

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SPI, SSC, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	111
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	11K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-BQFP
Supplier Device Package	P-MQFP-144-6
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/k167cslmcaznp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

16-Bit Single-Chip Microcontroller C166 Family

C167CS

C167CS-4R, C167CS-L

- High Performance 16-bit CPU with 4-Stage Pipeline
 - 80/60/50 ns Instruction Cycle Time at 25/33/40 MHz CPU Clock
 - 400/303/250 ns Multiplication (16 × 16 bit), 800/606/500 ns Division (32-/16-bit)
 - Enhanced Boolean Bit Manipulation Facilities
 - Additional Instructions to Support HLL and Operating Systems
 - Register-Based Design with Multiple Variable Register Banks
 - Single-Cycle Context Switching Support
 - 16 MBytes Total Linear Address Space for Code and Data
 - 1024 Bytes On-Chip Special Function Register Area
- 16-Priority-Level Interrupt System with 56 Sources, Sample-Rate down to 40/30/25 ns
- 8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via Peripheral Event Controller (PEC)
- Clock Generation via on-chip PLL (factors 1:1.5/2/2.5/3/4/5), via prescaler or via direct clock input
- On-Chip Memory Modules
 - 3 KBytes On-Chip Internal RAM (IRAM)
 - 8 KBytes On-Chip Extension RAM (XRAM)
 - 32 KBytes On-Chip Program Mask ROM
- On-Chip Peripheral Modules
 - 24-Channel 10-bit A/D Converter with Programmable Conversion Time down to 7.8 μs
 - Two 16-Channel Capture/Compare Units
 - 4-Channel PWM Unit
 - Two Multi-Functional General Purpose Timer Units with 5 Timers
 - Two Serial Channels (Synchronous/Asynchronous and High-Speed-Synchronous)
 - Two On-Chip CAN Interfaces (Rev. 2.0B active) with 2×15 Message Objects (Full CAN/Basic CAN), can work on one bus with 30 objects
 - On-Chip Real Time Clock
- Up to 16 MBytes External Address Space for Code and Data
 - Programmable External Bus Characteristics for Different Address Ranges
 - Multiplexed or Demultiplexed External Address/Data Buses with 8-Bit or 16-Bit Data Bus Width
 - Five Programmable Chip-Select Signals
 - Hold- and Hold-Acknowledge Bus Arbitration Support
- Idle, Sleep, and Power Down Modes with Flexible Power Management
- Programmable Watchdog Timer and Oscillator Watchdog
- Up to 111 General Purpose I/O Lines, partly with Selectable Input Thresholds and Hysteresis

l able 2	PII	n Definit	ions and Functions	(cont'd)				
Symbol	Pin Num.	Input Outp.	Function					
ALE	98	0	Address Latch Enab address into externa multiplexed bus mod	le Output. Can I memory or ar les.	be used for latching the n address latch in the			
ĒĀ	99	1	External Access Ena after Reset forces the out of external mem the internal program "ROMless" versions	ble pin. A low le e C167CS to be ory. A high leve memory. must have this	evel at this pin during and egin instruction execution el forces execution out of s pin tied to '0'.			
PORT0 P0L.0-7 P0H.0-7	100- 107 108, 111-	10	PORT0 consists of the two 8-bit bidirectional I/O ports P0L and P0H. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output drive is put into high-impedance state. In case of an external bus configuration, PORT0 serves as					
	117		the address (A) and bus modes and as the modes.	address/data (ne data (D) bus	AD) bus in multiplexed s in demultiplexed bus			
			Demultiplexed bus	modes:				
			Data Path Width:	8-bit	16-bit			
			P0L.0 – P0L.7:	D0 – D7	D0 – D7			
			P0H.0 – P0H.7:	I/O	D8 – D15			
			Multiplexed bus me	odes:				
			Data Path Width:	8-bit	16-bit			
			P0L.0 – P0L.7:	AD0 – AD7	AD0 – AD7			
			P0H.0 – P0H.7:	A8 – A15	AD8 – AD15			

Symbol	Pin Num.	Input Outp.	Function				
PORT1		10	PORT1 cor	nsists of the two 8-bit bidirectional I/O ports P1L			
P1L.0-7	118-		and P1H. It is bit-wise programmable for input or output via				
	125		direction bit	ts. For a pin configured as input, the output driver			
P1H.0-7	128-		is put into h	high-impedance state. PORT1 is used as the			
	135		16-bit addre	ess bus (A) in demultiplexed bus modes and also			
			after switch	ing from a demultiplexed bus mode to a			
			multiplexed	l bus mode.			
			The followi	ng PORT1 pins also serve for alternate functions:			
P1L.0	118	1	AN16	Analog Input Channel 16			
P1L.1	119	1	AN17	Analog Input Channel 17			
P1L.2	120	1	AN18	Analog Input Channel 18			
P1L.3	121	1	AN19	Analog Input Channel 19			
P1L.4	122	1	AN20	Analog Input Channel 20			
P1L.5	123	1	AN21	Analog Input Channel 21			
P1L.6	124	1	AN22	Analog Input Channel 22			
P1L.7	125	1	AN23	Analog Input Channel 23			
P1H.4	132	I/O	CC24IO	CAPCOM2: CC24 Capture Inp./Compare Outp.			
P1H.5	133	I/O	CC25IO	CAPCOM2: CC25 Capture Inp./Compare Outp.			
P1H.6	134	I/O	CC26IO	CAPCOM2: CC26 Capture Inp./Compare Outp.			
P1H.7	135	I/O	CC27IO	CAPCOM2: CC27 Capture Inp./Compare Outp.			
XTAL2	137	0	XTAL2:	Output of the oscillator amplifier circuit.			
XTAL1	138	1	XTAL1:	Input to the oscillator amplifier and input to			
				the internal clock generator			
			To clock the	e device from an external source, drive XTAL1,			
			while leavir	ng XTAL2 unconnected. Minimum and maximum			
			high/low an	nd rise/fall times specified in the AC			
			Characteris	stics must be observed.			

Table 2	PI	n Definit	cions and Functions (contra)
Symbol	Pin Num.	Input Outp.	Function
RSTIN	140	Ι/Ο	Reset Input with Schmitt-Trigger characteristics. A low level at this pin while the oscillator is running resets the C167CS. An internal pullup resistor permits power-on reset using only a capacitor connected to V_{SS} . A spike filter suppresses input pulses <10 ns. Input pulses >100 ns safely pass the filter. The minimum duration for a safe recognition should be 100 ns + 2 CPU clock cycles. In bidirectional reset mode (enabled by setting bit BDRSTEN in register SYSCON) the RSTIN line is internally pulled low for the duration of the internal reset sequence upon any reset (HW, SW, WDT). See note below this table.
			Note: To let the reset configuration of PORT0 settle and to let the PLL lock a reset duration of ca. 1 ms is recommended.
RST OUT	141	0	Internal Reset Indication Output. This pin is set to a low level when the part is executing either a hardware-, a software- or a watchdog timer reset. RSTOUT remains low until the EINIT (end of initialization) instruction is executed.
NMI	142	1	Non-Maskable Interrupt Input. A high to low transition at this pin causes the CPU to vector to the NMI trap routine. When the PWRDN (power down) instruction is executed, the $\overline{\text{NMI}}$ pin must be low in order to force the C167CS to go into power down mode. If $\overline{\text{NMI}}$ is high, when PWRDN is executed, the part will continue to run in normal mode. If not used, pin $\overline{\text{NMI}}$ should be pulled high externally.
V _{AREF}	37	-	Reference voltage for the A/D converter.
V _{AGND}	38	_	Reference ground for the A/D converter.

+'~\ finiti . – +: ,

The CPU has a register context consisting of up to 16 wordwide GPRs at its disposal. These 16 GPRs are physically allocated within the on-chip RAM area. A Context Pointer (CP) register determines the base address of the active register bank to be accessed by the CPU at any time. The number of register banks is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 1024 words is provided as a storage for temporary data. The system stack is allocated in the on-chip RAM area, and it is accessed by the CPU via the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack pointer value upon each stack access for the detection of a stack overflow or underflow.

The high performance offered by the hardware implementation of the CPU can efficiently be utilized by a programmer via the highly efficient C167CS instruction set which includes the following instruction classes:

- Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

Table 3 C167CS Interrupt Nodes

Source of Interrupt or PEC Service Request	Request Flag	Enable Flag	Interrupt Vector	Vector Location	Trap Number
CAPCOM Register 0	CC0IR	CC0IE	CC0INT	00'0040 _H	10 _H
CAPCOM Register 1	CC1IR	CC1IE	CC1INT	00'0044 _H	11 _H
CAPCOM Register 2	CC2IR	CC2IE	CC2INT	00'0048 _H	12 _H
CAPCOM Register 3	CC3IR	CC3IE	CC3INT	00'004C _H	13 _H
CAPCOM Register 4	CC4IR	CC4IE	CC4INT	00'0050 _H	14 _H
CAPCOM Register 5	CC5IR	CC5IE	CC5INT	00'0054 _H	15 _H
CAPCOM Register 6	CC6IR	CC6IE	CC6INT	00'0058 _H	16 _H
CAPCOM Register 7	CC7IR	CC7IE	CC7INT	00'005C _H	17 _H
CAPCOM Register 8	CC8IR	CC8IE	CC8INT	00'0060 _H	18 _H
CAPCOM Register 9	CC9IR	CC9IE	CC9INT	00'0064 _H	19 _H
CAPCOM Register 10	CC10IR	CC10IE	CC10INT	00'0068 _H	1A _H
CAPCOM Register 11	CC11IR	CC11IE	CC11INT	00'006C _H	1B _H
CAPCOM Register 12	CC12IR	CC12IE	CC12INT	00'0070 _H	1C _H
CAPCOM Register 13	CC13IR	CC13IE	CC13INT	00'0074 _H	1D _H
CAPCOM Register 14	CC14IR	CC14IE	CC14INT	00'0078 _H	1E _H
CAPCOM Register 15	CC15IR	CC15IE	CC15INT	00'007C _H	1F _H
CAPCOM Register 16	CC16IR	CC16IE	CC16INT	00'00C0 _H	30 _H
CAPCOM Register 17	CC17IR	CC17IE	CC17INT	00'00C4 _H	31 _H
CAPCOM Register 18	CC18IR	CC18IE	CC18INT	00'00C8 _H	32 _H
CAPCOM Register 19	CC19IR	CC19IE	CC19INT	00'00CC _H	33 _H
CAPCOM Register 20	CC20IR	CC20IE	CC20INT	00'00D0 _H	34 _H
CAPCOM Register 21	CC21IR	CC21IE	CC21INT	00'00D4 _H	35 _H
CAPCOM Register 22	CC22IR	CC22IE	CC22INT	00'00D8 _H	36 _H
CAPCOM Register 23	CC23IR	CC23IE	CC23INT	00'00DC _H	37 _H
CAPCOM Register 24	CC24IR	CC24IE	CC24INT	00'00E0 _H	38 _H
CAPCOM Register 25	CC25IR	CC25IE	CC25INT	00'00E4 _H	39 _H
CAPCOM Register 26	CC26IR	CC26IE	CC26INT	00'00E8 _H	3A _H
CAPCOM Register 27	CC27IR	CC27IE	CC27INT	00'00EC _H	3B _H
CAPCOM Register 28	CC28IR	CC28IE	CC28INT	00'00E0 _H	3C _H
CAPCOM Register 29	CC29IR	CC29IE	CC29INT	00'0110 _H	44 _H

A/D Converter

For analog signal measurement, a 10-bit A/D converter with 24 multiplexed input channels (16 standard channels and 8 extension channels) and a sample and hold circuit has been integrated on-chip. It uses the method of successive approximation. The sample time (for loading the capacitors) and the conversion time is programmable and can so be adjusted to the external circuitry.

Overrun error detection/protection is provided for the conversion result register (ADDAT): either an interrupt request will be generated when the result of a previous conversion has not been read from the result register at the time the next conversion is complete, or the next conversion is suspended in such a case until the previous result has been read.

For applications which require less than 24 analog input channels, the remaining channel inputs can be used as digital input port pins.

The A/D converter of the C167CS supports four different conversion modes. In the standard Single Channel conversion mode, the analog level on a specified channel is sampled once and converted to a digital result. In the Single Channel Continuous mode, the analog level on a specified channel is repeatedly sampled and converted without software intervention. In the Auto Scan mode, the analog levels on a prespecified number of channels (standard or extension) are sequentially sampled and converted. In the Auto Scan Continuous mode, the number of prespecified channels is repeatedly sampled and converted. In the Auto Scan Continuous mode, the conversion of a specific channel can be inserted (injected) into a running sequence without disturbing this sequence. This is called Channel Injection Mode.

The Peripheral Event Controller (PEC) may be used to automatically store the conversion results into a table in memory for later evaluation, without requiring the overhead of entering and exiting interrupt routines for each data transfer.

After each reset and also during normal operation the ADC automatically performs calibration cycles. This automatic self-calibration constantly adjusts the converter to changing operating conditions (e.g. temperature) and compensates process variations.

These calibration cycles are part of the conversion cycle, so they do not affect the normal operation of the A/D converter.

In order to decouple analog inputs from digital noise and to avoid input trigger noise those pins used for analog input can be disconnected from the digital IO or input stages under software control. This can be selected for each pin separately via registers P5DIDIS (Port 5 Digital Input Disable) and P1DIDIS (PORT1 Digital Input Disable).

Serial Channels

Serial communication with other microcontrollers, processors, terminals or external peripheral components is provided by two serial interfaces with different functionality, an Asynchronous/Synchronous Serial Channel (**ASC0**) and a High-Speed Synchronous Serial Channel (**SSC**).

The ASC0 is upward compatible with the serial ports of the Infineon 8-bit microcontroller families and supports full-duplex asynchronous communication at up to 781 Kbit/s/ 1.03 Mbit/s/1.25 Mbit/s and half-duplex synchronous communication at up to 3.1/ 4.1 Mbit/s/5.0 Mbit/s (@ 25/33/40 MHz CPU clock).

A dedicated baud rate generator allows to set up all standard baud rates without oscillator tuning. For transmission, reception and error handling 4 separate interrupt vectors are provided. In asynchronous mode, 8- or 9-bit data frames are transmitted or received, preceded by a start bit and terminated by one or two stop bits. For multiprocessor communication, a mechanism to distinguish address from data bytes has been included (8-bit data plus wake up bit mode).

In synchronous mode, the ASC0 transmits or receives bytes (8 bits) synchronously to a shift clock which is generated by the ASC0. The ASC0 always shifts the LSB first. A loop back option is available for testing purposes.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. A parity bit can automatically be generated on transmission or be checked on reception. Framing error detection allows to recognize data frames with missing stop bits. An overrun error will be generated, if the last character received has not been read out of the receive buffer register at the time the reception of a new character is complete.

The SSC supports full-duplex synchronous communication at up to 6.25/8.25/10 Mbit/s (@ 25/33/40 MHz CPU clock). It may be configured so it interfaces with serially linked peripheral components. A dedicated baud rate generator allows to set up all standard baud rates without oscillator tuning. For transmission, reception and error handling 3 separate interrupt vectors are provided.

The SSC transmits or receives characters of 2 ... 16 bits length synchronously to a shift clock which can be generated by the SSC (master mode) or by an external master (slave mode). The SSC can start shifting with the LSB or with the MSB and allows the selection of shifting and latching clock edges as well as the clock polarity.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. Transmit and receive error supervise the correct handling of the data buffer. Phase and baudrate error detect incorrect serial data.

Parallel Ports

The C167CS provides up to 111 I/O lines which are organized into eight input/output ports and one input port. All port lines are bit-addressable, and all input/output lines are individually (bit-wise) programmable as inputs or outputs via direction registers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. The output drivers of five I/O ports can be configured (pin by pin) for push/pull operation or open-drain operation via control registers. During the internal reset, all port pins are configured as inputs.

The input threshold of Port 2, Port 3, Port 7, and Port 8 is selectable (TTL or CMOS like), where the special CMOS like input threshold reduces noise sensitivity due to the input hysteresis. The input threshold may be selected individually for each byte of the respective ports.

All port lines have programmable alternate input or output functions associated with them. All port lines that are not used for these alternate functions may be used as general purpose IO lines.

PORT0 and PORT1 may be used as address and data lines when accessing external memory, while Port 4 outputs the additional segment address bits A23/19/17 ... A16 in systems where segmentation is enabled to access more than 64 KBytes of memory.

Port 2, Port 8 and Port 7 (and parts of PORT1) are associated with the capture inputs or compare outputs of the CAPCOM units and/or with the outputs of the PWM module.

Port 6 provides optional bus arbitration signals (BREQ, HLDA, HOLD) and chip select signals.

Port 3 includes alternate functions of timers, serial interfaces, the optional bus control signal BHE/WRH, and the system clock output CLKOUT (or the programmable frequency output FOUT).

Port 5 (and parts of PORT1) is used for the analog input channels to the A/D converter or timer control signals.

The edge characteristics (transition time) and driver characteristics (output current) of the C167CS's port drivers can be selected via the Port Output Control registers (POCONx).

Special Function Registers Overview

Table 7 lists all SFRs which are implemented in the C167CS in alphabetical order. **Bit-addressable** SFRs are marked with the letter "**b**" in column "Name". SFRs within the **Extended SFR-Space** (ESFRs) are marked with the letter "**E**" in column "Physical Address". Registers within on-chip X-peripherals are marked with the letter "**X**" in column "Physical Address".

An SFR can be specified via its individual mnemonic name. Depending on the selected addressing mode, an SFR can be accessed via its physical address (using the Data Page Pointers), or via its short 8-bit address (without using the Data Page Pointers).

Name	Physical Address	8-Bit Addr.	Description	Reset Value
ADCIC b	FF98 _H	CC _H	A/D Converter End of Conversion Interrupt Control Register	0000 _H
ADCON b	FFA0 _H	D0 _H	A/D Converter Control Register	0000 _H
ADDAT	FEA0 _H	50 _H	A/D Converter Result Register	0000 _H
ADDAT2	F0A0 _H E	50 _H	A/D Converter 2 Result Register	0000 _H
ADDRSEL1	FE18 _H	0C _H	Address Select Register 1	0000 _H
ADDRSEL2	FE1A _H	0D _H	Address Select Register 2	0000 _H
ADDRSEL3	FE1C _H	0E _H	Address Select Register 3	0000 _H
ADDRSEL4	FE1E _H	0F _H	Address Select Register 4	0000 _H
ADEIC b	FF9A _H	CD _H	A/D Converter Overrun Error Interrupt Control Register	0000 _H
BUSCON0 b	FF0C _H	86 _H	Bus Configuration Register 0	0XX0 _H
BUSCON1 b	FF14 _H	8A _H	Bus Configuration Register 1	0000 _H
BUSCON2 b	FF16 _H	8B _H	Bus Configuration Register 2	0000 _H
BUSCON3 b	FF18 _H	8C _H	Bus Configuration Register 3	0000 _H
BUSCON4 b	FF1A _H	8D _H	Bus Configuration Register 4	0000 _H
C1BTR	EF04 _H X		CAN1 Bit Timing Register	UUUU _H
C1CSR	EF00 _H X		CAN1 Control/Status Register	XX01 _H
C1GMS	EF06 _H X		CAN1 Global Mask Short	UFUU _H
C1PCIR	EF02 _H X		CAN1 Port Control/Interrupt Register	XXXX _H
C1LGML	EF0A _H X		CAN1 Lower Global Mask Long	UUUU _H
C1LMLM	EF0E _H X		CAN1 Lower Mask of Last Message	UUUU _H

Table 7 C167CS Registers, Ordered by Name

Table 7C167CS Registers, Ordered by Name (cont'd)

Name		Physica Address	l S	8-Bit Addr.	Description	Reset Value
ONES	b	FF1E _H		8F _H	Constant Value 1's Register (read only)	FFFF _H
P0H	b	FF02 _H		81 _H	Port 0 High Reg. (Upper half of PORT0)	00 _H
P0L	b	FF00 _H		80 _H	Port 0 Low Reg. (Lower half of PORT0)	00 _H
P1DIDIS		FEA4 _H		52 _H	Port 1 Digital Input Disable Register	0000 _H
P1H	b	FF06 _H		83 _H	Port 1 High Reg. (Upper half of PORT1)	00 _H
P1L	b	FF04 _H		82 _H	Port 1 Low Reg. (Lower half of PORT1)	00 _H
P2	b	FFC0 _H		E0 _H	Port 2 Register	0000 _H
P3	b	FFC4 _H		E2 _H	Port 3 Register	0000 _H
P4	b	FFC8 _H		E4 _H	Port 4 Register (8 bits)	00 _H
P5	b	FFA2 _H		D1 _H	Port 5 Register (read only)	XXXX _H
P5DIDIS	b	FFA4 _H		D2 _H	Port 5 Digital Input Disable Register	0000 _H
P6	b	FFCC _H		E6 _H	Port 6 Register (8 bits)	00 _H
P7	b	FFD0 _H		E8 _H	Port 7 Register (8 bits)	00 _H
P8	b	FFD4 _H		EA _H	Port 8 Register (8 bits)	00 _H
PECC0		FEC0 _H		60 _H	PEC Channel 0 Control Register	0000 _H
PECC1		FEC2 _H		61 _H	PEC Channel 1 Control Register	0000 _H
PECC2		FEC4 _H		62 _H	PEC Channel 2 Control Register	0000 _H
PECC3		FEC6 _H		63 _H	PEC Channel 3 Control Register	0000 _H
PECC4		FEC8 _H		64 _H	PEC Channel 4 Control Register	0000 _H
PECC5		FECA _H		65 _H	PEC Channel 5 Control Register	0000 _H
PECC6		FECC _H		66 _H	PEC Channel 6 Control Register	0000 _H
PECC7		FECE _H		67 _H	PEC Channel 7 Control Register	0000 _H
PICON	b	F1C4 _H	Ε	E2 _H	Port Input Threshold Control Register	0000 _H
POCON0H		F082 _H	Ε	41 _H	Port P0H Output Control Register	0000 _H
POCON0L		F080 _H	Ε	40 _H	Port P0L Output Control Register	0000 _H
POCON1H		F086 _H	Ε	43 _H	Port P1H Output Control Register	0000 _H
POCON1L		F084 _H	Ε	42 _H	Port P1L Output Control Register	0000 _H
POCON2		F088 _H	Ε	44 _H	Port P2 Output Control Register	0000 _H
POCON20		F0AA _H	Ε	55 _H	Dedicated Pin Output Control Register	0000 _H
POCON3		F08A _H	Е	45 _H	Port P3 Output Control Register	0000 _H

Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation of the C167CS. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Parameter	Symbol	Limit	Values	Unit	Notes
		min.	max.		
Digital supply voltage	V _{DD}	4.5	5.5	V	Active mode, $f_{CPUmax} = 40 \text{ MHz}$
		2.5 ¹⁾	5.5	V	PowerDown mode
Digital ground voltage	V _{SS}	()	V	Reference voltage
Overload current	I _{OV}	-	±5	mA	Per pin ²⁾³⁾
Absolute sum of overload currents	$\Sigma I_{OV} $	_	50	mA	3)
External Load Capacitance	CL	-	50	pF	Pin drivers in fast edge mode ⁴⁾
Ambient temperature	T _A	0	70	°C	SAB-C167CS
		-40	85	°C	SAF-C167CS
		-40	125	°C	SAK-C167CS

Table 9 Operating Condition Parameters

¹⁾ Output voltages and output currents will be reduced when V_{DD} leaves the range defined for active mode.

²⁾ Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range (i.e. V_{OV} > V_{DD} + 0.5 V or V_{OV} < V_{SS} - 0.5 V). The absolute sum of input overload currents on all pins may not exceed **50 mA**. The supply voltage must remain within the specified limits. Proper operation is not guaranteed if overload conditions occur on functional pins line XTAL1, RD, WR, etc.

³⁾ Not 100% tested, guaranteed by design and characterization.

⁴⁾ The timing is valid for pin drivers in high current or dynamic current mode. The reduced static output current in dynamic current mode must be respected when designing the system.

|--|

Port Output Driver	Maximum Output Current $(I_{OLmax}, -I_{OHmax})^{1}$	Nominal Output Current (I _{OLnom} , -I _{OHnom})
P2.7 - P2.0	10 mA	2.5 mA
(PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT, RSTOUT, RSTIN ²⁾)		2.5 mA
All other outputs		1.6 mA

 An output current above |I_{OXnom}| may be drawn from up to three pins (P2.7-P2.0 only) at the same time. For any group of 16 neighboring port output pins the total output current in each direction (ΣI_{OL} and/or Σ-I_{OH}) must remain below 50 mA.

²⁾ Valid for V_{OL} in bidirectional reset mode only.

Power Consumption C167CS

(Operating Conditions apply)

Parameter	Symbol	Limi	t Values	Unit	Test Condition
		min.	max.		
Power supply current (active) with all peripherals active	I _{DD5}	_	20 + 3.2 × <i>f</i> _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IL}}$ $f_{\text{CPU}} \text{ in } [\text{MHz}]^{1)}$
Idle mode supply current with all peripherals active	$I_{\rm IDX5}^{(2)}$	_	15 + 1.4 × f _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ $f_{\text{CPU}} \text{ in [MHz]}^{1)}$
Idle mode supply current with all peripherals deactivated, PLL off, SDD factor = 32	<i>I</i> _{IDO} ³⁾²⁾	_	800 + 60 × f _{OSC}	μA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ $f_{\text{OSC}} \text{ in } [\text{MHz}]^{1)}$
Sleep and Power-down mode supply current with RTC running	<i>I</i> _{PDR} ³⁾²⁾	_	800 + 30 × f _{OSC}	μA	$V_{\text{DD}} = V_{\text{DDmax}}$ f_{OSC} in [MHz] ⁴⁾
Sleep and Power-down mode supply current with RTC disabled	I _{PDO}	_	50	μA	$V_{\rm DD} = V_{\rm DDmax}^{4)}$

¹⁾ The supply current is a function of the operating frequency. This dependency is illustrated in Figure 10. These parameters are tested at V_{DDmax} and maximum CPU clock with all outputs disconnected and all inputs at V_{IL} or V_{IH}.

²⁾ These values are not 100% tested but verified by means of system characterization.

- ³⁾ This parameter is determined mainly by the current consumed by the oscillator (see Figure 9). This current, however, is influenced by the external oscillator circuitry (crystal, capacitors). The values given refer to a typical circuitry and may change in case of a not optimized external oscillator circuitry (see also application notes AP2420: Crystal Oscillator, AP2424: Ceramic Resonator Oscillator).
- ⁴⁾ This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to 0.1 V or at V_{DD} 0.1 V to V_{DD} , V_{REF} = 0 V, all outputs (including pins configured as outputs) disconnected.

Direct Drive

When direct drive is configured (CLKCFG = 011_B) the on-chip phase locked loop is disabled and the CPU clock is directly driven from the internal oscillator with the input clock signal.

The frequency of f_{CPU} directly follows the frequency of f_{OSC} so the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the duty cycle of the input clock f_{OSC} .

The timings listed below that refer to TCLs therefore must be calculated using the minimum TCL that is possible under the respective circumstances. This minimum value can be calculated via the following formula:

 $TCL_{min} = 1/f_{OSC} \times DC_{min}$ (DC = duty cycle)

For two consecutive TCLs the deviation caused by the duty cycle of f_{OSC} is compensated so the duration of 2TCL is always $1/f_{OSC}$. The minimum value TCL_{min} therefore has to be used only once for timings that require an odd number of TCLs (1, 3, ...). Timings that require an even number of TCLs (2, 4, ...) may use the formula 2TCL = $1/f_{OSC}$.

Figure 17 Demultiplexed Bus, Write Access

Figure 19 Multiplexed Bus, Write Access

Figure 23 External Bus Arbitration, (Regaining the Bus)

Notes

⁴⁾ This is the last chance for BREQ to trigger the indicated regain-sequence. Even if BREQ is activated earlier, the regain-sequence is initiated by HOLD going high. Please note that HOLD may also be deactivated without the C167CS requesting the bus.

⁵⁾ The next C167CS driven bus cycle may start here.

External XRAM Access

If XPER-Share mode is enabled the on-chip XRAM of the C167CS can be accessed (during hold states) by an external master like an asynchronous SRAM.

Table 21	XRAM Access	Timing	(Operating	Conditions	apply)
		-			

Parameter		Symbol		Limit Values		Unit
				min.	max.	-
Address setup time before RD/WR falling edge		t ₄₀	SR	4	-	ns
Address hold time after RD/WR rising edge		<i>t</i> ₄₁	SR	0	-	ns
Data turn on delay after \overline{RD} falling edge	Ч	t ₄₂	CC	2	-	ns
Data output valid delay after address latched	lead	t ₄₃	CC	-	37	ns
Data turn off delay after $\overline{\text{RD}}$ rising edge		t ₄₄	CC	0	10	ns
Write data setup time before \overline{WR} rising edge	Write	t ₄₅	SR	10	-	ns
Write data hold time after \overline{WR} rising edge		t ₄₆	SR	1	-	ns
WR pulse width		t ₄₇	SR	18	-	ns
WR signal recovery time		t ₄₈	SR	<i>t</i> ₄₀	_	ns

Figure 24 External Access to the XRAM

Package Outlines

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information". SMD = Surface Mounted Device

Dimensions in mm

Infineon goes for Business Excellence

"Business excellence means intelligent approaches and clearly defined processes, which are both constantly under review and ultimately lead to good operating results.

Better operating results and business excellence mean less idleness and wastefulness for all of us, more professional success, more accurate information, a better overview and, thereby, less frustration and more satisfaction."

Dr. Ulrich Schumacher

http://www.infineon.com