

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	27
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 15x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFQFN Exposed Pad
Supplier Device Package	36-SQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0064gpm036-i-m2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-1: FIXED MODES ORDER OF PRIORITY

Mode 1	Mode 0			
CPU Lowest	CPU Highest			
Highest I	Priority			
Flash Controller	Flash Controller			
DMA	CPU			
USB	USB			
CPU	DMA			
Lowest Priority				

Note: The Arbitration mode chosen only has an effect on system performance when a contention for a target occurs.

The Flash controller, when programming memory, always has the highest priority regardless of the priority mode setting.

Refer to **Section 48. "Memory Organization and Permissions"** (DS60001214) in the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32) for more information regarding Bus Matrix operation.

4.3 Flash Line Buffer

The Flash line buffer is a buffer that resides between the Bus Matrix and the Flash memory. When a Flash fetch is generated, an aligned double word (64 bits) is read. This is then placed in the Flash line buffer. If the next initiator requested address's data is contained in the Flash line buffer, it is read directly without requiring another Flash fetch; if it is not in the Flash line buffer, a Flash fetch is generated. NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-1, HS	R/W-1, HS	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0	U-0
31:24	PORIO	PORCORE	—	—	BCFGERR	BCFGFAIL	_	-
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	_	_
15:0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS	U-0
10.0	—	_	_	_	—	-	CMR	
7.0	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS
7:0	EXTR ⁽¹⁾	SWR ⁽¹⁾	_	WDTO ⁽¹⁾	SLEEP ⁽¹⁾	IDLE ^(1,2)	BOR ⁽¹⁾	POR ⁽¹⁾

REGISTER 6-1: RCON: RESET CONTROL REGISTER

Legend:	HS = Hardware Settable bit			
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'		ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31	PORIO: VDD POR Flag bit
	Set by hardware at detection of a VDD POR event.
	1 = A Power-on Reset has occurred due to VDD voltage
	0 = A Power-on Reset has not occurred due to VDD voltage
bit 30	PORCORE: Core Voltage POR Flag bit
	Set by hardware at detection of a core POR event.
	1 = A Power-on Reset has occurred due to core voltage
	0 = A Power-on Reset has not occurred due to core voltage
bit 29-28	Unimplemented: Read as '0'
bit 27	BCFGERR: Primary Configuration Registers Error Flag bit
	1 = An error occurred during a read of the Primary Configuration registers
	0 = No error occurred during a read of the Primary Configuration registers
bit 26	BCFGFAIL: Primary/Alternate Configuration Registers Error Flag bit
	1 = An error occurred during a read of the Primary and Alternate Configuration registers
	0 = No error occurred during a read of the Primary and Alternate Configuration registers
bit 25-10	Unimplemented: Read as '0'
bit 9	CMR: Configuration Mismatch Reset Flag bit
	1 = A Configuration Mismatch Reset has occurred
	0 = A Configuration Mismatch Reset has not occurred
bit 8	Unimplemented: Read as '0'
bit 7	EXTR: External Reset (MCLR) Pin Flag bit ⁽¹⁾
	1 = Master Clear (pin) Reset has occurred
	0 = Master Clear (pin) Reset has not occurred
bit 6	SWR: Software Reset Flag bit ⁽¹⁾
	1 = Software Reset was executed
	0 = Software Reset was not executed
bit 5	Unimplemented: Read as '0'
bit 4	WDTO: Watchdog Timer Time-out Flag bit ⁽¹⁾
	1 = WDT time-out has occurred
	0 = WDT time-out has not occurred
Note 1:	User software must clear these bits to view the next detection.

2: The IDLE bit will also be set when the device wakes from Sleep.

REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER x (CONTINUED)

bit 12-10 IP1<2:0>: Interrupt Priority 1 bits

	111 = Interrupt priority is 7
	•
	•
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 9-8	IS1<1:0>: Interrupt Subpriority 1 bits
	11 = Interrupt subpriority is 3
	10 = Interrupt subpriority is 2
	01 = Interrupt subpriority is 1
	00 = Interrupt subpriority is 0
bit 7-5	Unimplemented: Read as '0'
bit 4-2	IP0<2:0>: Interrupt Priority 0 bits
	111 = Interrupt priority is 7
	•
	•
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 1-0	IS0<1:0>: Interrupt Subpriority 0 bits
	11 = Interrupt subpriority is 3
	10 = Interrupt subpriority is 2
	01 = Interrupt subpriority is 1
	01 = Interrupt subpriority is 100 = Interrupt subpriority is 0

Note: This register represents a generic definition of the IPCx register. Refer to Table 7-3 for the exact bit definitions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	—	—	SUSPEND	DMABUSY	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	_	_	_	_		_	_	_

REGISTER 8-1: DMACON: DMA CONTROLLER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** DMA On bit⁽¹⁾
 - 1 = DMA module is enabled
 - 0 = DMA module is disabled

bit 14-13 Unimplemented: Read as '0'

- bit 12 SUSPEND: DMA Suspend bit
 - 1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus
 - 0 = DMA operates normally
- bit 11 DMABUSY: DMA Module Busy bit
 - 1 = DMA module is active
 - 0 = DMA module is disabled and not actively transferring data
- bit 10-0 Unimplemented: Read as '0'
- **Note 1:** The user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
15:8	CHBUSY	—	—	—	_	—	—	CHCHNS ⁽¹⁾
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R/W-0
7:0	CHEN ⁽²⁾	CHAED	CHCHN	CHAEN	_	CHEDET	CHPR	RI<1:0>

REGISTER 8-7: DCHxCON: DMA CHANNEL x CONTROL REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 CHBUSY: Channel Busy bit
 - 1 = Channel is active or has been enabled
 - 0 = Channel is inactive or has been disabled

bit 14-9 Unimplemented: Read as '0'

- bit 8 CHCHNS: Chain Channel Selection bit⁽¹⁾
 - 1 = Chain to channel lower in natural priority (CH1 will be enabled by CH2 transfer complete)
 - 0 = Chain to channel higher in natural priority (CH1 will be enabled by CH0 transfer complete)

bit 7 CHEN: Channel Enable bit⁽²⁾

- 1 = Channel is enabled
- 0 = Channel is disabled
- bit 6 CHAED: Channel Allow Events if Disabled bit
 - 1 = Channel start/abort events will be registered, even if the channel is disabled
 - 0 = Channel start/abort events will be ignored if the channel is disabled

bit CHCHN: Channel Chain Enable bit

- 1 = Allows channel to be chained
- 0 = Does not allow channel to be chained

bit 4 CHAEN: Channel Automatic Enable bit

- 1 = Channel is continuously enabled and not automatically disabled after a block transfer is complete
- 0 = Channel is disabled on a block transfer complete

bit 3 Unimplemented: Read as '0'

- bit 2 CHEDET: Channel Event Detected bit
 - 1 = An event has been detected
 - 0 = No events have been detected

bit 1-0 **CHPRI<1:0>:** Channel Priority bits

- 11 = Channel has Priority 3 (highest)
- 10 = Channel has Priority 2
- 01 = Channel has Priority 1
- 00 = Channel has Priority 0

Note 1: The chain selection bit takes effect when chaining is enabled (CHCHN = 1).

2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

REGISTER 8-9: DCHxINT: DMA CHANNEL x INTERRUPT CONTROL REGISTER (CONTINUED)

- bit 5 CHDDIF: Channel Destination Done Interrupt Flag bit 1 = Channel Destination Pointer has reached end of destination (CHDPTRx = CHDSIZx) 0 = No interrupt is pending bit 4 CHDHIF: Channel Destination Half Full Interrupt Flag bit 1 = Channel Destination Pointer has reached midpoint of destination (CHDPTRx = CHDSIZx/2) 0 = No interrupt is pending bit 3 CHBCIF: Channel Block Transfer Complete Interrupt Flag bit 1 = A block transfer has been completed (the larger of CHSSIZx/CHDSIZx bytes has been transferred) or a pattern match event occurs 0 = No interrupt is pending CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit bit 2 1 = A cell transfer has been completed (CHCSIZx bytes have been transferred) 0 = No interrupt is pending bit 1 CHTAIF: Channel Transfer Abort Interrupt Flag bit
 - 1 = An interrupt matching CHAIRQx has been detected and the DMA transfer has been aborted 0 = No interrupt is pending
- bit 0 CHERIF: Channel Address Error Interrupt Flag bit
 - 1 = A channel address error has been detected (either the source or the destination address is invalid)
 - 0 = No interrupt is pending

10.1 CLR, SET and INV Registers

Every I/O module register has a corresponding CLR (Clear), SET (Set) and INV (Invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as '1' are modified. Bits specified as '0' are not modified.

Reading SET, CLR and INV registers returns undefined values. To see the effects of a write operation to a SET, CLR or INV register, the base register must be read.

10.2 Parallel I/O (PIO) Ports

All port pins have 14 registers directly associated with their operation as digital I/Os. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. The LATx register controls the pin level when it is configured as an output. Reads from the PORTx register read the port pins, while writes to the port pins write the latch, LATx.

10.3 Open-Drain Configuration

In addition to the PORTx, LATx and TRISx registers for data control, the port pins can also be individually configured for either digital or open-drain outputs. This is controlled by the Open-Drain Control x register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V), on any desired 5V tolerant pins, by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

10.4 Configuring Analog and Digital Port Pins

When the PORTx register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications. The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as timers, UARTs, etc., the corresponding ANSELx bit must be cleared. The ANSELx register has a default value of 0xFFFF. Therefore, all pins that share analog functions are analog (not digital) by default. If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is used by an analog peripheral, such as the ADC or comparator module.

10.5 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

There is a three-instruction cycle delay in the port read synchronizer. When a port or port bit is read, the returned value is the value that was present on the port three system clocks prior.

10.6 GPIO Port Merging

Port merging creates a 32-bit wide port from two GPIO ports. When the PORT32 bit is set, the next I/O port is mapped to the upper 16 bits of the lower port.

Only the next higher letter port can be merged to a given port (i.e., PORTA can only be merged with PORTB).

Note:	All 32 pins may not be available. Refer to
	the pin diagrams for information regarding
	GPIO port pin availability.

10.7 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the PIC32MM devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on the input pins. This feature can detect input Change-of-States, even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State. Five control registers are associated with the Change Notification (CN) functionality of each I/O port. To enable the Change Notification feature for the port, the ON bit (CNCONx<15>) must be set.

The CNEN0x and CNEN1x registers contain the CN interrupt enable control bits for each of the input pins. The setting of these bits enables a CN interrupt for the corresponding pins. Also, these bits, in combination with the CNSTYLE bit (CNCONx<11>), define a type of transition when the interrupt is generated. Possible CN event options are listed in Table 10-1.

TABLE 10-1:CHANGE NOTIFICATION
EVENT OPTIONS

CNSTYLE Bit (CNCONx<11>)	CNEN1x Bit	CNEN0x Bit	Change Notification Event Description
0	Does not matter	0	Disabled
0	Does not matter	1	Detects a mismatch between the last read state and the current state of the pin
1	0	0	Disabled
1	0	1	Detects a positive transition only (from '0' to '1')
1	1	0	Detects a negative transition only (from '1' to '0')
1	1	1	Detects both positive and negative transitions

12.0 TIMER2 AND TIMER3

Note: This data sheet summarizes the features of the PIC32MM0256GPM064 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105) in the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/ PIC32). The information in this data sheet supersedes the information in the FRM.

This family of PIC32 devices features four synchronous 16-bit timers (default) that can operate as a freerunning interval timer for various timing applications and counting external events. The following modes are supported:

- Synchronous Internal 16-Bit Timer
- Synchronous Internal 16-Bit Gated Timer
- Synchronous External 16-Bit Timer

FIGURE 12-1:

A single 32-bit synchronous timer is available by combining Timer2 with Timer3. The resulting 32-bit timer can operate in three modes:

- · Synchronous Internal 32-Bit Timer
- · Synchronous Internal 32-Bit Gated Timer
- Synchronous External 32-Bit

12.1 Additional Supported Features

- Selectable Clock Prescaler
- Timers Operational during CPU Idle
- ADC Event Trigger (only Timer3)
- Fast Bit Manipulation using CLR, SET and INV Registers

Sync TMRx 14 ADC Event Comparator x 16 Trigger⁽¹⁾ Equal 介 PRx Reset 0 TxIF Event Flag 1 Q TGATE (TxCON<7>) Q TCS (TxCON<1>) TGATE (TxCON<7>) ON (TxCON<15>) TxCK x 1 Prescaler Gate 1, 2, 4, 8, 16, Sync 1 0 32, 64, 256 PBCLK 0 0 <u>3</u> TCKPS (TxCON<6:4>) Note 1: ADC Event Trigger is only available on Timer3.

TIMER2 AND TIMER3 BLOCK DIAGRAM (TYPE A, 16-BIT)

REGISTER 14-1: CCPxCON1: CAPTURE/COMPARE/PWMx CONTROL 1 REGISTER (CONTINUED)

bit 20-16 SYNC<4:0>: CCPx Synchronization Source Select bits

- 111111 = Off11110 = Reserved . . . 11100 = Reserved 11011 = Time base is synchronized to the start of ADC conversion 11010 = Time base is synchronized to Comparator 3 11001 = Time base is synchronized to Comparator 2 11000 = Time base is synchronized to Comparator 1 10111 = Reserved . . . 10010 = Reserved 10011 = Time base is synchronized to CLC4 10010 = Time base is synchronized to CLC3 10001 = Time base is synchronized to CLC2 10001 = Time base is synchronized to CLC1 01111 = Time base is synchronized to SCCP9 01110 = Time base is synchronized to SCCP8 01101 = Time base is synchronized to the INT4 Pin (Remappable) 01100 = Time base is synchronized to the INT3 Pin 01011 = Time base is synchronized to the INT2 Pin 01010 = Time base is synchronized to the INT1 Pin 01001 = Time base is synchronized to the INTO Pin 01000 = Reserved . . . 00101 = Reserved 00100 = Time base is synchronized to SCCP3 00011 = Time base is synchronized to SCCP2 00010 = Time base is synchronized to MCCP1 00001 = Time base is synchronized to this MCCP/SCCP 00000 = No external synchronization; timer rolls over at FFFFh or matches with the Timer Period register ON: CCPx Module Enable bit⁽¹⁾ bit 15 1 = Module is enabled with the operating mode specified by the MOD<3:0> bits 0 = Module is disabled Unimplemented: Read as '0' bit 14 bit 13 SIDL: CCPx Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12 CCPSLP: CCPx Sleep Mode Enable bit 1 = Module continues to operate in Sleep modes 0 = Module does not operate in Sleep modes bit 11 TMRSYNC: Time Base Clock Synchronization bit 1 = Module time base clock is synchronized to internal system clocks; timing restrictions apply 0 = Module time base clock is not synchronized to internal system clocks Note 1: This control bit has no function in Input Capture modes.
 - **2:** This control bit has no function when TRIGEN = 0.
 - **3:** Values greater than '0011' will cause a FIFO buffer overflow in Input Capture mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	
31:24	OENSYNC	—	OCFEN ⁽¹⁾	OCEEN ⁽¹⁾	OCDEN ⁽¹⁾	OCCEN ⁽¹⁾	OCBEN ⁽¹⁾	OCAEN	
00.40	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	ICGSM<1:0>		—	AUXOUT<1:0>		ICS<2:0>			
45.0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	
15:8	PWMRSEN	ASDGM	—	SSDG	—	—	—	—	
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	ASDG<7:0>								

REGISTER 14-2: CCPxCON2: CAPTURE/COMPARE/PWMx CONTROL 2 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 **OENSYNC:** Output Enable Synchronization bit

- 1 = Update by output enable bits occurs on the next Time Base Reset or rollover
- 0 = Update by output enable bits occurs immediately
- bit 30 Unimplemented: Read as '0'

bit 29-24 OC<F:A>EN: Output Enable/Steering Control bits⁽¹⁾

- 1 = OCx pin is controlled by the CCPx module and produces an output compare or PWM signal
- 0 = OCx pin is not controlled by the CCPx module; the pin is available to the port logic or another peripheral multiplexed on the pin

bit 23-22 ICGSM<1:0>: Input Capture Gating Source Mode Control bits

- 11 = Reserved
- 10 = One-Shot mode: Falling edge from gating source disables future capture events (ICDIS = 1)
- 01 = One-Shot mode: Rising edge from gating source enables future capture events (ICDIS = 0)
- 00 = Level-Sensitive mode: A high level from gating source will enable future capture events; a low level will disable future capture events
- bit 21 Unimplemented: Read as '0'

bit 20-19 AUXOUT<1:0>: Auxiliary Output Signal on Event Selection bits

- 11 = Input capture or output compare event; no signal in Timer mode
- 10 = Signal output depends on module operating mode
- 01 = Time base rollover event (all modes)
- 00 = Disabled
- bit 18-16 ICS<2:0>: Input Capture Source Select bits
 - 111 = CLC4 output
 - 110 = CLC3 output
 - 101 = CLC2 output
 - 100 = CLC1 output
 - 011 = Comparator 3 output
 - 010 = Comparator 2 output
 - 001 = Comparator 1 output
 - 000 = ICMx pin⁽²⁾
- bit 15 PWMRSEN: CCPx PWM Restart Enable bit
 - 1 = ASEVT bit clears automatically at the beginning of the next PWM period, after the shutdown input has ended
 - 0 = ASEVT must be cleared in software to resume PWM activity on output pins
- Note 1: OCFEN through OCBEN (bits<29:25>) are implemented in MCCP modules only.
 - **2:** This pin is remappable from SCCP modules.

REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 11	 STRICT: Strict I²C Reserved Address Rule Enable bit 1 = Strict reserved addressing is enforced; device does not respond to reserved address space or generates addresses in reserved address space 0 = Strict I²C reserved address rule is not enabled
bit 10	A10M: 10-Bit Slave Address bit 1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address
bit 9	DISSLW: Disable Slew Rate Control bit 1 = Slew rate control is disabled 0 = Slew rate control is enabled
bit 8	SMEN: SMBus Input Levels bit 1 = Enables I/O pin thresholds compliant with the SMBus specification 0 = Disables SMBus input thresholds
bit 7	GCEN: General Call Enable bit (when operating as I ² C slave) 1 = Enables interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address is disabled
bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with the SCLREL bit. 1 = Enables software or receives clock stretching 0 = Disables software or receives clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiates Acknowledge sequence on the SDAx and SCLx pins and transmits the ACKDT data bit; hardware is clear at the end of the master Acknowledge sequence 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I^2C master) 1 = Enables Receive mode for I^2C ; hardware is clear at the end of the eighth bit of the master receive data byte 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master) 1 = Initiates Stop condition on SDAx and SCLx pins; hardware is clear at the end of the master Stop sequence 0 = Stop condition is not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiates Repeated Start condition on SDAx and SCLx pins; hardware is clear at the end of the master Repeated Start sequence 0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master) 1 = Initiates Start condition on SDAx and SCLx pins; hardware is clear at the end of the master Start sequence 0 = Start condition is not in progress

PIC32MM0256GPM064 FAMILY

REGISTER 18-10: U1STAT: USB STATUS REGISTER⁽¹⁾

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	—	_	—	_	_
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—							—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_		_		_		
7:0	R-x	R-x	R-x	R-x	R-x	R-x	U-0	U-0
		ENDP	T<3:0>		DIR	PPBI		_

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-8 Unimplemented: Read as '0'
- bit 7-4 ENDPT<3:0>: Encoded Number of Last Endpoint Activity bits
 (Represents the number of the BDT, updated by the last USB transfer.)
 1111 = Endpoint 15
 1110 = Endpoint 14
 .
 .
 .
 0001 = Endpoint 1
 0000 = Endpoint 0
 bit 3 DIR: Last Buffer Descriptor Direction Indicator bit
 1 = Last transaction was a transmit transfer (TX)
 - 0 = Last transaction was a receive transfer (RX)
- bit 2 PPBI: Ping-Pong Buffer Descriptor Pointer Indicator bit
 - 1 = Last transaction was to the Odd buffer descriptor bank
 - 0 = Last transaction was to the Even buffer descriptor bank
- bit 1-0 Unimplemented: Read as '0'
- **Note 1:** The U1STAT register is a window into a 4-byte FIFO maintained by the USB module. The U1STAT value is only valid when TRNIF (U1IR<3>)> is active. Clearing the TRNIF bit advances the FIFO. The data in the register is invalid when TRNIF = 0.

25.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of the PIC32MM0256GPM064 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "Power-Saving Modes" (DS60001130) in the "PIC32 Family "Reference Manual", which is available from the Microchip web site (www.microchip.com/ PIC32). The information in this data sheet supersedes the information in the FRM.

This section describes the power-saving features for the PIC32MM0256GPM064 family devices. These devices offer various methods and modes that allow the application to balance power consumption with device performance. In all of the methods and modes described in this section, power saving is controlled by software. The peripherals and CPU can be halted or disabled to reduce power consumption.

25.1 Sleep Mode

In Sleep mode, the CPU and most peripherals are halted and the associated clocks are disabled. Some peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep. The device enters Sleep mode when the SLPEN bit (OSCCON<4>) is set and a WAIT instruction is executed.

Sleep mode includes the following characteristics:

- There can be a Wake-up Delay based on the Oscillator Selection
- The Fail-Safe Clock Monitor (FSCM) does not Operate During Sleep mode
- The BOR Circuit remains Operative during Sleep mode
- The WDT, if Enabled, is not automatically Cleared prior to Entering Sleep mode
- Some Peripherals can Continue to Operate at Limited Functionality in Sleep mode; these Peripherals include I/O Pins that Detect a Change in the Input Signal, WDT, ADC, UART and Peripherals that use an External Clock Input or the Internal LPRC Oscillator (e.g., RTCC and Timer1)
- I/O Pins Continue to Sink or Source Current in the Same Manner as they do when the Device is not in Sleep

The processor will exit, or "wake-up", from Sleep on one of the following events:

- On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority.
- On any form of device Reset.
- On a WDT time-out.

If the interrupt priority is lower than or equal to the current priority, the CPU will remain halted, but the Peripheral Bus Clock (PBCLK) will start running and the device will enter into Idle mode. To set or clear the SLPEN bit, an unlock sequence must be executed. Refer to **Section 26.4 "System Registers Write Protection"** for details.

25.2 Standby Sleep Mode

Standby Sleep mode places the voltage regulator in Standby mode. This mode draws less power than Sleep mode but has a longer wake-up time. Standby Sleep mode is entered by setting the VREGS bit (PWRCON<0>) prior to entering Sleep by executing a WAIT instruction. All peripherals that can operate in Sleep mode can operate in Standby Sleep mode.

25.3 Retention Sleep Mode

Retention Sleep uses a separate voltage regulator to provide the lowest power Sleep mode. This mode has a longer wake-up time than Sleep or Standby Sleep. This mode is entered by clearing the RETVR Configuration bit (FPOR<2>) and setting the RETEN bit (PWRCON<1>), prior to entering Sleep mode, and executing a WAIT instruction.

Only select peripherals, such as Timer1, WDT, RTCC and REFO, can operate in Retention Sleep mode.

Note: In Retention mode, the maximum peripheral output frequency to an I/O pin must be less than 33 kHz.

Note: When MCLR is used to wake the device from Retention Sleep, a POR Reset will occur.

25.4 Idle Mode

In Idle mode, the CPU is halted; however, all clocks are still enabled. This allows peripherals to continue to operate. Peripherals can be individually configured to halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active.

The device enters Idle mode when the SLPEN bit (OSCCON<4>) is clear and a WAIT instruction is executed.

The processor will wake or exit from Idle mode on the following events:

- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than or equal to the current priority of the CPU, the CPU will remain halted and the device will remain in Idle mode.
- On any form of device Reset.
- On a WDT time-out interrupt.

To set or clear the SLPEN bit, an unlock sequence must be executed. Refer to **Section 26.4** "**System Registers Write Protection**" for details.

PIC32MM0256GPM064 FAMILY

REGISTER 26-10: ANCFG: BAND GAP CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
01.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	_	—	—	—	—	_
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	—	—	—
7:0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS, HC	R/W-0, HS, HC	U-0
		_		_	_	VBGADC	VBGCMP	

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-3 Unimplemented: Read as '0'

- bit 2 VBGADC: ADC Band Gap Enable bit
 - 1 = ADC band gap is enabled
 - 0 = ADC band gap is disabled

bit 1 VBGCMP: Comparator Band Gap Enable bit

- 1 = Comparator band gap is enabled
- 0 = Comparator band gap is disabled
- bit 0 Unimplemented: Read as '0'

TABLE 29-27: MCCP AND SCCP PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No. Symbol Characteristics ⁽¹⁾		Min	Typical	Мах	Units	Conditions		
OC15	Tfd	Fault Input to PWM I/O Change		_	50	ns		
OC20	TFLT	Fault Input Pulse Width	10	—		ns		

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 29-37: EJTAG TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Description ⁽¹⁾	Min.	Max.	Units	Conditions		
EJ1	Ттсксус	TCK Cycle Time	25	_	ns			
EJ2	Ттскнідн	TCK High Time	10		ns			
EJ3	TTCKLOW	TCK Low Time	10	_	ns			
EJ4	TTSETUP	TAP Signals Setup Time before Rising TCK	5		ns			
EJ5	TTHOLD	TAP Signals Hold Time after Rising TCK	3		ns			
EJ6	TTDOOUT	TDO Output Delay Time from Falling TCK	_	5	ns			
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK	_	5	ns			
EJ8	TTRSTLOW	TRST Low Time	25	_	ns			
EJ9	Trf	TAP Signals Rise/Fall Time, All Input and Output			ns			

Note 1: These parameters are characterized but not tested in manufacturing.

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M4) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad

Microchip Technology Drawing C04-442A-M4 Sheet 1 of 2

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M4) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Terminals	N		48		
Pitch	е		0.40 BSC		
Overall Height	Α	0.50	0.55	0.60	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.15 REF			
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	4.50	4.60	4.70	
Overall Width	E	6.00 BSC			
Exposed Pad Width	E2	4.50	4.60	4.70	
Terminal Width	b	0.15	0.20	0.25	
Corner Anchor Pad	b1	0.45 REF			
Corner Anchor Pad, Metal-free Zone	b2		0.23 REF		
Terminal Length		0.35	0.40	0.45	
Terminal-to-Exposed-Pad	K		0.30 REF		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-442A-M4 Sheet 2 of 2

48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP] With Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SECTION A-A

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Leads	Ν		48		
Lead Pitch	е		0.50 BSC		
Overall Height	Α	-	-	1.20	
Standoff	A1	0.05	-	0.15	
Molded Package Thickness	A2	0.95	1.00	1.05	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1		1.00 REF		
Foot Angle	ø	0°	3.5°	7°	
Overall Width	E	9.00 BSC			
Overall Length	D	9.00 BSC			
Molded Package Width	E1		7.00 BSC		
Molded Package Length	D1		7.00 BSC		
Exposed Pad Width	E2		3.50 BSC		
Exposed Pad Length	D2	3.50 BSC			
Lead Thickness	С	0.09	-	0.16	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-183A Sheet 2 of 2