E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	111
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	11K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-BQFP
Supplier Device Package	P-MQFP-144-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c167cslmcafxqla2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information

The ordering code for Infineon microcontrollers provides an exact reference to the required product. This ordering code identifies:

- the derivative itself, i.e. its function set, the temperature range, and the supply voltage
- the package and the type of delivery.

For the available ordering codes for the C167CS please refer to the "**Product Catalog Microcontrollers**", which summarizes all available microcontroller variants.

Note: The ordering codes for Mask-ROM versions are defined for each product after verification of the respective ROM code.

Introduction

The C167CS derivatives are high performance derivatives of the Infineon C166 Family of full featured single-chip CMOS microcontrollers. They combine high CPU performance (up to 20 million instructions per second) with high peripheral functionality and enhanced IO-capabilities. They also provide clock generation via PLL and various on-chip memory modules such as program ROM, internal RAM, and extension RAM.

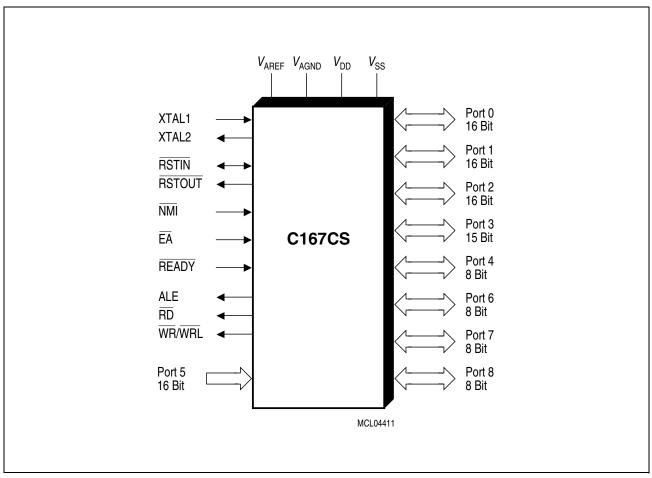


Figure 1 Logic Symbol

Table 2	PI	n Definit	tions and F	unctions (cont'd)				
Symbol	Pin Num.	Input Outp.	Function					
P2		IO	Port 2 is a 16-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 2 outputs can be configured as push pull or open drain drivers. The input threshold of Port 2 is selectable (TTL or special). The following Port 2 pins also serve for alternate functions:					
P2.0	47	1/0	CC0IO	CAPCOM1: CC0 Capture Inp./Compare Output				
P2.1	48	I/O	CC1IO	CAPCOM1: CC1 Capture Inp./Compare Output				
P2.2	49	I/O	CC2IO	CAPCOM1: CC2 Capture Inp./Compare Output				
P2.3	50	I/O	CC3IO	CAPCOM1: CC3 Capture Inp./Compare Output				
P2.4	51	I/O	CC4IO	CAPCOM1: CC4 Capture Inp./Compare Output				
P2.5	52	I/O	CC5IO	CAPCOM1: CC5 Capture Inp./Compare Output				
P2.6	53	I/O	CC6IO	CAPCOM1: CC6 Capture Inp./Compare Output				
P2.7	54	I/O	CC7IO	CAPCOM1: CC7 Capture Inp./Compare Output				
P2.8	57	I/O	CC8IO	CAPCOM1: CC8 Capture Inp./Compare Output,				
		1	EX0IN	Fast External Interrupt 0 Input				
P2.9	58	I/O	CC9IO	CAPCOM1: CC9 Capture Inp./Compare Output,				
		1	EX1IN	Fast External Interrupt 1 Input				
P2.10	59	I/O	CC10IO	CAPCOM1: CC10 Capture Inp./Compare Outp.,				
			EX2IN	Fast External Interrupt 2 Input				
P2.11	60	I/O	CC11IO	CAPCOM1: CC11 Capture Inp./Compare Outp.,				
			EX3IN	Fast External Interrupt 3 Input				
P2.12	61	I/O	CC12IO	CAPCOM1: CC12 Capture Inp./Compare Outp.,				
	<u></u>		EX4IN	Fast External Interrupt 4 Input				
P2.13	62	I/O	CC13IO	CAPCOM1: CC13 Capture Inp./Compare Outp.,				
	<u></u>		EX5IN	Fast External Interrupt 5 Input				
P2.14	63	I/O	CC14IO	CAPCOM1: CC14 Capture Inp./Compare Outp.,				
	C 4		EX6IN	Fast External Interrupt 6 Input				
P2.15	64	I/O	CC15IO	CAPCOM1: CC15 Capture Inp./Compare Outp.,				
			EX7IN	Fast External Interrupt 7 Input,				
			T7IN	CAPCOM2: Timer T7 Count Input				
			inte	ing Sleep Mode a spike filter on the EXnIN rrupt inputs suppresses input pulses <10 ns. It pulses >100 ns safely pass the filter.				

Symbol	Pin	Input	Function
Gymbol	Num.	Outp.	
Ρ4		IO	Port 4 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. The Port 4 outputs can be configured as push/pull or open drain drivers. The input threshold of Port 4 is selectable (TTL or special). Port 4 can be used to output the segment address lines and for serial interface lines: ¹⁾
P4.0	85	0	A16 Least Significant Segment Address Line
P4.1	86	0	A17 Segment Address Line
P4.2	87	0	A18 Segment Address Line
P4.3	88	0	A19 Segment Address Line
P4.4	89	0 I	A20 Segment Address Line, CAN2_RxD CAN 2 Receive Data Input
P4.5	90	0	A21 Segment Address Line,
		1	CAN1_RxD CAN 1 Receive Data Input
P4.6 P4.7	91 92	0 0 0 1 0	A22 Segment Address Line, CAN1_TxD CAN 1 Transmit Data Output, CAN2_TxD CAN 2 Transmit Data Output A23 Most Significant Segment Address Line, CAN1_RxD CAN 1 Receive Data Input, CAN2_TxD CAN 2 Transmit Data Output,
		1	CAN2_RxD CAN 2 Receive Data Input
RD	95	0	External Memory Read Strobe. RD is activated for every external instruction or data read access.
WR/ WRL	96	0	External Memory Write Strobe. In WR-mode this pin is activated for every external data write access. In WRL-mode this pin is activated for low byte data write accesses on a 16-bit bus, and for every data write access on an 8-bit bus. See WRCFG in register SYSCON for mode selection.
READY	97	1	Ready Input. When the Ready function is enabled, a high level at this pin during an external memory access will force the insertion of memory cycle time waitstates until the pin returns to a low level. An internal pullup device will hold this pin high when nothing is driving it.

Data Sheet

Table 2	able 2 Pin Definitions and Functions (cont'd)								
Symbol	Pin Num.	Input Outp.	Function						
ALE	98	0		al memory or a	n be used for latching the n address latch in the				
ĒĀ	99	1	after Reset forces th out of external mem the internal program	External Access Enable pin. A low level at this pin during and after Reset forces the C167CS to begin instruction execution out of external memory. A high level forces execution out of the internal program memory. "ROMIess" versions must have this pin tied to '0'.					
PORT0 POL.0-7 POH.0-7	100- 107 108, 111- 117	10	 "ROMless" versions must have this pin tied to '0'. PORT0 consists of the two 8-bit bidirectional I/O ports PC and P0H. It is bit-wise programmable for input or output v direction bits. For a pin configured as input, the output driving put into high-impedance state. In case of an external bus configuration, PORT0 serves a the address (A) and address/data (AD) bus in multiplexed bus modes and as the data (D) bus in demultiplexed bus modes. Demultiplexed bus modes: Data Path Width: 8-bit 16-bit POL.0 – POL.7: D0 – D7 D0 – D7 POH.0 – POH.7: I/O D8 – D15 Multiplexed bus modes: Data Path Width: 8-bit 16-bit 						

Table 2	F II	Dennin	
Symbol	Pin Num.	Input Outp.	Function
V _{DD}	17, 46, 56, 72, 82, 93, 109, 126, 136, 144	_	Digital Supply Voltage: +5 V during normal operation and idle mode. ≥2.5 V during power down mode.
V _{SS}	18, 45, 55, 71, 83, 94, 110, 127, 139, 143	_	Digital Ground.

Table 2Pin Definitions and Functions (cont'd)

¹⁾ The CAN interface lines are assigned to ports P4 and P8 under software control. Within the CAN module several assignments can be selected.

Note: The following behaviour differences must be observed when the bidirectional reset is active:

- Bit BDRSTEN in register SYSCON cannot be changed after EINIT and is cleared automatically after a reset.
- The reset indication flags always indicate a long hardware reset.
- The PORT0 configuration is treated like on a hardware reset. Especially the bootstrap loader may be activated when POL.4 is low.
- Pin RSTIN may only be connected to external reset devices with an open drain output driver.
- A short hardware reset is extended to the duration of the internal reset sequence.

The CPU has a register context consisting of up to 16 wordwide GPRs at its disposal. These 16 GPRs are physically allocated within the on-chip RAM area. A Context Pointer (CP) register determines the base address of the active register bank to be accessed by the CPU at any time. The number of register banks is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 1024 words is provided as a storage for temporary data. The system stack is allocated in the on-chip RAM area, and it is accessed by the CPU via the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack pointer value upon each stack access for the detection of a stack overflow or underflow.

The high performance offered by the hardware implementation of the CPU can efficiently be utilized by a programmer via the highly efficient C167CS instruction set which includes the following instruction classes:

- Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

Capture/Compare (CAPCOM) Units

The CAPCOM units support generation and control of timing sequences on up to 32 channels with a maximum resolution of 16 TCL. The CAPCOM units are typically used to handle high speed I/O tasks such as pulse and waveform generation, pulse width modulation (PMW), Digital to Analog (D/A) conversion, software timing, or time recording relative to external events.

Four 16-bit timers (T0/T1, T7/T8) with reload registers provide two independent time bases for the capture/compare register array.

The input clock for the timers is programmable to several prescaled values of the internal system clock, or may be derived from an overflow/underflow of timer T6 in module GPT2. This provides a wide range of variation for the timer period and resolution and allows precise adjustments to the application specific requirements. In addition, external count inputs for CAPCOM timers T0 and T7 allow event scheduling for the capture/compare registers relative to external events.

Both of the two capture/compare register arrays contain 16 dual purpose capture/ compare registers, each of which may be individually allocated to either CAPCOM timer T0 or T1 (T7 or T8, respectively), and programmed for capture or compare function. Each register has one port pin associated with it which serves as an input pin for triggering the capture function, or as an output pin to indicate the occurrence of a compare event.

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('capture'd) into the capture/compare register in response to an external event at the port pin which is associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event. The contents of all registers which have been selected for one of the five compare modes are continuously compared with the contents of the allocated timers. When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the selected compare mode.

Compare Modes	Function				
Mode 0	Interrupt-only compare mode; several compare interrupts per timer period are possible.				
Mode 1	Pin toggles on each compare match; several compare events per timer period are possible.				
Mode 2	Interrupt-only compare mode; only one compare interrupt per timer period is generated.				
Mode 3	Pin set '1' on match; pin reset '0' on compare time overflow; only one compare event per timer period is generated.				
Double Register Mode	Two registers operate on one pin; pin toggles on each compare match; several compare events per timer period are possible.				

Table 5 Compare Modes (CAPCOM)

A/D Converter

For analog signal measurement, a 10-bit A/D converter with 24 multiplexed input channels (16 standard channels and 8 extension channels) and a sample and hold circuit has been integrated on-chip. It uses the method of successive approximation. The sample time (for loading the capacitors) and the conversion time is programmable and can so be adjusted to the external circuitry.

Overrun error detection/protection is provided for the conversion result register (ADDAT): either an interrupt request will be generated when the result of a previous conversion has not been read from the result register at the time the next conversion is complete, or the next conversion is suspended in such a case until the previous result has been read.

For applications which require less than 24 analog input channels, the remaining channel inputs can be used as digital input port pins.

The A/D converter of the C167CS supports four different conversion modes. In the standard Single Channel conversion mode, the analog level on a specified channel is sampled once and converted to a digital result. In the Single Channel Continuous mode, the analog level on a specified channel is repeatedly sampled and converted without software intervention. In the Auto Scan mode, the analog levels on a prespecified number of channels (standard or extension) are sequentially sampled and converted. In the Auto Scan Continuous mode, the number of prespecified channels is repeatedly sampled and converted. In the Auto Scan Continuous mode, the conversion of a specific channel can be inserted (injected) into a running sequence without disturbing this sequence. This is called Channel Injection Mode.

The Peripheral Event Controller (PEC) may be used to automatically store the conversion results into a table in memory for later evaluation, without requiring the overhead of entering and exiting interrupt routines for each data transfer.

After each reset and also during normal operation the ADC automatically performs calibration cycles. This automatic self-calibration constantly adjusts the converter to changing operating conditions (e.g. temperature) and compensates process variations.

These calibration cycles are part of the conversion cycle, so they do not affect the normal operation of the A/D converter.

In order to decouple analog inputs from digital noise and to avoid input trigger noise those pins used for analog input can be disconnected from the digital IO or input stages under software control. This can be selected for each pin separately via registers P5DIDIS (Port 5 Digital Input Disable) and P1DIDIS (PORT1 Digital Input Disable).

Power Management

The C167CS provides several means to control the power it consumes either at a given time or averaged over a certain timespan. Three mechanisms can be used (partly in parallel):

• **Power Saving Modes** switch the C167CS into a special operating mode (control via instructions).

Idle Mode stops the CPU while the peripherals can continue to operate.

Sleep Mode and Power Down Mode stop all clock signals and all operation (RTC may optionally continue running). Sleep Mode can be terminated by external interrupt signals.

Clock Generation Management controls the distribution and the frequency of internal and external clock signals (control via register SYSCON2).
 Slow Down Mode lets the C167CS run at a CPU clock frequency of *f*_{OSC}/1 ... 32 (half for prescaler operation) which drastically reduces the consumed power. The PLL can be optionally disabled while operating in Slow Down Mode.

External circuitry can be controlled via the programmable frequency output FOUT.

• **Peripheral Management** permits temporary disabling of peripheral modules (control via register SYSCON3).

Each peripheral can separately be disabled/enabled. A group control option disables a major part of the peripheral set by setting one single bit.

The on-chip RTC supports intermittent operation of the C167CS by generating cyclic wakeup signals. This offers full performance to quickly react on action requests while the intermittent sleep phases greatly reduce the average power consumption of the system.

Table 6 Ins	truction Set Summary (cont'd)	
Mnemonic	Description	Bytes
MOV(B)	Move word (byte) data	2/4
MOVBS	Move byte operand to word operand with sign extension	2/4
MOVBZ	Move byte operand to word operand with zero extension	2/4
JMPA, JMPI, JMPR	Jump absolute/indirect/relative if condition is met	4
JMPS	Jump absolute to a code segment	4
J(N)B	Jump relative if direct bit is (not) set	4
JBC	Jump relative and clear bit if direct bit is set	4
JNBS	Jump relative and set bit if direct bit is not set	4
CALLA, CALLI, CALLR	Call absolute/indirect/relative subroutine if condition is met	4
CALLS	Call absolute subroutine in any code segment	4
PCALL	Push direct word register onto system stack and call absolute subroutine	4
TRAP	Call interrupt service routine via immediate trap number	2
PUSH, POP	Push/pop direct word register onto/from system stack	2
SCXT	Push direct word register onto system stack and update register with word operand	4
RET	Return from intra-segment subroutine	2
RETS	Return from inter-segment subroutine	2
RETP	Return from intra-segment subroutine and pop direct word register from system stack	2
RETI	Return from interrupt service subroutine	2
SRST	Software Reset	4
IDLE	Enter Idle Mode	4
PWRDN	Enter Power Down Mode (supposes NMI-pin being low)	4
SRVWDT	Service Watchdog Timer	4
DISWDT	Disable Watchdog Timer	4
EINIT	Signify End-of-Initialization on RSTOUT-pin	4
ATOMIC	Begin ATOMIC sequence	2
EXTR	Begin EXTended Register sequence	2
EXTP(R)	Begin EXTended Page (and Register) sequence	2/4
EXTS(R)	Begin EXTended Segment (and Register) sequence	2/4
NOP	Null operation	2

Absolute Maximum Ratings

Parameter	Symbol	Limit	Values	Unit	Notes
		min.	max.		
Storage temperature	T _{ST}	-65	150	°C	-
Junction temperature	TJ	-40	150	°C	under bias
Voltage on V_{DD} pins with respect to ground (V_{SS})	V _{DD}	-0.5	6.5	V	-
Voltage on any pin with respect to ground (V_{SS})	V _{IN}	-0.5	V _{DD} + 0.5	V	-
Input current on any pin during overload condition	-	-10	10	mA	-
Absolute sum of all input currents during overload condition	-	-	100	mA	-
Power dissipation	P _{DISS}	-	1.5	W	-

Table 8 Absolute Maximum Rating Parameters

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DD}$ or $V_{IN} < V_{SS}$) the voltage on V_{DD} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Due to this adaptation to the input clock the frequency of f_{CPU} is constantly adjusted so it is locked to f_{OSC} . The slight variation causes a jitter of f_{CPU} which also effects the duration of individual TCLs.

The timings listed in the AC Characteristics that refer to TCLs therefore must be calculated using the minimum TCL that is possible under the respective circumstances.

The actual minimum value for TCL depends on the jitter of the PLL. As the PLL is constantly adjusting its output frequency so it corresponds to the applied input frequency (crystal or oscillator) the relative deviation for periods of more than one TCL is lower than for one single TCL (see formula and Figure 12).

For a period of $N \times \text{TCL}$ the minimum value is computed using the corresponding deviation D_N :

 $(N \times \text{TCL})_{\text{min}} = N \times \text{TCL}_{\text{NOM}} - D_N; D_N [\text{ns}] = \pm (13.3 + N \times 6.3) / f_{\text{CPU}} [\text{MHz}],$

where N = number of consecutive TCLs and $1 \le N \le 40$.

So for a period of 3 TCLs @ 25 MHz (i.e. N = 3): D₃ = (13.3 + 3 × 6.3) / 25 = 1.288 ns, and (3TCL)_{min} = 3TCL_{NOM} - 1.288 ns = 58.7 ns (@ f_{CPU} = 25 MHz).

This is especially important for bus cycles using waitstates and e.g. for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is neglectible.

Note: For all periods longer than 40 TCL the N = 40 value can be used (see Figure 12).

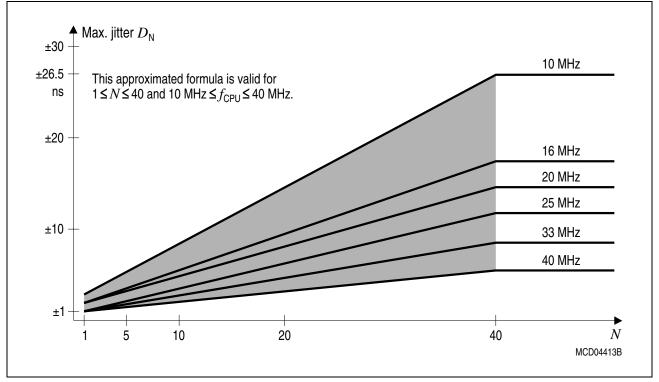


Figure 12 Approximated Maximum Accumulated PLL Jitter

AC Characteristics External Clock Drive XTAL1

(Operating Conditions apply)

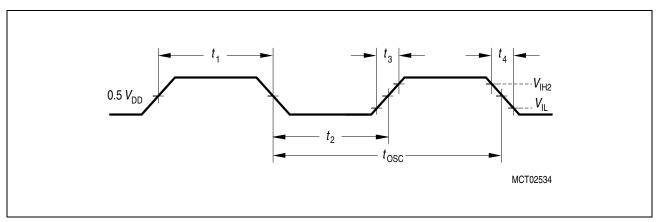

Parameter Sym		bol	Direct Drive 1:1		Prescaler 2:1		PLL 1:N		Unit
			min.	max.	min.	max.	min.	max.]
Oscillator period	t _{OSC}	SR	25	_	20	_	37 ¹⁾	500 ¹⁾	ns
High time ²⁾	<i>t</i> ₁	SR	12 ³⁾	_	5	_	10	_	ns
Low time ²⁾	<i>t</i> ₂	SR	12 ³⁾	_	5	_	10	_	ns
Rise time ²⁾	t ₃	SR	-	8	-	5	-	10	ns
Fall time ²⁾	<i>t</i> ₄	SR	-	8	-	5	-	10	ns

Table 12 External Clock Drive Characteristics

 The minimum and maximum oscillator periods for PLL operation depend on the selected CPU clock generation mode. Please see respective table above.

²⁾ The clock input signal must reach the defined levels V_{IL2} and V_{IH2} .

³⁾ The minimum high and low time refers to a duty cycle of 50%. The maximum operating frequency (f_{CPU}) in direct drive mode depends on the duty cycle of the clock input signal.

Figure 13 External Clock Drive XTAL1

Note: If the on-chip oscillator is used together with a crystal, the oscillator frequency is limited to a range of 4 MHz to 40 MHz.

It is strongly recommended to measure the oscillation allowance (or margin) in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the limits specified by the crystal supplier.

When driven by an external clock signal it will accept the specified frequency range. Operation at lower input frequencies is possible but is guaranteed by design only (not 100% tested).

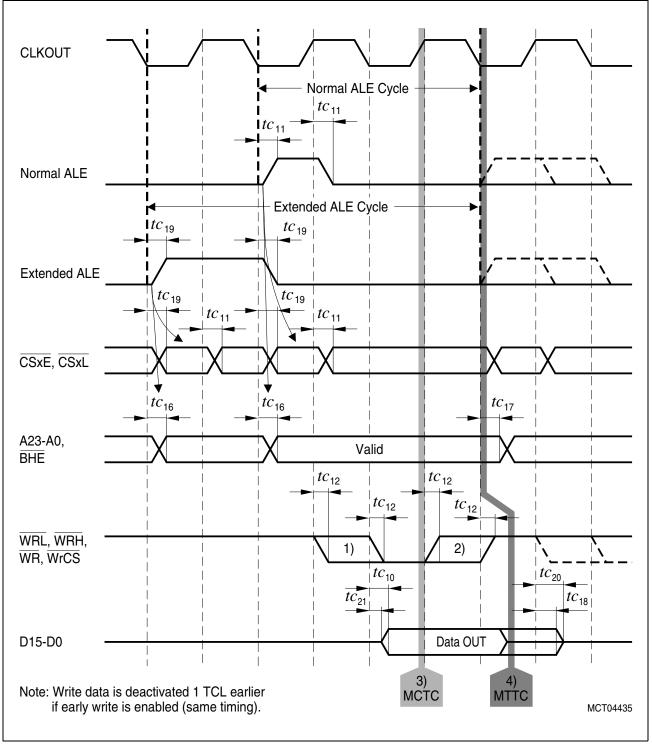


Figure 17 Demultiplexed Bus, Write Access

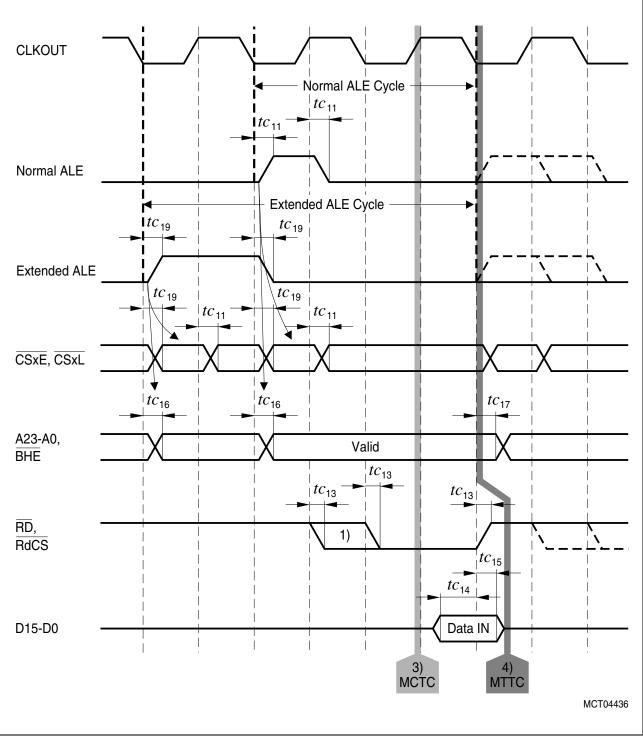


Figure 18 Demultiplexed Bus, Read Access

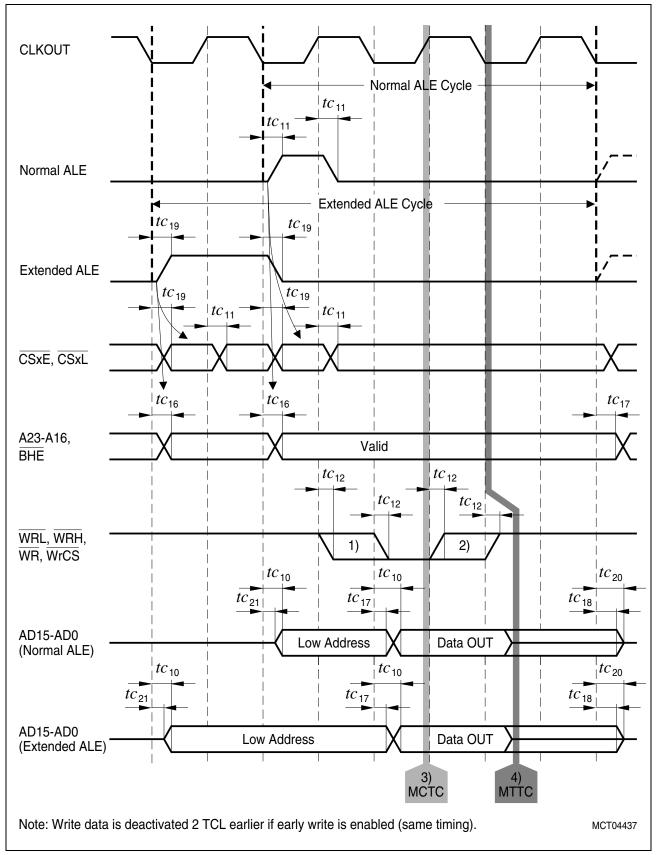


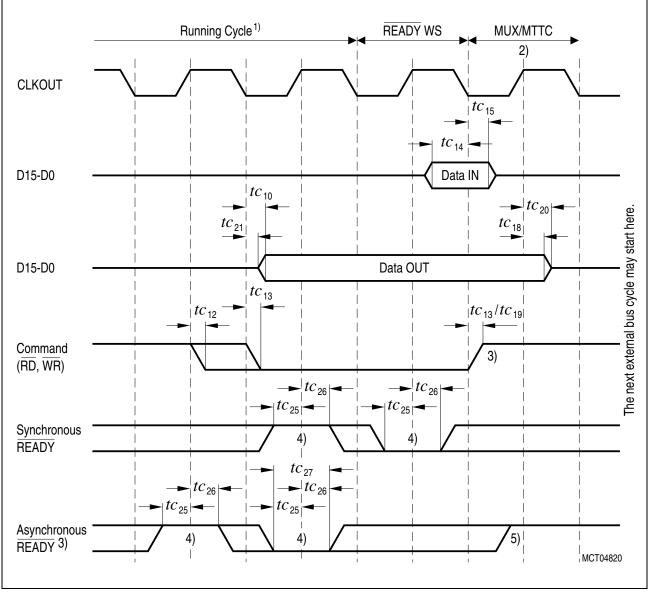
Figure 19 Multiplexed Bus, Write Access

Bus Cycle Control via READY Input

The duration of an external bus cycle can be controlled by the external circuitry via the READY input signal.

Synchronous READY permits the shortest possible bus cycle but requires the input signal to be synchronous to the reference signal CLKOUT.

Asynchronous READY puts no timing constraints on the input signal but incurs one waitstate minimum due to the additional synchronization stage.


Table 19	READY Timing	(Operating Conditions apply)
----------	---------------------	------------------------------

Parameter	Symbol	Limit	Unit	
		min.	max.	
Input setup time to CLKOUT rising edge Valid for: READY input	<i>tc</i> ₂₅ CC	12	-	ns
Input hold time after CLKOUT rising edge Valid for: READY input	<i>tc</i> ₂₆ CC	0	-	ns
Asynchronous READY input low time ³⁾	<i>tc</i> ₂₇ CC	$tc_5 + tc_{25}$	—	ns

Notes (Valid for Table 19 and Figure 21)

- ¹⁾ Cycle as programmed, including MCTC waitstates (Example shows 0 MCTC WS).
- ²⁾ Multiplexed bus modes have a MUX waitstate added after a bus cycle, and an additional MTTC waitstate may be inserted here. For a multiplexed bus with MTTC waitstate this delay is 2 CLKOUT cycles, for a demultiplexed bus without MTTC waitstate this delay is zero.
- ³⁾ These timings are given for test purposes only, in order to assure recognition at a specific clock edge. If the Asynchronous READY signal does not fulfill the indicated setup and hold times with respect to CLKOUT, it must fulfill tc_{27} in order to be safely synchronized. Proper deactivation of READY is guaranteed if READY is deactivated in response to the trailing (rising) edge
- of the corresponding command (RD or WR).
- A) READY sampled HIGH at this sampling point generates a READY controlled waitstate, READY sampled LOW at this sampling point terminates the currently running bus cycle.
- 5) If the next following bus cycle is READY controlled, an active READY signal must be disabled before the first valid sample point for the next bus cycle. This sample point depends on the MTTC waitstate of the current cycle, and on the MCTC waitstates and the ALE mode of the next following cycle. If the current cycle uses a multiplexed bus the intrinsic MUX waitstate adds another CLKOUT cycle to the READY deactivation time.

Figure 21 READY Timing

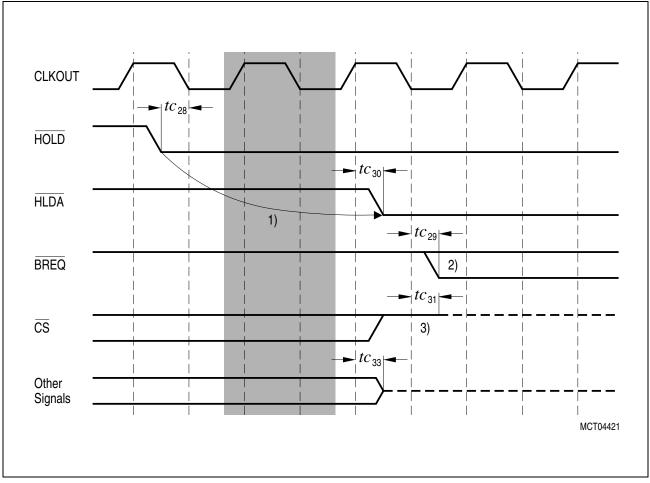


Figure 22 External Bus Arbitration, Releasing the Bus

- Notes ¹⁾ The C167CS will complete the currently running bus cycle before granting bus access.
- ²⁾ This is the first possibility for BREQ to get active.
- ³⁾ The \overline{CS} outputs will be resistive high (pullup) after t_{33} . Latched \overline{CS} outputs are driven high for 1 TCL before the output drivers are switched off.