E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	111
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	11K × 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	144-BQFP
Supplier Device Package	P-MQFP-144-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c167cslmcabxuma2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2001-08

Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München, Germany © Infineon Technologies AG 2001. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Data Sheet, V2.2, Aug. 2001

C167CS-4R C167CS-L

16-Bit Single-Chip Microcontroller

Microcontrollers

Never stop thinking.

Ordering Information

The ordering code for Infineon microcontrollers provides an exact reference to the required product. This ordering code identifies:

- the derivative itself, i.e. its function set, the temperature range, and the supply voltage
- the package and the type of delivery.

For the available ordering codes for the C167CS please refer to the "**Product Catalog Microcontrollers**", which summarizes all available microcontroller variants.

Note: The ordering codes for Mask-ROM versions are defined for each product after verification of the respective ROM code.

Introduction

The C167CS derivatives are high performance derivatives of the Infineon C166 Family of full featured single-chip CMOS microcontrollers. They combine high CPU performance (up to 20 million instructions per second) with high peripheral functionality and enhanced IO-capabilities. They also provide clock generation via PLL and various on-chip memory modules such as program ROM, internal RAM, and extension RAM.

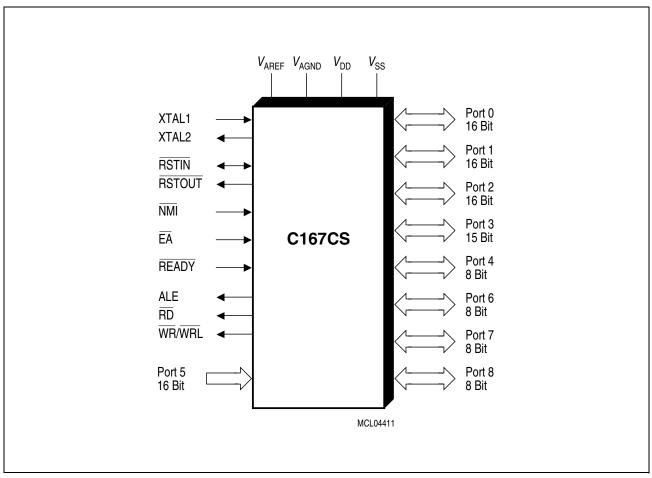
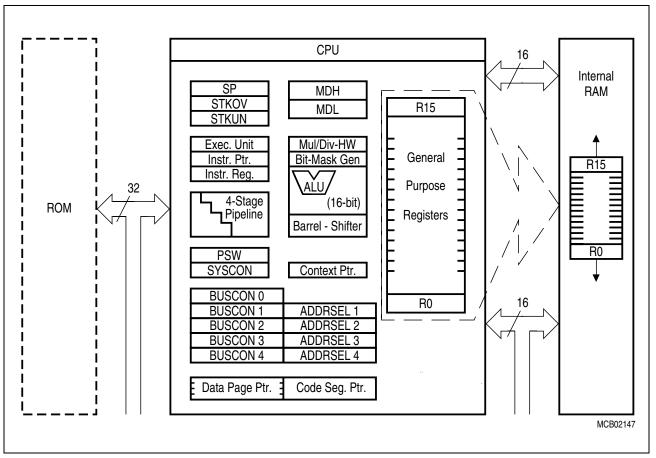


Figure 1 Logic Symbol

Table 2	Pin Definitions and Functions (cont'd)								
Symbol	Pin Num.	Input Outp.	Function						
Ρ7		IO	Port 7 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 7 outputs can be configured as push/ pull or open drain drivers. The input threshold of Port 7 is selectable (TTL or special).						
P7.0	19	0	The following Port 7 pins also serve for alternate functions: POUT0 PWM Channel 0 Output						
P7.1	20	0	POUT1 PWM Channel 1 Output						
P7.2	21	0	POUT2 PWM Channel 2 Output						
P7.3	22	0	POUT3 PWM Channel 3 Output						
P7.4	23	I/O	CC28IO CAPCOM2: CC28 Capture Inp./Compare Outp.						
P7.5	24	I/O	CC29IO CAPCOM2: CC29 Capture Inp./Compare Outp.						
P7.6	25	I/O	CC30IO CAPCOM2: CC30 Capture Inp./Compare Outp.						
P7.7	26	I/O	CC31IO CAPCOM2: CC31 Capture Inp./Compare Outp.						
P5		I	Port 5 is a 16-bit input-only port with Schmitt-Trigger char. The pins of Port 5 also serve as analog input channels for the A/D converter, or they serve as timer inputs:						
P5.0	27	1	ANO						
P5.1	28	1	AN1						
P5.2	29	1	AN2						
P5.3	30	1	AN3						
P5.4	31	1	AN4						
P5.5	32	1	AN5						
P5.6	33	1	AN6						
P5.7	34	1	AN7						
P5.8	35	1	AN8						
P5.9	36	1	AN9						
P5.10	39	1	AN10, T6EUD GPT2 Timer T6 Ext. Up/Down Ctrl. Inp.						
P5.11	40	1	AN11, T5EUD GPT2 Timer T5 Ext. Up/Down Ctrl. Inp.						
P5.12	41		AN12, T6IN GPT2 Timer T6 Count Inp.						
P5.13	42		AN13, T5IN GPT2 Timer T5 Count Inp.						
P5.14	43		AN14, T4EUD GPT1 Timer T4 Ext. Up/Down Ctrl. Inp.						
P5.15	44		AN15, T2EUD GPT1 Timer T2 Ext. Up/Down Ctrl. Inp.						



Note: When one or both of the on-chip CAN Modules are used with the interface lines assigned to Port 4, the CAN lines override the segment address lines and the segment address output on Port 4 is therefore limited to 6/4 bits i.e. address lines A21/A19 ... A16. CS lines can be used to increase the total amount of addressable external memory.

Central Processing Unit (CPU)

The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a separate multiply and divide unit, a bit-mask generator and a barrel shifter.

Based on these hardware provisions, most of the C167CS's instructions can be executed in just one machine cycle which requires 50 ns at 40 MHz CPU clock. For example, shift and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: branches in 2 cycles, a 16×16 bit multiplication in 5 cycles and a 32-/16-bit division in 10 cycles. Another pipeline optimization, the so-called 'Jump Cache', allows reducing the execution time of repeatedly performed jumps in a loop from 2 cycles to 1 cycle.

Table 3	C167CS Interrupt Nodes (cont'd)
---------	---------------------------------

Source of Interrupt or PEC Service Request	Request Flag	Enable Flag	Interrupt Vector	Vector Location	Trap Number
CAPCOM Register 30	CC30IR	CC30IE	CC30INT	00'0114 _H	45 _H
CAPCOM Register 31	CC31IR	CC31IE	CC31INT	00'0118 _H	46 _H
CAPCOM Timer 0	T0IR	TOIE	TOINT	00'0080 _H	20 _H
CAPCOM Timer 1	T1IR	T1IE	T1INT	00'0084 _H	21 _H
CAPCOM Timer 7	T7IR	T7IE	T7INT	00'00F4 _H	3D _H
CAPCOM Timer 8	T8IR	T8IE	T8INT	00'00F8 _H	3E _H
GPT1 Timer 2	T2IR	T2IE	T2INT	00'0088 _H	22 _H
GPT1 Timer 3	T3IR	T3IE	T3INT	00'008C _H	23 _H
GPT1 Timer 4	T4IR	T4IE	T4INT	00'0090 _H	24 _H
GPT2 Timer 5	T5IR	T5IE	T5INT	00'0094 _H	25 _H
GPT2 Timer 6	T6IR	T6IE	T6INT	00'0098 _H	26 _H
GPT2 CAPREL Reg.	CRIR	CRIE	CRINT	00'009C _H	27 _H
A/D Conversion Complete	ADCIR	ADCIE	ADCINT	00'00A0 _H	28 _H
A/D Overrun Error	ADEIR	ADEIE	ADEINT	00'00A4 _H	29 _H
ASC0 Transmit	S0TIR	SOTIE	SOTINT	00'00A8 _H	2A _H
ASC0 Transmit Buffer	S0TBIR	SOTBIE	SOTBINT	00'011C _H	47 _H
ASC0 Receive	SORIR	SORIE	SORINT	00'00AC _H	2B _H
ASC0 Error	S0EIR	SOEIE	SOEINT	00'00B0 _H	2C _H
SSC Transmit	SCTIR	SCTIE	SCTINT	00'00B4 _H	2D _H
SSC Receive	SCRIR	SCRIE	SCRINT	00'00B8 _H	2E _H
SSC Error	SCEIR	SCEIE	SCEINT	00'00BC _H	2F _H
PWM Channel 0 3	PWMIR	PWMIE	PWMINT	00'00FC _H	3F _H
CAN Interface 1	XP0IR	XP0IE	XP0INT	00'0100 _H	40 _H
CAN Interface 2	XP1IR	XP1IE	XP1INT	00'0104 _H	41 _H
Unassigned node	XP2IR	XP2IE	XP2INT	00'0108 _H	42 _H
PLL/OWD and RTC	XP3IR	XP3IE	XP3INT	00'010C _H	43 _H

The C167CS also provides an excellent mechanism to identify and to process exceptions or error conditions that arise during run-time, so-called 'Hardware Traps'. Hardware traps cause immediate non-maskable system reaction which is similar to a standard interrupt service (branching to a dedicated vector table location). The occurrence of a hardware trap is additionally signified by an individual bit in the trap flag register (TFR). Except when another higher prioritized trap service is in progress, a hardware trap will interrupt any actual program execution. In turn, hardware trap services can normally not be interrupted by standard or PEC interrupts.

Table 4 shows all of the possible exceptions or error conditions that can arise during runtime:

Exception Condition	Trap Flag	Trap Vector	Vector Location	Trap Number	Trap Priority
Reset Functions: – Hardware Reset – Software Reset – W-dog Timer Overflow	-	RESET RESET RESET	00'0000 _H 00'0000 _H 00'0000 _H	00 _H 00 _H 00 _H	
Class A Hardware Traps: – Non-Maskable Interrupt – Stack Overflow – Stack Underflow	NMI STKOF STKUF	NMITRAP STOTRAP STUTRAP	00'0008 _H 00'0010 _H 00'0018 _H	02 _H 04 _H 06 _H	
Class B Hardware Traps: – Undefined Opcode – Protected Instruction Fault	UNDOPC PRTFLT	BTRAP BTRAP	00'0028 _H 00'0028 _H	0A _H 0A _H	
 Illegal Word Operand Access 	ILLOPA	BTRAP	00'0028 _H	0A _H	I
 Illegal Instruction Access 	ILLINA	BTRAP	00'0028 _H	0A _H	I
 Illegal External Bus Access 	ILLBUS	BTRAP	00'0028 _H	0A _H	I
Reserved	_	_	[2C _H – 3C _H]	[0B _H – 0F _H]	-
Software Traps TRAP Instruction 	-	_	Any [00'0000 _H 00'01FC _H] in steps of 4 _H	Any [00 _H – 7F _H]	Current CPU Priority

Table 4Hardware Trap Summary

A/D Converter

For analog signal measurement, a 10-bit A/D converter with 24 multiplexed input channels (16 standard channels and 8 extension channels) and a sample and hold circuit has been integrated on-chip. It uses the method of successive approximation. The sample time (for loading the capacitors) and the conversion time is programmable and can so be adjusted to the external circuitry.

Overrun error detection/protection is provided for the conversion result register (ADDAT): either an interrupt request will be generated when the result of a previous conversion has not been read from the result register at the time the next conversion is complete, or the next conversion is suspended in such a case until the previous result has been read.

For applications which require less than 24 analog input channels, the remaining channel inputs can be used as digital input port pins.

The A/D converter of the C167CS supports four different conversion modes. In the standard Single Channel conversion mode, the analog level on a specified channel is sampled once and converted to a digital result. In the Single Channel Continuous mode, the analog level on a specified channel is repeatedly sampled and converted without software intervention. In the Auto Scan mode, the analog levels on a prespecified number of channels (standard or extension) are sequentially sampled and converted. In the Auto Scan Continuous mode, the number of prespecified channels is repeatedly sampled and converted. In the Auto Scan Continuous mode, the conversion of a specific channel can be inserted (injected) into a running sequence without disturbing this sequence. This is called Channel Injection Mode.

The Peripheral Event Controller (PEC) may be used to automatically store the conversion results into a table in memory for later evaluation, without requiring the overhead of entering and exiting interrupt routines for each data transfer.

After each reset and also during normal operation the ADC automatically performs calibration cycles. This automatic self-calibration constantly adjusts the converter to changing operating conditions (e.g. temperature) and compensates process variations.

These calibration cycles are part of the conversion cycle, so they do not affect the normal operation of the A/D converter.

In order to decouple analog inputs from digital noise and to avoid input trigger noise those pins used for analog input can be disconnected from the digital IO or input stages under software control. This can be selected for each pin separately via registers P5DIDIS (Port 5 Digital Input Disable) and P1DIDIS (PORT1 Digital Input Disable).

Parallel Ports

The C167CS provides up to 111 I/O lines which are organized into eight input/output ports and one input port. All port lines are bit-addressable, and all input/output lines are individually (bit-wise) programmable as inputs or outputs via direction registers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. The output drivers of five I/O ports can be configured (pin by pin) for push/pull operation or open-drain operation via control registers. During the internal reset, all port pins are configured as inputs.

The input threshold of Port 2, Port 3, Port 7, and Port 8 is selectable (TTL or CMOS like), where the special CMOS like input threshold reduces noise sensitivity due to the input hysteresis. The input threshold may be selected individually for each byte of the respective ports.

All port lines have programmable alternate input or output functions associated with them. All port lines that are not used for these alternate functions may be used as general purpose IO lines.

PORT0 and PORT1 may be used as address and data lines when accessing external memory, while Port 4 outputs the additional segment address bits A23/19/17 ... A16 in systems where segmentation is enabled to access more than 64 KBytes of memory.

Port 2, Port 8 and Port 7 (and parts of PORT1) are associated with the capture inputs or compare outputs of the CAPCOM units and/or with the outputs of the PWM module.

Port 6 provides optional bus arbitration signals (BREQ, HLDA, HOLD) and chip select signals.

Port 3 includes alternate functions of timers, serial interfaces, the optional bus control signal BHE/WRH, and the system clock output CLKOUT (or the programmable frequency output FOUT).

Port 5 (and parts of PORT1) is used for the analog input channels to the A/D converter or timer control signals.

The edge characteristics (transition time) and driver characteristics (output current) of the C167CS's port drivers can be selected via the Port Output Control registers (POCONx).

Special Function Registers Overview

Table 7 lists all SFRs which are implemented in the C167CS in alphabetical order. **Bit-addressable** SFRs are marked with the letter "**b**" in column "Name". SFRs within the **Extended SFR-Space** (ESFRs) are marked with the letter "**E**" in column "Physical Address". Registers within on-chip X-peripherals are marked with the letter "**X**" in column "Physical Address".

An SFR can be specified via its individual mnemonic name. Depending on the selected addressing mode, an SFR can be accessed via its physical address (using the Data Page Pointers), or via its short 8-bit address (without using the Data Page Pointers).

Name		Physica Addres		8-Bit Addr.	Description	Reset Value
ADCIC	b	FF98 _H		CCH	A/D Converter End of Conversion Interrupt Control Register	0000 _H
ADCON	N b FFA0 _H D0 _H A/D Converter Control Register		A/D Converter Control Register	0000 _H		
ADDAT		FEA0 _H		50 _H	A/D Converter Result Register	0000 _H
ADDAT2		F0A0 _H	Ε	50 _H	A/D Converter 2 Result Register	0000 _H
ADDRSEL1		FE18 _H		0C _H	Address Select Register 1	0000 _H
ADDRSEL2	2	FE1A _H		0D _H	Address Select Register 2	0000 _H
ADDRSEL3	3	FE1C _H		0E _H	Address Select Register 3	0000 _H
ADDRSEL4	ŀ	FE1E _H		0F _H	Address Select Register 4	0000 _H
ADEIC	b	FF9A _H		CD _H	A/D Converter Overrun Error Interrupt Control Register	0000 _H
BUSCON0	b	FF0C _H		86 _H	Bus Configuration Register 0	0XX0 _H
BUSCON1	b	FF14 _H		8A _H	Bus Configuration Register 1	0000 _H
BUSCON2	b	FF16 _H		8B _H	Bus Configuration Register 2	0000 _H
BUSCON3	b	FF18 _H		8C _H	Bus Configuration Register 3	0000 _H
BUSCON4	b	FF1A _H		8D _H	Bus Configuration Register 4	0000 _H
C1BTR		EF04 _H	Χ		CAN1 Bit Timing Register	UUUU _H
C1CSR		EF00 _H	Χ		CAN1 Control/Status Register	XX01 _H
C1GMS		EF06 _H	Χ		CAN1 Global Mask Short	UFUU _H
C1PCIR		EF02 _H	Χ		CAN1 Port Control/Interrupt Register	XXXX _H
C1LGML		EF0A _H	Χ		CAN1 Lower Global Mask Long	UUUU _H
C1LMLM		EF0E _H	Χ		CAN1 Lower Mask of Last Message	UUUU _H

Table 7 C167CS Registers, Ordered by Name

Table 7C167CS Registers, Ordered by Name (cont'd)

Name		Physica Addres		8-Bit Addr.	Description	Reset Value
C1UAR		EFn2 _H	X		CAN1 Upper Arbitration Reg. (msg. n)	UUUU _H
C1UGML		EF08 _H	X		CAN1 Upper Global Mask Long	UUUU _H
C1UMLM		EF0C _H	X		CAN1 Upper Mask of Last Message	UUUU _H
C2BTR		EE04 _H	X		CAN2 Bit Timing Register	UUUU _H
C2CSR		EE00 _H	X		CAN2 Control/Status Register	XX01 _H
C2GMS		EE06 _H	X		CAN2 Global Mask Short	UFUU _H
C2PCIR		EE02 _H	X		CAN2 Port Control/Interrupt Register	XXXX _H
C2LGML		EE0A _H	X		CAN2 Lower Global Mask Long	UUUU _H
C2LMLM		EE0E _H	X		CAN2 Lower Mask of Last Message	UUUU _H
C2UAR		EEn2 _H	X		CAN2 Upper Arbitration Reg. (msg. n)	UUUU _H
C2UGML		EE08 _H	X		CAN2 Upper Global Mask Long	UUUU _H
C2UMLM		EE0C _H	X		CAN2 Upper Mask of Last Message	UUUU _H
CAPREL		FE4A _H		25 _H	GPT2 Capture/Reload Register	0000 _H
CC0		FE80 _H		40 _H	CAPCOM Register 0	0000 _H
CC0IC	b	FF78 _H		BC _H	CAPCOM Reg. 0 Interrupt Ctrl. Reg.	0000 _H
CC1		FE82 _H		41 _H	CAPCOM Register 1	0000 _H
CC10		FE94 _H		4A _H	CAPCOM Register 10	0000 _H
CC10IC	b	FF8C _H		C6 _H	CAPCOM Reg. 10 Interrupt Ctrl. Reg.	0000 _H
CC11		FE96 _H		4B _H	CAPCOM Register 11	0000 _H
CC11IC	b	FF8E _H		C7 _H	CAPCOM Reg. 11 Interrupt Ctrl. Reg.	0000 _H
CC12		FE98 _H		4C _H	CAPCOM Register 12	0000 _H
CC12IC	b	FF90 _H		C8 _H	CAPCOM Reg. 12 Interrupt Ctrl. Reg.	0000 _H
CC13		FE9A _H		4D _H	CAPCOM Register 13	0000 _H
CC13IC	b	FF92 _H		C9 _H	CAPCOM Reg. 13 Interrupt Ctrl. Reg.	0000 _H
CC14		FE9C _H		4E _H	CAPCOM Register 14	0000 _H
CC14IC	b	FF94 _H		CA _H	CAPCOM Reg. 14 Interrupt Ctrl. Reg.	0000 _H
CC15		FE9E _H		4F _H	CAPCOM Register 15	0000 _H
CC15IC	b	FF96 _H		CB _H	CAPCOM Reg. 15 Interrupt Ctrl. Reg.	0000 _H
CC16		FE60 _H		30 _H	CAPCOM Register 16	0000 _H
CC16IC	b	F160 _H	Ε	B0 _H	CAPCOM Reg. 16 Interrupt Ctrl. Reg.	0000 _H

Table 7	C167CS Registers.	, Ordered by Name (cont'd)

Name Physical				8-Bit	Description	Reset
		Addres		Addr.		Value
DP1L	b	F104 _H	Ε	82 _H	P1L Direction Control Register	00 _H
DP1H	b	F106 _H	Ε	83 _H	P1H Direction Control Register	00 _H
DP2	b	FFC2 _H		E1 _H	Port 2 Direction Control Register	0000 _H
DP3	b	FFC6 _H		E3 _H	Port 3 Direction Control Register	0000 _H
DP4	b	FFCA _H		E5 _H	Port 4 Direction Control Register	00 _H
DP6	b	FFCE _H		E7 _H	Port 6 Direction Control Register	00 _H
DP7	b	FFD2 _H		E9 _H	Port 7 Direction Control Register	00 _H
DP8	b	FFD6 _H		EB _H	Port 8 Direction Control Register	00 _H
DPP0		FE00 _H		00 _H	CPU Data Page Pointer 0 Reg. (10 bits)	0000 _H
DPP1		FE02 _H		01 _H	CPU Data Page Pointer 1 Reg. (10 bits)	0001 _H
DPP2		FE04 _H		02 _H	CPU Data Page Pointer 2 Reg. (10 bits)	0002 _H
DPP3		FE06 _H		03 _H	CPU Data Page Pointer 3 Reg. (10 bits)	0003 _H
EXICON	b	F1C0 _H	Ε	E0 _H	External Interrupt Control Register	0000 _H
EXISEL	b	F1DA _H	Ε	ED _H	External Interrupt Source Select Reg.	0000 _H
FOCON	b	FFAA _H		D5 _H	Frequency Output Control Register	0000 _H
IDCHIP		F07C _H	Ε	3E _H	Identifier	0CXX _H
IDMANUF		F07E _H	Ε	3F _H	Identifier	1820 _H
IDMEM		F07A _H	Ε	3D _H	Identifier	X040 _H
IDMEM2		F076 _H	Ε	3B _H	Identifier	XXXX _H
IDPROG		F078 _H	Ε	3C _H	Identifier	XXXX _H
ISNC	b	F1DE _H	Ε	EF _H	Interrupt Subnode Control Register	0000 _H
MDC	b	FF0E _H		87 _H	CPU Multiply Divide Control Register	0000 _H
MDH		FE0C _H		06 _H	CPU Multiply Divide Reg. – High Word	0000 _H
MDL		FE0E _H		07 _H	CPU Multiply Divide Reg. – Low Word	0000 _H
ODP2	b	F1C2 _H	Ε	E1 _H	Port 2 Open Drain Control Register	0000 _H
ODP3	b	F1C6 _H	Ε	E3 _H	Port 3 Open Drain Control Register	0000 _H
ODP4	b	F1CA _H	Ε	E5 _H	Port 4 Open Drain Control Register	00 _H
ODP6	b	F1CE _H	Ε	E7 _H	Port 6 Open Drain Control Register	00 _H
ODP7	b	F1D2 _H	Ε	E9 _H	Port 7 Open Drain Control Register	00 _H
ODP8	b	F1D6 _H	Ε	EB _H	Port 8 Open Drain Control Register	00 _H

Table 7C167CS Registers, Ordered by Name (cont'd)

Name		Physical Address		8-Bit Addr.	Description	Reset Value
T14		F0D2 _H	Ε	69 _H	RTC Timer 14 Register	XXXX _H
T14REL		F0D0 _H	Ε	68 _H	RTC Timer 14 Reload Register	XXXX _H
T2		FE40 _H		20 _H	GPT1 Timer 2 Register	0000 _H
T2CON	b	FF40 _H		A0 _H	GPT1 Timer 2 Control Register	0000 _H
T2IC	b	FF60 _H		B0 _H	GPT1 Timer 2 Interrupt Control Register	0000 _H
Т3		FE42 _H		21 _H	GPT1 Timer 3 Register	0000 _H
T3CON	b	FF42 _H		A1 _H	GPT1 Timer 3 Control Register	0000 _H
T3IC	b	FF62 _H		B1 _H	GPT1 Timer 3 Interrupt Control Register	0000 _H
T4		FE44 _H		22 _H	GPT1 Timer 4 Register	0000 _H
T4CON	b	FF44 _H		A2 _H	GPT1 Timer 4 Control Register	0000 _H
T4IC	b	FF64 _H		B2 _H	GPT1 Timer 4 Interrupt Control Register	0000 _H
Т5		FE46 _H		23 _H	GPT2 Timer 5 Register	0000 _H
T5CON	b	FF46 _H		A3 _H	GPT2 Timer 5 Control Register	0000 _H
T5IC	b	FF66 _H		B3 _H	GPT2 Timer 5 Interrupt Control Register	0000 _H
Т6		FE48 _H		24 _H	GPT2 Timer 6 Register	0000 _H
T6CON	b	FF48 _H		A4 _H	GPT2 Timer 6 Control Register	0000 _H
T6IC	b	FF68 _H		B4 _H	GPT2 Timer 6 Interrupt Control Register	0000 _H
T7		F050 _H	Ε	28 _H	CAPCOM Timer 7 Register	0000 _H
T78CON	b	FF20 _H		90 _H	CAPCOM Timer 7 and 8 Control Reg.	0000 _H
T7IC	b	F17A _H	Ε	BE _H	CAPCOM Timer 7 Interrupt Ctrl. Reg.	0000 _H
T7REL		F054 _H	Ε	2A _H	CAPCOM Timer 7 Reload Register	0000 _H
Т8		F052 _H	Ε	29 _H	CAPCOM Timer 8 Register	0000 _H
T8IC	b	F17C _H	Ε	BF _H	CAPCOM Timer 8 Interrupt Ctrl. Reg.	0000 _H
T8REL		F056 _H	Ε	2B _H	CAPCOM Timer 8 Reload Register	0000 _H
TFR	b	FFAC _H		D6 _H	Trap Flag Register	0000 _H
WDT		FEAE _H		57 _H	Watchdog Timer Register (read only)	0000 _H
WDTCON	b	FFAE _H		D7 _H	Watchdog Timer Control Register	²⁾ 00XX _H
XP0IC	b	F186 _H	Ε	C3 _H	CAN1 Module Interrupt Control Register	0000 _H
XP1IC	b	F18E _H	Ε	C7 _H	CAN2 Module Interrupt Control Register	0000 _H
XP2IC	b	F196 _H	Ε	CB _H	Unassigned Interrupt Control Register	0000 _H

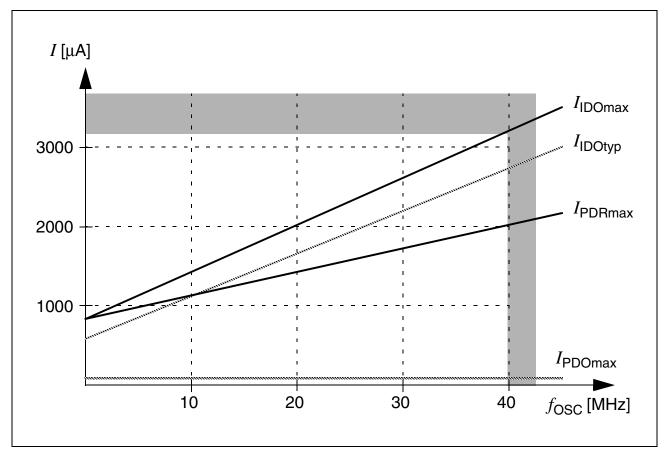


Figure 9 Idle and Power Down Supply Current as a Function of Oscillator Frequency

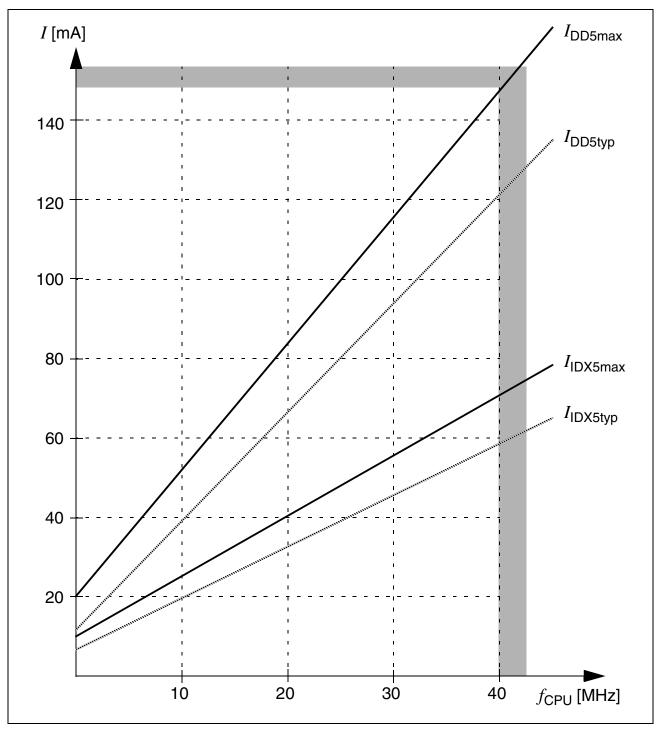


Figure 10 Supply/Idle Current as a Function of Operating Frequency

P0.15-13 (P0H.7-5). Register RP0H can be loaded from the upper half of register RSTCON under software control.

Table 11 associates the combinations of these three bits with the respective clock generation mode.

CLKCFG (RP0H.7-5)	CPU Frequency $f_{CPU} = f_{OSC} \times F$	External Clock Input Range ¹⁾	Notes
1 1 1	$f_{OSC} \times 4$	2.5 to 10 MHz	Default configuration
1 1 0	$f_{OSC} \times 3$	3.33 to 13.33 MHz	-
101	$f_{OSC} \times 2$	5 to 20 MHz	-
1 0 0	$f_{OSC} \times 5$	2 to 8 MHz	-
0 1 1	$f_{OSC} \times 1$	1 to 40 MHz	Direct drive ²⁾
0 1 0	$f_{\rm OSC} imes$ 1.5	6.66 to 26.66 MHz	-
0 0 1	f _{OSC} / 2	2 to 50 MHz ³⁾	CPU clock via prescaler
0 0 0	$f_{OSC} \times 2.5$	4 to 16 MHz	-

 Table 11
 C167CS Clock Generation Modes

¹⁾ The external clock input range refers to a CPU clock range of 10 ... 40 MHz.

²⁾ The maximum frequency depends on the duty cycle of the external clock signal.

³⁾ In prescaler mode the full CPU clock range cannot be used.

Prescaler Operation

When prescaler operation is configured (CLKCFG = 001_B) the CPU clock is derived from the internal oscillator (input clock signal) by a 2:1 prescaler.

The frequency of f_{CPU} is half the frequency of f_{OSC} and the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the period of the input clock f_{OSC} .

The timings listed in the AC Characteristics that refer to TCLs therefore can be calculated using the period of f_{OSC} for any TCL.

Phase Locked Loop

When PLL operation is configured (via CLKCFG) the on-chip phase locked loop is enabled and provides the CPU clock (see **Table 11**). The PLL multiplies the input frequency by the factor **F** which is selected via the combination of pins P0.15-13 (i.e. $f_{CPU} = f_{OSC} \times F$). With every **F**'th transition of f_{OSC} the PLL circuit synchronizes the CPU clock to the input clock. This synchronization is done smoothly, i.e. the CPU clock frequency does not change abruptly.

AC Characteristics External Clock Drive XTAL1

(Operating Conditions apply)

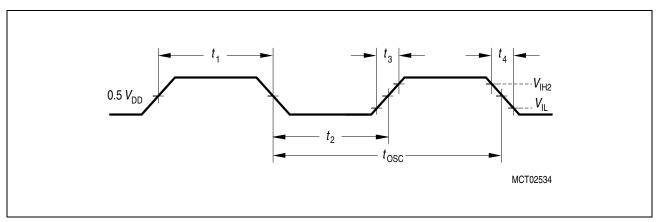

Parameter Syr		bol	Direct Drive 1:1		Prescaler 2:1		PLL 1:N		Unit
			min.	max.	min.	max.	min.	max.]
Oscillator period	t _{OSC}	SR	25	_	20	_	37 ¹⁾	500 ¹⁾	ns
High time ²⁾	<i>t</i> ₁	SR	12 ³⁾	_	5	_	10	_	ns
Low time ²⁾	<i>t</i> ₂	SR	12 ³⁾	_	5	_	10	_	ns
Rise time ²⁾	t ₃	SR	-	8	-	5	-	10	ns
Fall time ²⁾	<i>t</i> ₄	SR	_	8	-	5	-	10	ns

Table 12 External Clock Drive Characteristics

 The minimum and maximum oscillator periods for PLL operation depend on the selected CPU clock generation mode. Please see respective table above.

²⁾ The clock input signal must reach the defined levels V_{IL2} and V_{IH2} .

³⁾ The minimum high and low time refers to a duty cycle of 50%. The maximum operating frequency (f_{CPU}) in direct drive mode depends on the duty cycle of the clock input signal.

Figure 13 External Clock Drive XTAL1

Note: If the on-chip oscillator is used together with a crystal, the oscillator frequency is limited to a range of 4 MHz to 40 MHz.

It is strongly recommended to measure the oscillation allowance (or margin) in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the limits specified by the crystal supplier.

When driven by an external clock signal it will accept the specified frequency range. Operation at lower input frequencies is possible but is guaranteed by design only (not 100% tested).

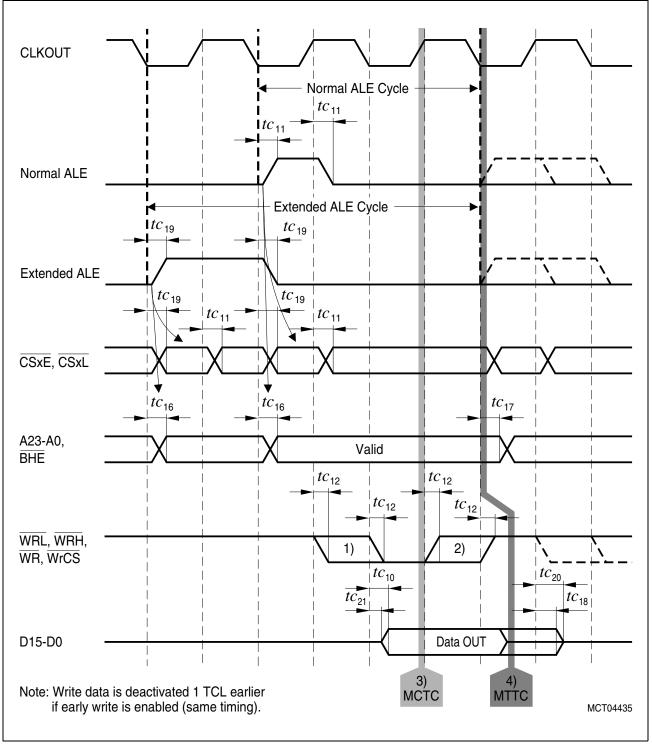


Figure 17 Demultiplexed Bus, Write Access

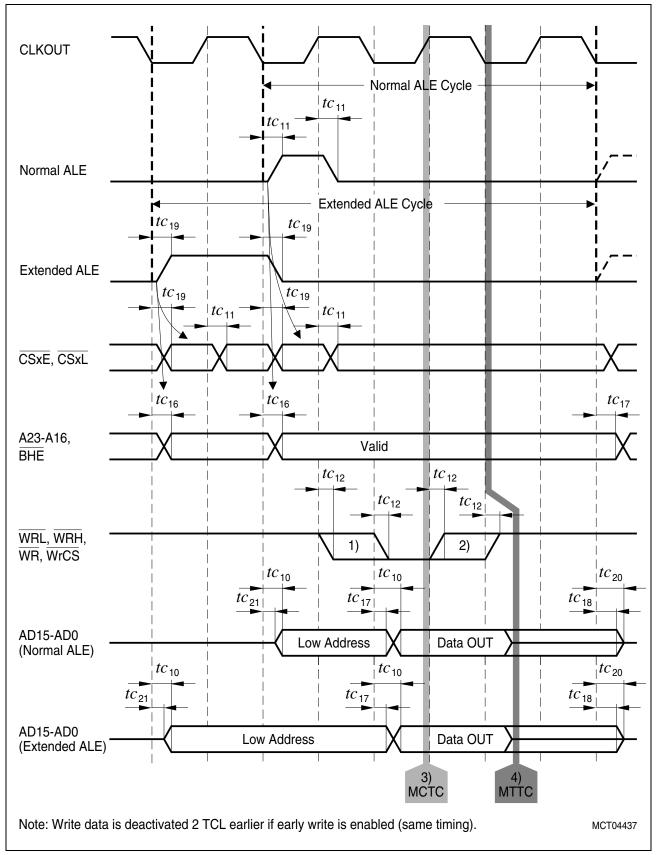


Figure 19 Multiplexed Bus, Write Access

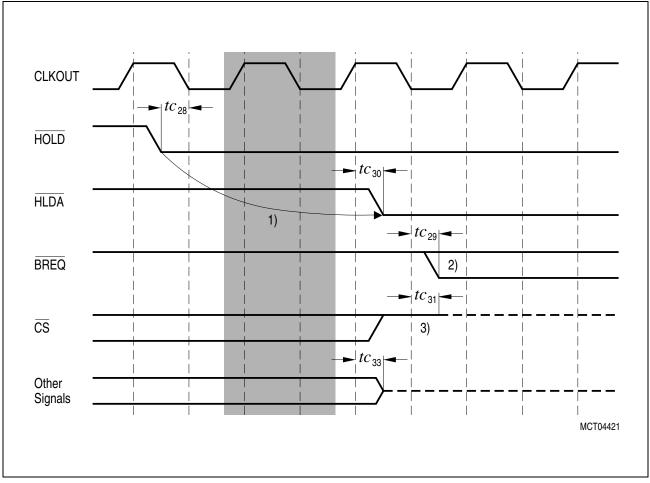


Figure 22 External Bus Arbitration, Releasing the Bus

- Notes ¹⁾ The C167CS will complete the currently running bus cycle before granting bus access.
- ²⁾ This is the first possibility for BREQ to get active.
- ³⁾ The \overline{CS} outputs will be resistive high (pullup) after t_{33} . Latched \overline{CS} outputs are driven high for 1 TCL before the output drivers are switched off.