

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	40MHz
Connectivity	CANbus, EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	111
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	11K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	144-BQFP
Supplier Device Package	P-MQFP-144-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c167csl40mcabxuma2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2	Pin Definitions and Functions (cont d)										
Symbol	Pin Num.	Input Outp.	Function								
P7		IO	Port 7 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 7 outputs can be configured as push/ pull or open drain drivers. The input threshold of Port 7 is selectable (TTL or special). The following Port 7 pins also serve for alternate functions:								
P7.0	19	0	POUT0 PWM Channel 0 Output								
P7.1	20	0	POUT1 PWM Channel 1 Output								
P7.2	21	0	POUT2 PWM Channel 2 Output								
P7.3	22	0	POUT3 PWM Channel 3 Output								
P7.4	23	I/O	CC28IO CAPCOM2: CC28 Capture Inp./Compare Outp.								
P7.5	24	I/O	CC29IO CAPCOM2: CC29 Capture Inp./Compare Outp.								
P7.6	25	I/O	CC30IO CAPCOM2: CC30 Capture Inp./Compare Outp.								
P7.7	26	I/O	CC31IO CAPCOM2: CC31 Capture Inp./Compare Outp.								
P5		1	Port 5 is a 16-bit input-only port with Schmitt-Trigger char. The pins of Port 5 also serve as analog input channels for the A/D converter, or they serve as timer inputs:								
P5.0	27	1	ANO								
P5.1	28	1	AN1								
P5.2	29	1	AN2								
P5.3	30	1	AN3								
P5.4	31	1	AN4								
P5.5	32	1	AN5								
P5.6	33	1	AN6								
P5.7	34	1	AN7								
P5.8	35	1	AN8								
P5.9	36	1	AN9								
P5.10	39	1	AN10, T6EUD GPT2 Timer T6 Ext. Up/Down Ctrl. Inp.								
P5.11	40		AN11, T5EUD GPT2 Timer T5 Ext. Up/Down Ctrl. Inp.								
P5.12	41		AN12, T6IN GPT2 Timer T6 Count Inp.								
P5.13	42		AN13, T5IN GPT2 Timer T5 Count Inp.								
P5.14	43		AN14, T4EUD GPT1 Timer T4 Ext. Up/Down Ctrl. Inp.								
P5.15	44		AN15, T2EUD GPT1 Timer T2 Ext. Up/Down Ctrl. Inp.								

Symbol	Pin Num.	Input Outp.	Function					
PORT1		10	PORT1 cor	nsists of the two 8-bit bidirectional I/O ports P1L				
P1L.0-7	118-		and P1H. It	t is bit-wise programmable for input or output via				
	125		direction bit	ts. For a pin configured as input, the output driver				
P1H.0-7	128-		is put into h	high-impedance state. PORT1 is used as the				
	135		16-bit addre	ess bus (A) in demultiplexed bus modes and also				
			after switch	ning from a demultiplexed bus mode to a				
			multiplexed	l bus mode.				
			The followi	ng PORT1 pins also serve for alternate functions:				
P1L.0	118	1	AN16	Analog Input Channel 16				
P1L.1	119	1	AN17	Analog Input Channel 17				
P1L.2	120	1	AN18	Analog Input Channel 18				
P1L.3	121	1	AN19	Analog Input Channel 19				
P1L.4	122	1	AN20	Analog Input Channel 20				
P1L.5	123	1	AN21	Analog Input Channel 21				
P1L.6	124	1	AN22	Analog Input Channel 22				
P1L.7	125	1	AN23	Analog Input Channel 23				
P1H.4	132	I/O	CC24IO	CAPCOM2: CC24 Capture Inp./Compare Outp.				
P1H.5	133	I/O	CC25IO	CAPCOM2: CC25 Capture Inp./Compare Outp.				
P1H.6	134	I/O	CC26IO	CAPCOM2: CC26 Capture Inp./Compare Outp.				
P1H.7	135	I/O	CC27IO	CAPCOM2: CC27 Capture Inp./Compare Outp.				
XTAL2	137	0	XTAL2:	Output of the oscillator amplifier circuit.				
XTAL1	138	1	XTAL1:	Input to the oscillator amplifier and input to				
				the internal clock generator				
			To clock the	e device from an external source, drive XTAL1,				
			while leavir	ng XTAL2 unconnected. Minimum and maximum				
			high/low an	nd rise/fall times specified in the AC				
			Characteris	stics must be observed.				

Note: When one or both of the on-chip CAN Modules are used with the interface lines assigned to Port 4, the CAN lines override the segment address lines and the segment address output on Port 4 is therefore limited to 6/4 bits i.e. address lines A21/A19 ... A16. CS lines can be used to increase the total amount of addressable external memory.

Central Processing Unit (CPU)

The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a separate multiply and divide unit, a bit-mask generator and a barrel shifter.

Based on these hardware provisions, most of the C167CS's instructions can be executed in just one machine cycle which requires 50 ns at 40 MHz CPU clock. For example, shift and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: branches in 2 cycles, a 16×16 bit multiplication in 5 cycles and a 32-/16-bit division in 10 cycles. Another pipeline optimization, the so-called 'Jump Cache', allows reducing the execution time of repeatedly performed jumps in a loop from 2 cycles to 1 cycle.

The CPU has a register context consisting of up to 16 wordwide GPRs at its disposal. These 16 GPRs are physically allocated within the on-chip RAM area. A Context Pointer (CP) register determines the base address of the active register bank to be accessed by the CPU at any time. The number of register banks is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 1024 words is provided as a storage for temporary data. The system stack is allocated in the on-chip RAM area, and it is accessed by the CPU via the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack pointer value upon each stack access for the detection of a stack overflow or underflow.

The high performance offered by the hardware implementation of the CPU can efficiently be utilized by a programmer via the highly efficient C167CS instruction set which includes the following instruction classes:

- Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

Interrupt System

With an interrupt response time within a range from just 5 to 12 CPU clocks (in case of internal program execution), the C167CS is capable of reacting very fast to the occurrence of non-deterministic events.

The architecture of the C167CS supports several mechanisms for fast and flexible response to service requests that can be generated from various sources internal or external to the microcontroller. Any of these interrupt requests can be programmed to being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).

In contrast to a standard interrupt service where the current program execution is suspended and a branch to the interrupt vector table is performed, just one cycle is 'stolen' from the current CPU activity to perform a PEC service. A PEC service implies a single byte or word data transfer between any two memory locations with an additional increment of either the PEC source or the destination pointer. An individual PEC transfer counter is implicitly decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source related vector location. PEC services are very well suited, for example, for supporting the transmission or reception of blocks of data. The C167CS has 8 PEC channels each of which offers such fast interrupt-driven data transfer capabilities.

A separate control register which contains an interrupt request flag, an interrupt enable flag and an interrupt priority bitfield exists for each of the possible interrupt sources. Via its related register, each source can be programmed to one of sixteen interrupt priority levels. Once having been accepted by the CPU, an interrupt service can only be interrupted by a higher prioritized service request. For the standard interrupt processing, each of the possible interrupt sources has a dedicated vector location.

Fast external interrupt inputs are provided to service external interrupts with high precision requirements. These fast interrupt inputs feature programmable edge detection (rising edge, falling edge or both edges).

Software interrupts are supported by means of the 'TRAP' instruction in combination with an individual trap (interrupt) number.

Table 3 shows all of the possible C167CS interrupt sources and the corresponding hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.

Note: Interrupt nodes which are not used by associated peripherals, may be used to generate software controlled interrupt requests by setting the respective interrupt request bit (xIR).

The C167CS also provides an excellent mechanism to identify and to process exceptions or error conditions that arise during run-time, so-called 'Hardware Traps'. Hardware traps cause immediate non-maskable system reaction which is similar to a standard interrupt service (branching to a dedicated vector table location). The occurrence of a hardware trap is additionally signified by an individual bit in the trap flag register (TFR). Except when another higher prioritized trap service is in progress, a hardware trap will interrupt any actual program execution. In turn, hardware trap services can normally not be interrupted by standard or PEC interrupts.

Table 4 shows all of the possible exceptions or error conditions that can arise during runtime:

Exception Condition	Trap Flag	Trap Vector	Vector Location	Trap Number	Trap Priority	
Reset Functions: – Hardware Reset – Software Reset – W-dog Timer Overflow	-	RESET RESET RESET	00'0000 _H 00'0000 _H 00'0000 _H	00 _H 00 _H 00 _H	 	
Class A Hardware Traps: – Non-Maskable Interrupt – Stack Overflow – Stack Underflow	NMI STKOF STKUF	NMITRAP STOTRAP STUTRAP	00'0008 _H 00'0010 _H 00'0018 _H	02 _H 04 _H 06 _H	 	
 Class B Hardware Traps: Undefined Opcode Protected Instruction Fault Illegal Word Operand Access Illegal Instruction Access Illegal External Bus Access 	UNDOPC PRTFLT ILLOPA ILLINA ILLBUS	BTRAP BTRAP BTRAP BTRAP BTRAP	00'0028 _H 00'0028 _H 00'0028 _H 00'0028 _H 00'0028 _H	0A _H 0A _H 0A _H 0A _H	 	
Reserved	-	_	[2C _H – 3C _H]	[0B _H – 0F _H]	-	
Software Traps – TRAP Instruction	-	_	Any [00'0000 _H 00'01FC _H] in steps of 4 _H	Any [00 _H – 7F _H]	Current CPU Priority	

Table 4Hardware Trap Summary

Real Time Clock

The Real Time Clock (RTC) module of the C167CS consists of a chain of 3 divider blocks, a fixed 8:1 divider, the reloadable 16-bit timer T14, and the 32-bit RTC timer (accessible via registers RTCH and RTCL). The RTC module is directly clocked with the on-chip oscillator frequency divided by 32 via a separate clock driver ($f_{\rm RTC} = f_{\rm OSC}/32$) and is therefore independent from the selected clock generation mode of the C167CS. All timers count up.

The RTC module can be used for different purposes:

- System clock to determine the current time and date
- Cyclic time based interrupt
- 48-bit timer for long term measurements

Figure 8 RTC Block Diagram

Note: The registers associated with the RTC are not affected by a reset in order to maintain the correct system time even when intermediate resets are executed.

Serial Channels

Serial communication with other microcontrollers, processors, terminals or external peripheral components is provided by two serial interfaces with different functionality, an Asynchronous/Synchronous Serial Channel (**ASC0**) and a High-Speed Synchronous Serial Channel (**SSC**).

The ASC0 is upward compatible with the serial ports of the Infineon 8-bit microcontroller families and supports full-duplex asynchronous communication at up to 781 Kbit/s/ 1.03 Mbit/s/1.25 Mbit/s and half-duplex synchronous communication at up to 3.1/ 4.1 Mbit/s/5.0 Mbit/s (@ 25/33/40 MHz CPU clock).

A dedicated baud rate generator allows to set up all standard baud rates without oscillator tuning. For transmission, reception and error handling 4 separate interrupt vectors are provided. In asynchronous mode, 8- or 9-bit data frames are transmitted or received, preceded by a start bit and terminated by one or two stop bits. For multiprocessor communication, a mechanism to distinguish address from data bytes has been included (8-bit data plus wake up bit mode).

In synchronous mode, the ASC0 transmits or receives bytes (8 bits) synchronously to a shift clock which is generated by the ASC0. The ASC0 always shifts the LSB first. A loop back option is available for testing purposes.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. A parity bit can automatically be generated on transmission or be checked on reception. Framing error detection allows to recognize data frames with missing stop bits. An overrun error will be generated, if the last character received has not been read out of the receive buffer register at the time the reception of a new character is complete.

The SSC supports full-duplex synchronous communication at up to 6.25/8.25/10 Mbit/s (@ 25/33/40 MHz CPU clock). It may be configured so it interfaces with serially linked peripheral components. A dedicated baud rate generator allows to set up all standard baud rates without oscillator tuning. For transmission, reception and error handling 3 separate interrupt vectors are provided.

The SSC transmits or receives characters of 2 ... 16 bits length synchronously to a shift clock which can be generated by the SSC (master mode) or by an external master (slave mode). The SSC can start shifting with the LSB or with the MSB and allows the selection of shifting and latching clock edges as well as the clock polarity.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. Transmit and receive error supervise the correct handling of the data buffer. Phase and baudrate error detect incorrect serial data.

Table 7C167CS Registers, Ordered by Name (cont'd)

Name	Physical Address	8-Bit Addr.	Description	Reset Value
C1UAR	EFn2 _H X		CAN1 Upper Arbitration Reg. (msg. n)	UUUU _H
C1UGML	EF08 _H X		CAN1 Upper Global Mask Long	UUUU _H
C1UMLM	EF0C _H X		CAN1 Upper Mask of Last Message	UUUU _H
C2BTR	EE04 _H X		CAN2 Bit Timing Register	UUUU _H
C2CSR	EE00 _H X		CAN2 Control/Status Register	XX01 _H
C2GMS	EE06 _H X		CAN2 Global Mask Short	UFUU _H
C2PCIR	EE02 _H X		CAN2 Port Control/Interrupt Register	XXXX _H
C2LGML	EE0A _H X		CAN2 Lower Global Mask Long	UUUU _H
C2LMLM	EE0E _H X		CAN2 Lower Mask of Last Message	UUUU _H
C2UAR	EEn2 _H X		CAN2 Upper Arbitration Reg. (msg. n)	UUUU _H
C2UGML	EE08 _H X		CAN2 Upper Global Mask Long	UUUU _H
C2UMLM	EE0C _H X		CAN2 Upper Mask of Last Message	UUUU _H
CAPREL	FE4A _H	25 _H	GPT2 Capture/Reload Register	0000 _H
CC0	FE80 _H	40 _H	CAPCOM Register 0	0000 _H
CC0IC b	FF78 _H	BC _H	CAPCOM Reg. 0 Interrupt Ctrl. Reg.	0000 _H
CC1	FE82 _H	41 _H	CAPCOM Register 1	0000 _H
CC10	FE94 _H	4A _H	CAPCOM Register 10	0000 _H
CC10IC b	FF8C _H	C6 _H	CAPCOM Reg. 10 Interrupt Ctrl. Reg.	0000 _H
CC11	FE96 _H	4B _H	CAPCOM Register 11	0000 _H
CC11IC b	FF8E _H	C7 _H	CAPCOM Reg. 11 Interrupt Ctrl. Reg.	0000 _H
CC12	FE98 _H	4C _H	CAPCOM Register 12	0000 _H
CC12IC b	FF90 _H	C8 _H	CAPCOM Reg. 12 Interrupt Ctrl. Reg.	0000 _H
CC13	FE9A _H	4D _H	CAPCOM Register 13	0000 _H
CC13IC b	FF92 _H	C9 _H	CAPCOM Reg. 13 Interrupt Ctrl. Reg.	0000 _H
CC14	FE9C _H	4E _H	CAPCOM Register 14	0000 _H
CC14IC b	FF94 _H	CA _H	CAPCOM Reg. 14 Interrupt Ctrl. Reg.	0000 _H
CC15	FE9E _H	4F _H	CAPCOM Register 15	0000 _H
CC15IC b	FF96 _H	CB _H	CAPCOM Reg. 15 Interrupt Ctrl. Reg.	0000 _H
CC16	FE60 _H	30 _H	CAPCOM Register 16	0000 _H
CC16IC b	F160 _H E	B0 _H	CAPCOM Reg. 16 Interrupt Ctrl. Reg.	0000 _H

Table 7	C167CS	Registers	Ordered b	v Name	(cont'd)
	010/03	negisiers,	Oldeled b	y Maine	

Name		Physica Address	l S	8-Bit Addr.	Description	Reset Value
DP1L	b	F104 _H	Ε	82 _H	P1L Direction Control Register	00 _H
DP1H	b	F106 _H	Ε	83 _H	P1H Direction Control Register	00 _H
DP2	b	FFC2 _H		E1 _H	Port 2 Direction Control Register	0000 _H
DP3	b	FFC6 _H		E3 _H	Port 3 Direction Control Register	0000 _H
DP4	b	FFCA _H		E5 _H	Port 4 Direction Control Register	00 _H
DP6	b	FFCE _H		E7 _H	Port 6 Direction Control Register	00 _H
DP7	b	FFD2 _H		E9 _H	Port 7 Direction Control Register	00 _H
DP8	b	FFD6 _H		EB _H	Port 8 Direction Control Register	00 _H
DPP0		FE00 _H		00 _H	CPU Data Page Pointer 0 Reg. (10 bits)	0000 _H
DPP1		FE02 _H		01 _H	CPU Data Page Pointer 1 Reg. (10 bits)	0001 _H
DPP2		FE04 _H		02 _H	CPU Data Page Pointer 2 Reg. (10 bits)	0002 _H
DPP3		FE06 _H		03 _H	CPU Data Page Pointer 3 Reg. (10 bits)	0003 _H
EXICON	b	F1C0 _H	Ε	E0 _H	External Interrupt Control Register	0000 _H
EXISEL	b	F1DA _H	Ε	ED _H	External Interrupt Source Select Reg.	0000 _H
FOCON	b	FFAA _H		D5 _H	Frequency Output Control Register	0000 _H
IDCHIP		F07C _H	Ε	3E _H	Identifier	0CXX _H
IDMANUF		F07E _H	Ε	3F _H	Identifier	1820 _H
IDMEM		F07A _H	Ε	3D _H	Identifier	X040 _H
IDMEM2		F076 _H	Ε	3B _H	Identifier	XXXX _H
IDPROG		F078 _H	Ε	3C _H	Identifier	XXXX _H
ISNC	b	F1DE _H	Ε	EF _H	Interrupt Subnode Control Register	0000 _H
MDC	b	FF0E _H		87 _H	CPU Multiply Divide Control Register	0000 _H
MDH		FE0C _H		06 _H	CPU Multiply Divide Reg. – High Word	0000 _H
MDL		FE0E _H		07 _H	CPU Multiply Divide Reg. – Low Word	0000 _H
ODP2	b	F1C2 _H	Ε	E1 _H	Port 2 Open Drain Control Register	0000 _H
ODP3	b	F1C6 _H	Ε	E3 _H	Port 3 Open Drain Control Register	0000 _H
ODP4	b	F1CA _H	Ε	E5 _H	Port 4 Open Drain Control Register	00 _H
ODP6	b	F1CE _H	Ε	E7 _H	Port 6 Open Drain Control Register	00 _H
ODP7	b	F1D2 _H	Ε	E9 _H	Port 7 Open Drain Control Register	00 _H
ODP8	b	F1D6 _H	Ε	EB _H	Port 8 Open Drain Control Register	00 _H

Table 7C167CS Registers, Ordered by Name (cont'd)

Name		Physica Address	l S	8-Bit Addr.	Description	Reset Value
ONES	b	FF1E _H		8F _H	Constant Value 1's Register (read only)	FFFF _H
P0H	b	FF02 _H		81 _H	Port 0 High Reg. (Upper half of PORT0)	00 _H
P0L	b	FF00 _H		80 _H	Port 0 Low Reg. (Lower half of PORT0)	00 _H
P1DIDIS		FEA4 _H		52 _H	Port 1 Digital Input Disable Register	0000 _H
P1H	b	FF06 _H		83 _H	Port 1 High Reg. (Upper half of PORT1)	00 _H
P1L	b	FF04 _H		82 _H	Port 1 Low Reg. (Lower half of PORT1)	00 _H
P2	b	FFC0 _H		E0 _H	Port 2 Register	0000 _H
P3	b	FFC4 _H		E2 _H	Port 3 Register	0000 _H
P4	b	FFC8 _H		E4 _H	Port 4 Register (8 bits)	00 _H
P5	b	FFA2 _H		D1 _H	Port 5 Register (read only)	XXXX _H
P5DIDIS	b	FFA4 _H		D2 _H	Port 5 Digital Input Disable Register	0000 _H
P6	b	FFCC _H		E6 _H	Port 6 Register (8 bits)	00 _H
P7	b	FFD0 _H		E8 _H	Port 7 Register (8 bits)	00 _H
P8	b	FFD4 _H		EA _H	Port 8 Register (8 bits)	00 _H
PECC0		FEC0 _H		60 _H	PEC Channel 0 Control Register	0000 _H
PECC1		FEC2 _H		61 _H	PEC Channel 1 Control Register	0000 _H
PECC2		FEC4 _H		62 _H	PEC Channel 2 Control Register	0000 _H
PECC3		FEC6 _H		63 _H	PEC Channel 3 Control Register	0000 _H
PECC4		FEC8 _H		64 _H	PEC Channel 4 Control Register	0000 _H
PECC5		FECA _H		65 _H	PEC Channel 5 Control Register	0000 _H
PECC6		FECC _H		66 _H	PEC Channel 6 Control Register	0000 _H
PECC7		FECE _H		67 _H	PEC Channel 7 Control Register	0000 _H
PICON	b	F1C4 _H	Ε	E2 _H	Port Input Threshold Control Register	0000 _H
POCON0H		F082 _H	Ε	41 _H	Port P0H Output Control Register	0000 _H
POCON0L		F080 _H	Ε	40 _H	Port P0L Output Control Register	0000 _H
POCON1H		F086 _H	Ε	43 _H	Port P1H Output Control Register	0000 _H
POCON1L		F084 _H	Ε	42 _H	Port P1L Output Control Register	0000 _H
POCON2		F088 _H	Ε	44 _H	Port P2 Output Control Register	0000 _H
POCON20		F0AA _H	Ε	55 _H	Dedicated Pin Output Control Register	0000 _H
POCON3		F08A _H	Ε	45 _H	Port P3 Output Control Register	0000 _H

Table 7C167CS Registers, Ordered by Name (cont'd)

Name		Physica Addres	al s	8-Bit Addr.	Reset Value	
POCON4		F08C _H	Ε	46 _H	Port P4 Output Control Register	0000 _H
POCON6		F08E _H	Ε	47 _H	Port P6 Output Control Register	0000 _H
POCON7		F090 _H	Ε	48 _H	Port P7 Output Control Register	0000 _H
POCON8		F092 _H	Ε	49 _H	Port P8 Output Control Register	0000 _H
PP0		F038 _H	Ε	1C _H	PWM Module Period Register 0	0000 _H
PP1		F03A _H	Е	1D _H	PWM Module Period Register 1	0000 _H
PP2		F03C _H	Ε	1E _H	PWM Module Period Register 2	0000 _H
PP3		F03E _H	Е	1F _H	PWM Module Period Register 3	0000 _H
PSW	b	FF10 _H		88 _H	CPU Program Status Word	0000 _H
PT0		F030 _H	Ε	18 _H	PWM Module Up/Down Counter 0	0000 _H
PT1		F032 _H	Е	19 _H	PWM Module Up/Down Counter 1	0000 _H
PT2		F034 _H	Е	1A _H	PWM Module Up/Down Counter 2	0000 _H
PT3		F036 _H	Е	1B _H	PWM Module Up/Down Counter 3	0000 _H
PTCR		F0AE _H	Е	57 _H	Port Temperature Compensation Reg.	0000 _H
PW0		FE30 _H		18 _H	PWM Module Pulse Width Register 0	0000 _H
PW1		FE32 _H		19 _H	PWM Module Pulse Width Register 1	0000 _H
PW2		FE34 _H		1A _H	PWM Module Pulse Width Register 2	0000 _H
PW3		FE36 _H		1B _H	PWM Module Pulse Width Register 3	0000 _H
PWMCON0	b	FF30 _H		98 _H	PWM Module Control Register 0	0000 _H
PWMCON1	b	FF32 _H		99 _H	PWM Module Control Register 1	0000 _H
PWMIC	b	F17E _H	Е	BF _H	PWM Module Interrupt Control Register	0000 _H
RP0H	b	F108 _H	Ε	84 _H	System Start-up Config. Reg. (Rd. only)	XX _H
RSTCON	b	F1E0 _H	m		Reset Control Register	00XX _H
RTCH		F0D6 _H	Е	6B _H	RTC High Register	XXXX _H
RTCL		F0D4 _H	Ε	6A _H	RTC Low Register	XXXX _H
S0BG		FEB4 _H		5A _H	Serial Channel 0 Baud Rate Generator Reload Register	0000 _H
S0CON	b	FFB0 _H		D8 _H	Serial Channel 0 Control Register	0000 _H
SOEIC	b	FF70 _H		B8 _H	Serial Channel 0 Error Interrupt Ctrl. Reg	0000 _H

Figure 9 Idle and Power Down Supply Current as a Function of Oscillator Frequency

Figure 10 Supply/Idle Current as a Function of Operating Frequency

Due to this adaptation to the input clock the frequency of f_{CPU} is constantly adjusted so it is locked to f_{OSC} . The slight variation causes a jitter of f_{CPU} which also effects the duration of individual TCLs.

The timings listed in the AC Characteristics that refer to TCLs therefore must be calculated using the minimum TCL that is possible under the respective circumstances.

The actual minimum value for TCL depends on the jitter of the PLL. As the PLL is constantly adjusting its output frequency so it corresponds to the applied input frequency (crystal or oscillator) the relative deviation for periods of more than one TCL is lower than for one single TCL (see formula and Figure 12).

For a period of $N \times \text{TCL}$ the minimum value is computed using the corresponding deviation D_N :

 $(N \times \text{TCL})_{\text{min}} = N \times \text{TCL}_{\text{NOM}} - D_N; D_N [\text{ns}] = \pm (13.3 + N \times 6.3) / f_{\text{CPU}} [\text{MHz}],$

where N = number of consecutive TCLs and $1 \le N \le 40$.

So for a period of 3 TCLs @ 25 MHz (i.e. N = 3): D₃ = (13.3 + 3 × 6.3) / 25 = 1.288 ns, and (3TCL)_{min} = 3TCL_{NOM} - 1.288 ns = 58.7 ns (@ f_{CPU} = 25 MHz).

This is especially important for bus cycles using waitstates and e.g. for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is neglectible.

Note: For all periods longer than 40 TCL the N = 40 value can be used (see Figure 12).

Figure 12 Approximated Maximum Accumulated PLL Jitter

Direct Drive

When direct drive is configured (CLKCFG = 011_B) the on-chip phase locked loop is disabled and the CPU clock is directly driven from the internal oscillator with the input clock signal.

The frequency of f_{CPU} directly follows the frequency of f_{OSC} so the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the duty cycle of the input clock f_{OSC} .

The timings listed below that refer to TCLs therefore must be calculated using the minimum TCL that is possible under the respective circumstances. This minimum value can be calculated via the following formula:

 $TCL_{min} = 1/f_{OSC} \times DC_{min}$ (DC = duty cycle)

For two consecutive TCLs the deviation caused by the duty cycle of f_{OSC} is compensated so the duration of 2TCL is always $1/f_{OSC}$. The minimum value TCL_{min} therefore has to be used only once for timings that require an odd number of TCLs (1, 3, ...). Timings that require an even number of TCLs (2, 4, ...) may use the formula 2TCL = $1/f_{OSC}$.

AC Characteristics External Clock Drive XTAL1

(Operating Conditions apply)

Parameter	Symbol		nbol Direct Drive 1:1		Prescaler 2:1		PLL 1:N		Unit
			min.	max.	min.	max.	min.	max.	
Oscillator period	t _{OSC}	SR	25	-	20	-	37 ¹⁾	500 ¹⁾	ns
High time ²⁾	<i>t</i> ₁	SR	12 ³⁾	-	5	-	10	_	ns
Low time ²⁾	<i>t</i> ₂	SR	12 ³⁾	-	5	-	10	_	ns
Rise time ²⁾	t ₃	SR	_	8	-	5	_	10	ns
Fall time ²⁾	<i>t</i> ₄	SR	_	8	-	5	-	10	ns

Table 12 External Clock Drive Characteristics

 The minimum and maximum oscillator periods for PLL operation depend on the selected CPU clock generation mode. Please see respective table above.

²⁾ The clock input signal must reach the defined levels V_{IL2} and V_{IH2} .

³⁾ The minimum high and low time refers to a duty cycle of 50%. The maximum operating frequency (f_{CPU}) in direct drive mode depends on the duty cycle of the clock input signal.

Figure 13 External Clock Drive XTAL1

Note: If the on-chip oscillator is used together with a crystal, the oscillator frequency is limited to a range of 4 MHz to 40 MHz.

It is strongly recommended to measure the oscillation allowance (or margin) in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the limits specified by the crystal supplier.

When driven by an external clock signal it will accept the specified frequency range. Operation at lower input frequencies is possible but is guaranteed by design only (not 100% tested).

A/D Converter Characteristics

(Operating Conditions apply)

Parameter	Symbol		Limit	Values	Unit	Test	
			min.	max.		Condition	
Analog reference supply	VAREF	SR	4.0	V _{DD} + 0.1	V	1)	
Analog reference ground	VAGNE	SR	V _{SS} - 0.1	$V_{\rm SS}$ + 0.2	V	_	
Analog input voltage range	V_{AIN}	SR	V _{AGND}	V _{AREF}	V	2)	
Basic clock frequency	f _{BC}		0.5	6.25	MHz	3)	
Conversion time	t _C	CC	-	$40 t_{\rm BC} + t_{\rm S} \\ + 2t_{\rm CPU}$	_	4) $t_{CPU} = 1/f_{CPU}$	
Calibration time after reset	t _{CAL}	CC	_	3328 t _{BC}	-	5)	
Total unadjusted error	TUE	CC ¹⁾	-	±2	LSB	Channels 0 15	
			-	±10	LSB	Channels 16 23	
Internal resistance of reference voltage source	R _{AREF}	SR	-	t _{BC} /60 - 0.25	kΩ	t _{BC} in [ns] ⁶⁾⁷⁾	
Internal resistance of analog source	R _{ASRC}	;SR	-	t _S /450 - 0.25	kΩ	<i>t</i> _S in [ns] ⁷⁾⁸⁾	
ADC input capacitance	C_{AIN}	CC	_	33	pF	7)	

Table 13 A/D Converter Characteristics

¹⁾ TUE is tested at $V_{AREF} = 5.0 \text{ V}$, $V_{AGND} = 0 \text{ V}$, $V_{DD} = 4.9 \text{ V}$. It is guaranteed by design for all other voltages within the defined voltage range.

If the analog reference supply voltage exceeds the power supply voltage by up to 0.2 V

(i.e. $V_{AREF} = V_{DD} = +0.2 \text{ V}$) the maximum TUE is increased to $\pm 3/11 \text{ LSB}$. This range is not 100% tested. The specified TUE is guaranteed only if the absolute sum of input overload currents on Port 5 pins and P1H pins (see I_{OV} specification) does not exceed 10 mA.

During the reset calibration sequence the maximum TUE may be \pm 4 LSB (\pm 12 LSB for channels 16 ... 23).

- ²⁾ V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.
- ³⁾ The limit values for f_{BC} must not be exceeded when selecting the CPU frequency and the ADCTC setting.
- ⁴⁾ This parameter includes the sample time t_{S} , the time for determining the digital result and the time to load the result register with the conversion result.

Values for the basic clock t_{BC} depend on programming and can be taken from Table 14.

This parameter depends on the ADC control logic. It is not a real maximum value, but rather a fixum.

Figure 18 Demultiplexed Bus, Read Access

Figure 21 READY Timing