

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	30MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc812m101fdh20fp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DRAKT D

5. **Block diagram**

Pinning information 6.

6.1 Pinning

- Program the input glitch filter with different filter constants using one of the IOCON divided clock signals (IOCONCLKCDIV, see <u>Figure 9 "LPC81xM clock generation</u>"). You can also bypass the glitch filter.
- Invert the input signal.
- Hysteresis can be enabled or disabled.
- For pins PIO0_10 and PIO0_11, select the I2C-mode and output driver for standard digital operation, for I2C standard and fast modes, or for I2C Fast mode+.
- On mixed digital/analog pins, enable the analog input mode. Enabling the analog mode disconnects the digital functionality.

Remark: The functionality of each I/O pin is flexible and is determined entirely through the switch matrix. See <u>Section 7.9</u> for details.

7.8.1 Standard I/O pad configuration

Figure 7 shows the possible pin modes for standard I/O pins with analog input function:

- Digital output driver with configurable open-drain output
- Digital input: Weak pull-up resistor (PMOS device) enabled/disabled
- Digital input: Weak pull-down resistor (NMOS device) enabled/disabled
- Digital input: Repeater mode enabled/disabled
- Digital input: Input glitch filter selectable on all pins
- Analog input

7.9 Switch Matrix (SWM)

The switch matrix controls the function of each digital or mixed analog/digital pin in a highly flexible way by allowing to connect many functions like the USART, SPI, SCT, and I2C functions to any pin that is not power or ground. These functions are called movable functions and are listed in <u>Table 4</u>.

Functions that need specialized pads like the oscillator pins XTALIN and XTALOUT can be enabled or disabled through the switch matrix. These functions are called fixed-pin functions and cannot move to other pins. The fixed-pin functions are listed in <u>Table 3</u>. If a fixed-pin function is disabled, any other movable function can be assigned to this pin.

7.10 Fast General-Purpose parallel I/O (GPIO)

Device pins that are not connected to a specific peripheral function are controlled by the GPIO registers. Pins may be dynamically configured as inputs or outputs. Multiple outputs can be set or cleared in one write operation.

LPC81xM use accelerated GPIO functions:

 GPIO registers are located on the ARM Cortex M0+ IO bus for fastest possible single-cycle I/O timing.

- An entire port value can be written in one instruction.
- · Mask, set, and clear operations are supported for the entire port.

DRAFT DRAFT DRAFT INT DRAFT DR All GPIO port pins are fixed-pin functions that are enabled or disabled on the pins by an switch matrix. Therefore each GPIO port pin is assigned to one specific pin and cannot be reacted by pins SWDIO/PIO0_2, SWCLK/PIO0_3, and CPIO port pin function by default.

7.10.1 Features

- Bit level port registers allow a single instruction to set and clear any number of bits in one write operation.
- Direction control of individual bits.
- All I/O default to inputs with internal pull-up resistors enabled after reset except for the I²C-bus true open-drain pins PIO0 2 and PIO0 3.
- Pull-up/pull-down configuration, repeater, and open-drain modes can be programmed through the IOCON block for each GPIO pin (see Figure 7).
- Control of the digital output slew rate allowing to switch more outputs simultaneously without degrading the power/ground distribution of the device.

7.11 Pin interrupt/pattern match engine

The pin interrupt block configures up to eight pins from all digital pins for providing eight external interrupts connected to the NVIC.

The pattern match engine can be used, in conjunction with software, to create complex state machines based on pin inputs.

Any digital pin, independently of the function selected through the switch matrix, can be configured through the SYSCON block as input to the pin interrupt or pattern match engine. The registers that control the pin interrupt or pattern match engine are located on the IO+ bus for fast single-cycle access.

7.11.1 Features

- Pin interrupts
 - Up to eight pins can be selected from all digital pins as edge- or level-sensitive interrupt requests. Each request creates a separate interrupt in the NVIC.
 - Edge-sensitive interrupt pins can interrupt on rising or falling edges or both.
 - Level-sensitive interrupt pins can be HIGH- or LOW-active.
 - Pin interrupts can wake up the LPC81xM from sleep mode, deep-sleep mode, and deep power-down mode.
- Pin interrupt pattern match engine
 - Up to 8 pins can be selected from all digital pins to contribute to a boolean expression. The boolean expression consists of specified levels and/or transitions on various combinations of these pins.
 - Each minters (product term) comprising the specified boolean expression can generate its own, dedicated interrupt request.

7.19.1 Features

- Selectable 0 mV, 10 mV (\pm 5 mV), and 20 mV (\pm 10 mV), 40 mV (\pm 20 mV) input hysteresis.
- Two selectable external voltages (V_{DD} or VDDCMP on pin PIO0_6); fully configurable on either positive or negative input channel.
- Internal voltage reference from band gap and temperature sensor selectable on either positive or negative input channel.
- 32-stage voltage ladder with the internal reference voltage selectable on either the positive or the negative input channel.
- Voltage ladder source voltage is selectable from an external pin or the main 3.3 V supply voltage rail.
- Voltage ladder can be separately powered down for applications only requiring the comparator function.
- Interrupt output is connected to NVIC.
- Comparator level output is connected to output pin ACMP_O.
- The comparator output can be routed internally to the SCT input through the switch matrix.

DP3AT,

Crystal and internal oscillators 7.20.1

The LPC81xM include four independent oscillators:

- 1. The crystal oscillator (SysOsc) operating at frequencies between 1 MHz and 25 MHz.
- 2. The internal RC Oscillator (IRC) with a fixed frequency of 12 MHz, trimmed to 1% accuracy.
- 3. The internal low-power, low-frequency Oscillator with a nominal frequency of 10 kHz with 40% accuracy for use with the self wake-up timer.
- 4. The dedicated Watchdog Oscillator (WDOsc) with a programmable nominal frequency between 9.4 kHz and 2.3 MHz with 40% accuracy.

All information provided in this document is subject to legal disclaimers.

7.22 Emulation and debugging

. DRAS Debug functions are integrated into the ARM Cortex-M0+. Serial wire debug functions are supported in addition to a standard JTAC boundary scan. The ARM Cortex-M0+ is supported in addition to a standard JTAG boundary scan. The ARM Cortex-M0+ is configured to support up to four breakpoints and two watch points.

The Micro Trace Buffer is implemented on the LPC81xM.

The RESET pin selects between the JTAG boundary scan (RESET = LOW) and the ARM SWD debug (\overline{RESET} = HIGH). The ARM SWD debug port is disabled while the LPC81xM is in reset. The JTAG boundary scan pins are selected by hardware when the part is in boundary scan mode on pins PIO0 0 to PIO0 3 (see Table 3).

To perform boundary scan testing, follow these steps:

- 1. Erase any user code residing in flash.
- 2. Power up the part with the $\overline{\text{RESET}}$ pin pulled HIGH externally.
- 3. Wait for at least 250 µs.
- 4. Pull the RESET pin LOW externally.
- 5. Perform boundary scan operations.
- 6. Once the boundary scan operations are completed, assert the TRST pin to enable the SWD debug mode, and release the RESET pin (pull HIGH).

Remark: The JTAG interface cannot be used for debug purposes.

Limiting values 8.

PC8. + microcontrolle. Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134).[1] Conditions Min Symbol Parameter Max supply voltage (core and external rail) [2] -0.5 +4.6 V_{DD} [3] -0.5 Vı 5 V tolerant I/O V input voltage +5.5pins; only valid when the V_{DD} supply voltage is present 5 V open-drain pins [4] -0.5 +5.5V PIO0 10 and PIO0_11 3 V tolerant I/O pin ^[5] -0.5 V +3.6PIO0_6 VIA analog input voltage [6] -0.5 V 4.6 V [7] V_{i(xtal)} [2] -0.5 V crystal input voltage +2.5100 I_{DD} supply current per supply pin mΑ 100 ground current per ground pin mΑ ISS _ I/O latch-up current $-(0.5V_{DD}) < V_{I} <$ _ 100 mΑ llatch (1.5V_{DD}); T_i < 125 °C [8] -65 +150°C non-operating T_{stg} storage temperature maximum junction temperature 150 °C T_{j(max)} W total power dissipation (per package) based on package <tbd> P_{tot(pack)} _ heat transfer. not device power consumption [9] _ V VESD electrostatic discharge voltage human body <tbd> model; all pins

[1] The following applies to the limiting values:

a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum

b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise noted.

c) The limiting values are stress ratings only and operating the part at these values is not recommended and proper operation is not guaranteed. The conditions for functional operation are specified in Table 9.

Maximum/minimum voltage above the maximum operating voltage (see Table 9) and below ground that can be applied for a short time [2] (< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter lifetime of the device.

[3] Including voltage on outputs in tri-state mode. Does not apply to pin PIO0_6.

[4] V_{DD} present or not present. Compliant with the I²C-bus standard. 5.5 V can be applied to this pin when V_{DD} is powered down.

V_{DD} present or not present. [5]

If the comparator is configured with the common mode input V_{IC} = V_{DD}, the other comparator input can be up to 0.2 V above or below [6] V_{DD} without affecting the hysteresis range of the comparator function.

It is recommended to connect an overvoltage protection diode between the analog input pin and the voltage supply pin. [7]

LPC81xM

10. Static characteristics

Table 9. Static characteristics

			32-	-bit ARI	M Cortex-M)+ microco	ontrolle
						RAN RA	5
10. Sta	atic characteristi	cs				OPAN	OPA
fable 9. F _{amb} = −40	Static characteristics) °C to +85 °C, unless other	wise specified.					OPAR
Symbol	Parameter	Conditions		Min	Typ <u>[1]</u>	Max	Unit
DD	supply voltage (core and external rail)			1.8	3.3	3.6	V
DD	supply current	Active mode; code					
		while(1){}					
		executed from flash					
		system clock = 12 MHz; default mode; V_{DD} = 3.3 V	[2][3][4] [6][7]	-	1.4	-	mA
		system clock = 12 MHz; low-current mode; V_{DD} = 3.3 V	[2][3][4] [6][7]	-	<tbd></tbd>	-	mA
		system clock = 30 MHz; default mode; V_{DD} = 3.3 V	[2][3][6] [7][8]	-	5.5	-	mA
		system clock = 30 MHz; low-current mode; V _{DD} = 3.3 V	[2][3][6] [7][8]	-	<tbd></tbd>	-	mA
		Sleep mode; system clock = 12 MHz; default mode: V _{DD} = 3.3 V	<u>[2][3][4]</u> [6][7]	-	0.8	-	mA
		system clock = 12 MHz; low-current mode; V _{DD} = 3.3 V	[2][3][4] [6][7]	-	<tbd></tbd>	-	mA
		system clock = 30 MHz; default mode; V_{DD} = 3.3 V	[2][3][4] [6][7]	-	2.6	-	mA
		system clock = 30 MHz; low-current mode; V _{DD} = 3.3 V	[2][3][4] [6][7]	-	<tbd></tbd>	-	mA
		Deep-sleep mode; V _{DD} = 3.3 V	[2][3][9]	-	170	-	μΑ
		Power-down mode; V _{DD} = 3.3 V	[2][3][9]	-	2	-	μΑ
		Deep power-down mode; $V_{DD} = 3.3 \text{ V}$	[2][10]	-	220	-	nA
		Low-power oscillator off					
		Low-power oscillator on/WKT wake-up enabled			<tbd></tbd>	-	nA
Standard	port pins configured as d	ligital pins, RESET, see Figure 11					
L	LOW-level input current	V _I = 0 V; on-chip pull-up resistor disabled		-	<tbd></tbd>	<tbd></tbd>	nA
Н	HIGH-level input current	$V_I = V_{DD}$; on-chip pull-down resistor disabled		-	<tbd></tbd>	<tbd></tbd>	nA
Σ	OFF-state output current	$V_O = 0 V$; $V_O = V_{DD}$; on-chip pull-up/down resistors disabled		-	<tbd></tbd>	<tbd></tbd>	nA
/ ₁	input voltage	$V_{DD} \ge 1.8 \text{ V}; 5 \text{ V}$ tolerant pins except PIOO_6	[12] [14]	0	-	5	V
		$V_{DD} \ge 1.8 \text{ V}$; on 3 V tolerant pin PIO0_6		0	-	3.6	
		$V_{DD} = 0 V$		0	-	3.6	V

10.3 Peripheral power consumption

The supply current per peripheral is measured as the difference in supply current between the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCFG and PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both registers and no code is executed. Measured on a typical sample at $T_{amb} = 25$ °C. Unless noted otherwise, the system oscillator and PLL are running in both measurements.

The supply currents are shown for system clock frequencies of 12 MHz and 30 MHz.

Peripheral	Typical s mA	ical supply current in		Notes
	n/a	12 MHz	30 MHz	
IRC	<tbd></tbd>	-	-	System oscillator running; PLL off; independent of main clock frequency.
System oscillator at 12 MHz	<tbd></tbd>	-	-	IRC running; PLL off; independent of main clock frequency.
Watchdog oscillator at 500 kHz/2	<tbd></tbd>	-	-	System oscillator running; PLL off; independent of main clock frequency.
BOD	<tbd></tbd>	-	-	Independent of main clock frequency.
Main PLL	-	<tbd></tbd>	-	-
CLKOUT	-	<tbd></tbd>	<tbd></tbd>	Main clock divided by 4 in the CLKOUTDIV register.
SCT	-	<tbd></tbd>	<tbd></tbd>	-
MRT	-	<tbd></tbd>	<tbd></tbd>	-
WKT	-	<tbd></tbd>	<tbd></tbd>	-
GPIO	-	<tbd></tbd>	<tbd></tbd>	GPIO pins configured as outputs and set to LOW. Direction and pin state are maintained if the GPIO is disabled in the SYSAHBCLKCFG register.
Pin interrupt/pattern match		<tbd></tbd>	<tbd></tbd>	-
IOCON	-	<tbd></tbd>	<tbd></tbd>	-
I2C	-	<tbd></tbd>	<tbd></tbd>	-
ROM	-	<tbd></tbd>	<tbd></tbd>	-
SPI0	-	<tbd></tbd>	<tbd></tbd>	-
SPI1	-	<tbd></tbd>	<tbd></tbd>	-
USART0	-	<tbd></tbd>	<tbd></tbd>	-
USART1	-	<tbd></tbd>	<tbd></tbd>	-
USART2	-	<tbd></tbd>	<tbd></tbd>	-
WWDT	-	<tbd></tbd>	<tbd></tbd>	Main clock selected as clock source for the WDT.
Comparator	-	<tbd></tbd>	<tbd></tbd>	
CRC	-	<tbd></tbd>	<tbd></tbd>	
SWM	-	<tbd></tbd>	<tbd></tbd>	-

 Table 10.
 Power consumption for individual analog and digital blocks

All information provided in this document is subject to legal disclaimers.

LPCSIAN. 32-bit ARM Cortex-M0+ microcontroller

11. Dynamic characteristics

11.1 Power-up ramp conditions

<tbd>

11.2 Flash memory

Table 11. Flash characteristics

 $T_{amb} = -40 \$ °C to +85 °C. Based on JEDEC NVM qualification. Failure rate < 10 ppm for parts as specified below.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
N _{endu}	endurance		[2][1]	10000	100000	-	cycles
t _{ret}	retention time	powered	[2]	10	20	-	years
		unpowered	[2]	20	40	-	years
t _{er}	erase time	sector or multiple consecutive sectors	[2]	95	100	105	ms
t _{prog}	programming time		[2][3]	0.95	1	1.05	ms

[1] Number of program/erase cycles.

[2] Min and max values are valid for $T_{amb} = -40 \text{ }^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$ only.

[3] Programming times are given for writing <tbd> bytes to the flash. T_{amb} < +85 °C. Data must be written to the flash in blocks of 256 bytes. Flash programming is accomplished via IAP calls (see *LPC800 user manual*). Execution time of IAP calls depends on the system clock and is typically between 1.5 and 2 ms per 256 bytes.

11.3 External clock for the oscillator in slave mode and CLKIN

Remark: The input voltage on the XTAL1/2 pins must be \leq 1.95 V (see <u>Table 9</u>). For connecting the oscillator to the XTAL pins, also see <u>Section 13.1</u>.

Table 12. Dynamic characteristic: external clock (XTALIN or CLKIN inputs) $T_{amb} = -40 \degree C$ to +85 $\degree C$; V_{DD} over specified ranges.[1]

Symbol	Parameter	Conditions	Min	Typ[2]	Max	Unit
f _{osc}	oscillator frequency		1	-	25	MHz
T _{cy(clk)}	clock cycle time		40	-	1000	ns
t _{CHCX}	clock HIGH time		$T_{\text{cy(clk)}} \times 0.4$	-	-	ns
t _{CLCX}	clock LOW time		$T_{\text{cy(clk)}} \times 0.4$	-	-	ns
t _{CLCH}	clock rise time		-	-	5	ns
t _{CHCL}	clock fall time		-	-	5	ns

[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

LPC81xM

Table 18. Dynamic characteristics of SPI pins

				32-b	It ARM (Cortex-M0+ microcon	troller
Table 18. <i>T_{amb} = -40</i>	Dynamic characteris ℃ to 85 ℃; C _L = <tbd< th=""><th>tics of SPI pins />; 1.8 V <= V_{DD} <= 3.6 V</th><th>/. Simu</th><th>ılated parameters;</th><th>values gu</th><th>laranteed by design.</th><th>DRAF DRAF</th></tbd<>	tics of SPI pins />; 1.8 V <= V _{DD} <= 3.6 V	/. Simu	ılated parameters;	values gu	laranteed by design.	DRAF DRAF
Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
SPI slave	(in SPI mode)						The second
T _{cy(PCLK)}	PCLK cycle time			<tbd></tbd>	-	-	ns
t _{DS}	data set-up time	in SPI mode	[2]	<tbd></tbd>	-	-	ns
t _{DH}	data hold time	in SPI mode	[2]	<tbd></tbd>	-	-	ns y
		$2.4~V \leq V_{DD} \leq 3.6~V$					
		$2.0~V \leq V_{DD} < 2.4~V$		<tbd></tbd>			ns
		1.8 V \leq V_{DD} < 2.0 V		<tbd></tbd>	-	-	ns
t _{v(Q)}	data output valid time	in SPI mode	[2]	-	-	<tbd></tbd>	ns
t _{h(Q)}	data output hold time	in SPI mode	[2]	-	-	<tbd></tbd>	ns

[1] $T_{cy(clk)} = \langle tbd \rangle$.

[2] $T_{cy(clk)} = 12 \times T_{cy(PCLK)}$.

					۲,	$\Sigma_{\rm c}$ $^{\prime\prime}$	$\Sigma_{\rm c}$
1] Maxim	um values are derived from	h worst case simulation (V_{DD} =	2.6	V; T _{amb} :	= 85 °C; sl	ow process	models
[2] Settling	time applies to switching	between comparator channels	<tbo< td=""><td>d>.</td><td></td><td>NAN S</td><td>~~~ ````</td></tbo<>	d>.		NAN S	~~~ ````
						<	P.
Table 24.	Comparator voltage	ladder reference static ch	ara	cteristi	cs		\sim
$V_{DD(3V3)} =$	3.3 V; $T_{amb} = -40 \ ^{\circ}C$ to	+ 85 <i>°</i> C.					
Symbol	Parameter	Conditions		Min	Тур	Max ^[1]	Unit
$E_{V(O)}$	output voltage error	Internal V _{DD(3V3)} supply			<tbd></tbd>	<tbd></tbd>	
		decimal code = 00	[2]	-			%
		decimal code = 08		-	<tbd></tbd>	<tbd></tbd>	%
		decimal code = 16		-	<tbd></tbd>	<tbd></tbd>	%
		decimal code = 24		-	<tbd></tbd>	<tbd></tbd>	%
		decimal code = 30		-	<tbd></tbd>	<tbd></tbd>	%
		decimal code = 31		-	<tbd></tbd>	<tbd></tbd>	%
E _{V(O)}	output voltage error	External VDDCMP supply			<tbd></tbd>	<tbd></tbd>	
		decimal code = 00		-			%
		decimal code = 08		-	<tbd></tbd>	<tbd></tbd>	%
		decimal code = 16		-	<tbd></tbd>	<tbd></tbd>	%
		decimal code = 24		-	<tbd></tbd>	<tbd></tbd>	%
		decimal code = 30		-	<tbd></tbd>	<tbd></tbd>	%
		decimal code = 31		-	<tbd></tbd>	<tbd></tbd>	%

Table 24.	Comparator voltage ladder reference static characteristics
$V_{DD(3V3)} = -$	$3.3 \text{ V}; T_{amb} = -40 \text{ °C to} + 85 \text{ °C}.$

[1] Measured <tbd> with a 2 kHz input signal and overdrive < 100 μ V.

[2] All peripherals except comparator, temperature sensor, and IRC turned off.

13. Application information

13.1 XTAL input

The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a clock in slave mode, it is recommended that the input be coupled through a capacitor with C_i = 100 pF. To limit the input voltage to the specified range, choose an additional capacitor to ground C_{α} which attenuates the input voltage by a factor $C_i/(C_i + C_{\alpha})$. In slave mode, a minimum of 200 mV(RMS) is needed.

32-bit ARM Cortex-M0+ microcontroller RAFT DRA

PC81xM

14. Package outline

Fig 32. Package outline SOT097-2 (DIP8)

LPC81xM

Fig 33. Package outline SOT403-1 (TSSOP16)

LPC81xM

Fig 35. Package outline SOT360-1 (TSSOP20)

LPC.c. 32-bit ARM Cortex-M0+ microcontroller

15	Soldering 59
16	Abbreviations 62
17	References
18	Revision history 63
19	Legal information 64
19.1	Data sheet status 64
19.2	Definitions 64
19.3	Disclaimers 64
19.4	Trademarks 65
20	Contact information 65
21	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2012.

All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 7 November 2012 Document identifier: LPC81xM