₂₈	SR	14	-	ns
CLKOUT to BREQ delay	tc ₂₉	CC	-3	6	ns
CLKOUT to HLDA delay	<i>tc</i> ₃₀	CC	-2	6	ns
CSx release ¹⁾	<i>tc</i> ₃₁	CC	0	10	ns
CSx drive	tc ₃₂	CC	-3	4	ns
Other signals release ¹⁾	tc ₃₃	CC	0	10	ns
Other signals drive ¹⁾	tc ₃₄	CC	0	6	ns

¹⁾ Not 100% tested, guaranteed by design and characterization.

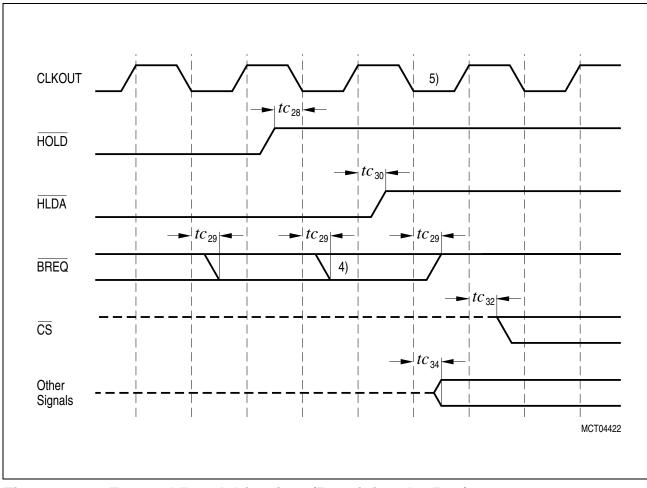


Figure 23 External Bus Arbitration, (Regaining the Bus)

Notes

⁴⁾ This is the last chance for BREQ to trigger the indicated regain-sequence. Even if BREQ is activated earlier, the regain-sequence is initiated by HOLD going high. Please note that HOLD may also be deactivated without the C167CS requesting the bus.

⁵⁾ The next C167CS driven bus cycle may start here.

Infineon goes for Business Excellence

"Business excellence means intelligent approaches and clearly defined processes, which are both constantly under review and ultimately lead to good operating results.

Better operating results and business excellence mean less idleness and wastefulness for all of us, more professional success, more accurate information, a better overview and, thereby, less frustration and more satisfaction."

Dr. Ulrich Schumacher

http://www.infineon.com