

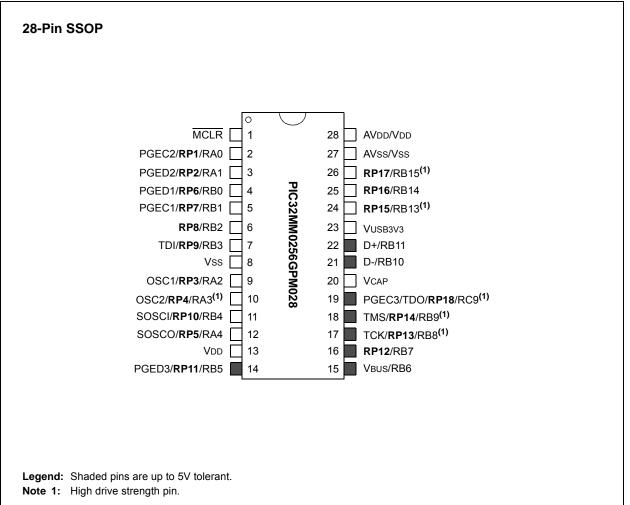
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


ĿXFI

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	27
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 15x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0064gpm036-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

TABLE 2: COMPLETE PIN FUNCTION DESCRIPTIONS FOR 28-PIN SSOP DEVICES

Pin	Function	Pin	Function
1	MCLR	15	VBUS/RB6
2	PGEC2/VREF+/CVREF+/AN0/RP1/OCM1E/INT3/RA0	16	RP12/SDA3/SDI3/OCM3F/RB7
3	PGED2/VREF-/AN1/ RP2 /OCM1F/RA1	17	TCK/ RP13 /SCL1/U1CTS/SCK1/OCM1A/RB8 ⁽¹⁾
4	PGED1/AN2/C1IND/C2INB/C3INC/RP6/OCM2C/RB0	18	TMS/REFCLKI/ RP14 /SDA1/T1CK/T1G/T2CK/T2G/U1RTS/U1BCLK/SDO1/OCM1B/ INT2/RB9 ⁽¹⁾
5	PGEC1/AN3/C1INC/C2INA/RP7/OCM2D/RB1	19	PGEC3/TDO/RP18/ASCL1 ⁽²⁾ /T3CK/T3G/USBOEN/SDO3/OCM2A/RC9 ⁽¹⁾
6	AN4/C1INB/RP8/SDA2/OCM2E/RB2	20	VCAP
7	TDI/AN11/C1INA/RP9/SCL2/OCM2F/RB3	21	D-/RB10
8	Vss	22	D+/RB11
9	OSC1/CLKI/AN5/RP3/OCM1C/RA2	23	VUSB3V3
10	OSC2/CLKO/AN6/C3IND/RP4/OCM1D/RA3 ⁽¹⁾	24	AN8/LVDIN/ RP15 /SCL3/SCK3/OCM3A/RB13 ⁽¹⁾
11	SOSCI/AN7/RP10/OCM3C/RB4	25	CVREF/AN9/C3INB/RP16/RTCC/U1TX/VBUSON/SDI1/OCM3B/INT1/RB14
12	SOSCO/SCLKI/ RP5 /PWRLCLK/OCM3D/RA4	26	AN10/C3INA/REFCLKO/RP17/U1RX/SS1/FSYNC1/OCM2B/INT0/RB15 ⁽¹⁾
13	Vdd	27	AVss/Vss
14	PGED3/ RP11 /ASDA1 ⁽²⁾ /USBID/ SS3 /FSYNC3/ OCM3E/RB5	28	AVdd/Vdd

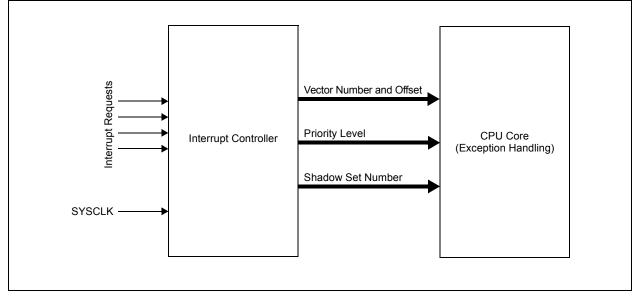
Note 1: High drive strength pin.

2: Alternate pin assignments for I2C1 as determined by the I2C1SEL Configuration bit.

7.0 CPU EXCEPTIONS AND INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of the PIC32MM0256GPM064 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Interrupts" (DS61108) and Section 50. "CPU for Devices with MIPS32[®] microAptiv[™] and M-Class Cores" (DS60001192) in the "*PIC32* Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM.

PIC32MM0256GPM064 family devices generate interrupt requests in response to interrupt events from peripheral modules. The interrupt control module exists externally to the CPU logic and prioritizes the interrupt events before presenting them to the CPU.


The CPU handles interrupt events as part of the exception handling mechanism, which is described in **Section 7.1 "CPU Exceptions"**.

The PIC32MM0256GPM064 family device interrupt module includes the following features:

- · Single Vector or Multivector Mode Operation
- Five External Interrupts with Edge Polarity Control
- · Interrupt Proximity Timer
- Module Freeze in Debug mode
- Seven User-Selectable Priority Levels for Each Vector
- Four User-Selectable Subpriority Levels within Each Priority
- One Shadow Register Set that can be Used for Any Priority Level, Eliminating Software Context Switch and Reducing Interrupt Latency
- · Software can Generate any Interrupt
- User-Configurable Interrupt Vectors' Offset and Vector Table Location

Figure 7-1 shows the block diagram for the interrupt controller and CPU exceptions.

FIGURE 7-1: CPU EXCEPTIONS AND INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM

TABLE 7-3: INTERRUPT REGISTER MAP

SS										Bits									Τ
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
F000	INTCON	31:16	_	—	—	—	_	—	—	—	—			VS<6:0>					0000
F000	INTCON	15:0	_	_	_	MVEC	_		TPC<2:0>		_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
F010	PRISS	31:16		PRI7S	S<3:0>			PRI6SS	S<3:0>			PRI5SS	<3:0>			PRI4S	S<3:0>		0000
FUIU	FRI33	15:0		PRI3S	S<3:0>			PRI2SS	6<3:0>			PRI1SS	<3:0>		_	_	_	SS0	0000
F020	INTSTAT	31:16	—	—	—	—	—	—	—	—	—	—	—	-	—	—	—	—	0000
FUZU	INTSTAT	15:0	—							0000									
F030	IPTMR	31:16 15:0								IPTMR<	31:0>								0000
50.40	1500	31:16	_	USBIF	_	_	_	—	CMP3IF	CMP2IF	CMP1IF	_	_	—	T3IF	T2IF	T1IF	_	0000
F040	IFS0	15:0		_	_		CNDIF	CNCIF	CNBIF	CNAIF	INT4IF	INT3IF	INT2IF	INT1IF	INTOIF	CS1IF	CS0IF	CTIF	0000
5050	1504	31:16	_	_	U3EIF	U3TXIF	U3RXIF	U2EIF	U2TXIF	U2RXIF	U1EIF	U1TXIF	U1RXIF		_	—	SPI3RXIF	SPI3TXIF	0000
F050	IFS1	15:0	SPI3EIF	SPI2RXIF	SPI2TXIF	SPI2EIF	SPI1RXIF	SPI1TXIF	SPI1EIF	CLC4IF	CLC3IF	CLC2IF	CLC1IF	LVDIF	_	_	AD1IF	RTCCIF	0000
5000	1500	31:16	CPCIF	NVMIF	_	FSTIF	CCT9IF	CCP9IF	CCT8IF	CCP8IF	CCT7IF	CCP7IF	CCT6IF	CCP6IF	CCT5IF	CCP5IF	CCT4IF	CCP4IF	0000
F060	IFS2	15:0	CCT3IF	CCP3IF	CCT2IF	CCP2IF	CCT1IF	CCP1IF	I2C3BCIF	I2C3MIF	I2C3SIF	I2C2BCIF	I2C2MIF	I2C2SIF	I2C1BCIF	I2C1MIF	I2C1SIF		0000
E070	1500	31:16	_			_	_	—	_	_	_	_	_	_	_	_	_	_	0000
F070	IFS3	15:0	_	_	_			_	_			_	DMA3IF	DMA2IF	DMA1IF	DMA0IF	ECCBEIF	—	0000
F080	IEC0	31:16	—	USBIE	—			_	CMP3IE	CMP2IE	CMP1IE	—	_		T3IE	T2IE	T1IE	—	0000
F000	IECU	15:0	—	—	—		CNDIE	CNCIE	CNBIE	CNAIE	INT4IE	INT3IE	INT2IE	INT1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
F090	IEC1	31:16	—	—	U3EIE	U3TXIE	U3RXIE	U2EIE	U2TXIE	U2RXIE	U1EIE	U1TXIE	U1RXIE	-	—	—	SPI3RXIE	SPI3TXIE	0000
F090	IECT	15:0	SPI3EIE	SPI2RXIE	SPI2TXIE	SPI2EIE	SPI1RXIE	SPI1TXIE	SPI1EIE	CLC4IE	CLC3IE	CLC2IE	CLC1IE	LVDIE	—	—	AD1IE	RTCCIE	0000
F0A0	IEC2	31:16	CPCIE	NVMIE	—	FSTIE	CCT9IE	CCP9IE	CCT8IE	CCP8IE	CCT7IE	CCP7IE	CCT6IE	CCP6IE	CCT5IE	CCP5IE	CCT4IE	CCP4IE	0000
1 0/10	IL02	15:0	CCT3IE	CCP3IE	CCT2IE	CCP2IE	CCT1IE	CCP1IE	I2C3BCIE	I2C3MIE	I2C3SIE	I2C2BCIE	I2C2MIE	I2C2SIE	I2C1BCIE	I2C1MIE	I2C1SIE	—	0000
F0B0	IEC3	31:16	_	_	_	_	_		_	_	_	—	—	_		_	—	—	0000
1 000	IL00	15:0	—	—	—	_	—	—	—	—	_	—	DMA3IE	DMA2IE	DMA1IE	DMA0IE	ECCBEIE	—	0000
F0C0	IPC0	31:16	—	—	—		INT0IP<2:0>	•	INTOIS	<1:0>	—	—	—		CS1IP<2:0>		CS1IS	6<1:0>	0000
1000	1 00	15:0	—	—	—		CS0IP<2:0>		CSOIS	<1:0>	—	—	—		CTIP<2:0>		CTIS	<1:0>	0000
F0D0	IPC1	31:16	_	—	—		INT4IP<2:0>	•	INT4IS	<1:0>	_	—	— — INT3IP<2:0>		INT3IS	6<1:0>	0000		
	01	15:0	_		<u>– – INT2IP<2:0> INT2IS<1:0> – – INT1IP<2:0> INT1IS<1:0> (</u>						0000								
F0E0	IPC2	31:16								0000									
1020		15:0	—	_	—	CNBIP<2:0> CNBIS<1:0> — — — CNAIP<2:0> CNAIS<1:0> 0000						0000							
F0F0	IPC3	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
	55	15:0	_	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	0000

DS60001387C-page 66

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

TABLE 8-2: DMA CHANNELS 0-3 REGISTER MAP

s											Bits								1
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
9060	DCH0CON	31:16	—	—	—	—	_	—	_	—			_	—	—	—	_	—	0000
8960 DCH0CON 15:0 CHBUSY CHCHNS CHEN CHAED CHCHN CHAEN - CHEDET CHPRI<1							:l<1:0>	0000											
8970	DCH0ECON	31:16	_	—	—	—	_	—	—	_				CHAIR	Q<7:0>				00FF
0370	Deniecon	15:0				CHSIRC	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN				FF00
8980	DCH0INT	31:16	—	—	—	—	—	—	—	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
0000	Borioitti	15:0	—	—	—	—	—	—		—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
8990	DCH0SSA	31:16								CHS	SA<31:0>								0000
		15:0																	0000
89A0	DCH0DSA	31:16 15:0								CHDS	SA<31:0>								0000
	D.01100.017	31:16	_	—	_	—	—	_		_	—	—	—	_	—	—	—	_	0000
89B0	DCH0SSIZ	15:0	CHSSIZ<15:0> 0.01										0000						
89C0	DCH0DSIZ	31:16	_	_	_	_	—	_	—	-	—	—	—	_	_	_	—	_	0000
89C0	DCHUDSIZ	15:0								CHDS	SIZ<15:0>								0000
89D0	DCH0SPTR	31:16	_	_	—	-		—		—				_	_	_		_	0000
0300	Deniosi IIX	15:0								CHSP	TR<15:0>								0000
89E0	DCH0DPTR	31:16	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	—	0000
OOLO	Bonobi III	15:0								CHDP	TR<15:0>								0000
89F0	DCH0CSIZ	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—		0000
	201100012	15:0								CHCS	SIZ<15:0>								0000
8A00	DCH0CPTR	31:16		—	—	—	—	_	_	—	—	—	—	—	—	—	—		0000
		15:0								CHCP	TR<15:0>								0000
8A10	DCH0DAT	31:16	—	—	_	—	—	—	_	—	—	—	_	—	_	_	_		0000
		15:0			_			_	_					CHPDA					0000
8A20	DCH1CON	31:16	—		_			_	_	—	-		—	—	—				0000
										0000									
8A30									OOFF										
15:0 CHSIRQ<7:0> CFORCE CABORT PATEN SIRQEN AIRQEN						FF00													
8A40	DCH1INT	31:16	—	—	—	—	—	_	_	_	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
	15:0	—		_	—	—	—	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 10.1 "CLR, SET and INV Registers" for more information.

REGISTER 8-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)

- bit 5 **CRCTYP:** CRC Type Selection bit
 - 1 = The CRC module will calculate an IP header checksum
 0 = The CRC module will calculate an LFSR CRC
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 CRCCH<2:0>: CRC Channel Select bits
 - 111 = CRC is assigned to Channel 7
 - 110 = CRC is assigned to Channel 6
 - 101 = CRC is assigned to Channel 5
 - 100 = CRC is assigned to Channel 4
 - 011 = CRC is assigned to Channel 3
 - 010 = CRC is assigned to Channel 2
 - 001 = CRC is assigned to Channel 1
 - 000 = CRC is assigned to Channel 0
- Note 1: When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	—	—	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10		—	_	-	—	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	—	—	—	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				CHPDA	Γ<7:0>			

REGISTER 8-18: DCHxDAT: DMA CHANNEL x PATTERN DATA REGISTER

Legend:

Ecgena.					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **CHPDAT<7:0>:** Channel Data Register bits

Pattern Terminate mode: Data to be matched must be stored in this register to allow terminate on match. All Other modes: Unused.

9.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features of the PIC32MM0256GPM064 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 59. "Oscillators with DCO" (DS60001329) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM.

The PIC32MM0256GPM064 family oscillator system has the following modules and features:

- A Total of Five External and Internal Oscillator Options as Clock Sources
- On-Chip PLL with User-Selectable Multiplier and Output Divider to Boost Operating Frequency on Select Internal and External Oscillator Sources
- On-Chip User-Selectable Divisor Postscaler on Select Oscillator Sources
- Software-Controllable Switching between Various Clock Sources
- A Fail-Safe Clock Monitor (FSCM) that Detects Clock Failure and Permits Safe Application Recovery or Shutdown
- Flexible Reference Clock Output

A block diagram of the oscillator system is provided in Figure 9-1.

9.1 Fail-Safe Clock Monitor (FSCM)

The PIC32MM0256GPM064 family oscillator system includes a Fail-Safe Clock Monitor (FSCM). The FSCM monitors the SYSCLK for continuous operation. If it detects that the SYSCLK has failed, it switches the SYSCLK over to the FRC oscillator and triggers a Non-Maskable Interrupt (NMI). When the NMI is executed, software can attempt to restart the main oscillator or shut down the system.

In Sleep mode, both the SYSCLK and the FSCM halt, which prevents FSCM detection.

9.2 Clock Switching Operation

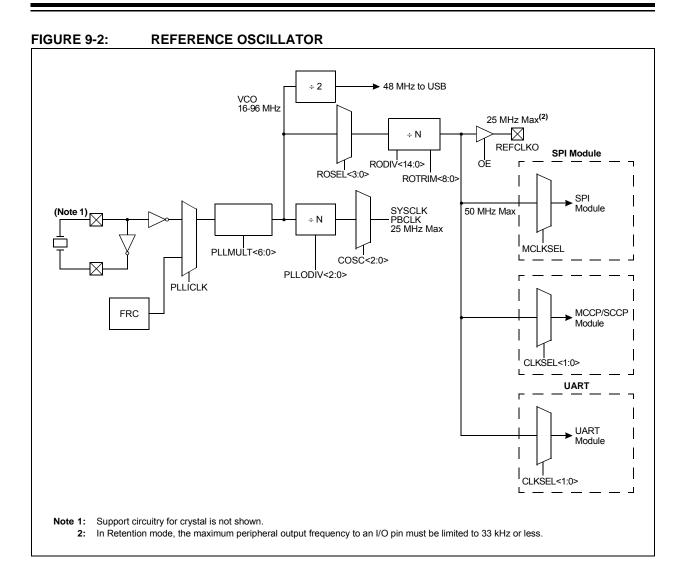
With few limitations, applications are free to switch between any of the four clock sources (POSC, SOSC, FRC and LPRC) under software control and at any time. To limit the possible side effects that could result from this flexibility, PIC32 devices have a safeguard lock built into the switching process.

Note: The Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMOD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

9.2.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in FOSC must be programmed to '0'. (Refer to **Section 26.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled; this is the default setting.

The NOSC<2:0> control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC<2:0> bits (OSCCON<14:12>) will reflect the clock source selected by the FNOSC<2:0> Configuration bits.


The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled; it is held at '0' at all times.

9.2.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC<2:0> bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register.
- Write the appropriate value to the NOSC<2:0> bits (OSCCON<10:8>) for the new oscillator source.
- 4. Set the OSWEN bit to initiate the oscillator switch.

PIC32MM0256GPM064 FAMILY

TABLE 10-0.				10	
Value	RPn Pins	Pin Assignment	Value	RPn Pins	Pin Assignment
00001	RP1	RA0 Pin	01110	RP14	RB9 Pin
00010	RP2	RA1 Pin	01111	RP15	RB13 Pin
00011	RP3	RA2 Pin	10000	RP16	RB14 Pin
00100	RP4	RA3 Pin	10001	RP17	RB15 Pin
00101	RP5	RA4 Pin	10010	RP18	RC9 Pin
00110	RP6	RB0 Pin	10011	RP19	RC2 Pin
00111	RP7	RB1 Pin	10100	RP20	RC7 Pin
01000	RP8	RB2 Pin	10101	RP21	RA7 Pin
01001	RP9	RB3 Pin	10110	RP22	RA10 Pin
01010	RP10	RB4 Pin	10111	RP23	RC6 Pin
01011	RP11	RB5 Pin	11000	RP24	RA9 Pin
01100	RP12	RB7 Pin	11001-11111	Re	served
01101	RP13	RB8 Pin			

TABLE 10-3: REMAPPABLE INPUT SOURCES PIN ASSIGNMENTS⁽¹⁾

Note 1: All RPx pins are not available on all packages.

REGISTER 14-3: CCPxCON3: CAPTURE/COMPARE/PWMx CONTROL 3 REGISTER (CONTINUED)

- bit 19-18 PSSACE<1:0>: PWMx Output Pins, OCxA, OCxC and OCxE, Shutdown State Control bits 11 = Pins are driven active when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 0x = Pins are in a high-impedance state when a shutdown event occurs PSSBDF<1:0>: PWMx Output Pins, OCxB, OCxD and OCxF, Shutdown State Control bits⁽¹⁾ bit 17-16 11 = Pins are driven active when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 0x = Pins are in a high-impedance state when a shutdown event occurs bit 15-6 Unimplemented: Read as '0' DT<5:0>: PWM Dead-Time Select bits⁽¹⁾ bit 5-0 111111 = Insert 63 dead-time delay periods between complementary output signals 111110 = Insert 62 dead-time delay periods between complementary output signals . . . 000010 = Insert 2 dead-time delay periods between complementary output signals 000001 = Insert 1 dead-time delay period between complementary output signals
 - 000000 = Dead-time logic is disabled
- Note 1: These bits are implemented in MCCP modules only.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_			—	_	_	—
00.40	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
23:16	—	—	—	PRLWIP	TMRHWIP	TMRLWIP	RBWIP	RAWIP
45.0	U-0	U-0	U-0	U-0	U-0	R/C-0	U-0	U-0
15:8	—	_	_		—	ICGARM ⁽¹⁾	—	—
7.0	R-0	W1-0	W1-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
7:0	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE

REGISTER 14-4: CCPxSTAT: CAPTURE/COMPARE/PWMx STATUS REGISTER

Legend:	C = Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-21	Unimplemented: Read as '0'
bit 20	PRLWIP: CCPxPRL Write in Progress Status bit
	 1 = An update to the CCPxPRL register with the buffered contents is in progress 0 = An update to the CCPxPRL register is not in progress
bit 19	TMRHWIP: CCPxTMRH Write in Progress Status bit
	 1 = An update to the CCPxTMRH register with the buffered contents is in progress 0 = An update to the CCPxTMRH register is not in progress
bit 18	TMRLWIP: CCPxTMRL Write in Progress Status bit
	 1 = An update to the CCPxTMRL register with the buffered contents is in progress 0 = An update to the CCPxTMRL register is not in progress
bit 17	RBWIP: CCPxRB Write in Progress Status bit
	 1 = An update to the CCPxRB register with the buffered contents is in progress 0 = An update to the CCPxRB register is not in progress
bit 16	RAWIP: CCPxRA Write in Progress Status bit
	 1 = An update to the CCPxRA register with the buffered contents is in progress 0 = An update to the CCPxRA register is not in progress
bit 15-11	Unimplemented: Read as '0'
bit 10	ICGARM: Input Capture Gate Arm bit ⁽¹⁾
	A write of '1' to this location will arm the input capture gating logic for a one-shot gate event when $ICGSM<1:0> = 01 \text{ or } 10$. The bit location reads as '0'.
bit 9-8	Unimplemented: Read as '0'
bit 7	CCPTRIG: CCPx Trigger Status bit
	 1 = Timer has been triggered and is running (set by hardware or writing to TRSET) 0 = Timer has not been triggered and is held in Reset (cleared by writing to TRCLR)
bit 6	TRSET: CCPx Trigger Set Request bit
	Write '1' to this location to trigger the timer when TRIGEN = 1 (location always reads '0').
bit 5	TRCLR: CCPx Trigger Clear Request bit
	Write '1' to this location to cancel the timer trigger when TRIGEN = 1 (location always reads '0').
bit 4	ASEVT: CCPx Auto-Shutdown Event Status/Control bit
	 1 = A shutdown event is in progress; CCPx outputs are in the shutdown state 0 = CCPx outputs operate normally

Note 1: This is not a physical bit location and will always read as '0'. A write of '1' will initiate the hardware event.

REGISTER 18-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER (CONTINUED)

- bit 1 CRC5EF: CRC5 Host Error Flag bit⁽⁴⁾
 - 1 = Token packet rejected due to CRC5 error
 - 0 = Token packet accepted

EOFEF: EOF Error Flag bit^(3,5)

- 1 = EOF error condition detected
- 0 = No EOF error condition
- bit 0 PIDEF: PID Check Failure Flag bit
 - 1 = PID check failed
 - 0 = PID check passed
- **Note 1:** This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
 - **2:** This type of error occurs when more than 16-bit times of Idle from the previous End-of-Packet (EOP) has elapsed.
 - **3:** This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
 - 4: Device mode.
 - 5: Host mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0						
31:24				—			_	
23:16	U-0	U-0						
23.10	_	_		—			_	_
45.0	U-0	U-0						
15:8				—			_	
	R/W-0	R/W-0						
7:0	DTOFF			DTOFF			CRC5EE ⁽¹⁾	
	BTSEE	BMXEE	DMAEE	BTOEE	DFN8EE	CRC16EE	EOFEE ⁽²⁾	PIDEE

REGISTER 18-9: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER

Legend:

3					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-8 Unimplemented: Read as '0'

- bit 7 BTSEE: Bit Stuff Error Interrupt Enable bit
 - 1 = BTSEF interrupt is enabled
 - 0 = BTSEF interrupt is disabled
- bit 6 BMXEE: Bus Matrix Error Interrupt Enable bit
 - 1 = BMXEF interrupt is enabled
 - 0 = BMXEF interrupt is disabled
- bit 5 DMAEE: DMA Error Interrupt Enable bit
 - 1 = DMAEF interrupt is enabled
 - 0 = DMAEF interrupt is disabled
- bit 4 BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit
 - 1 = BTOEF interrupt is enabled
 - 0 = BTOEF interrupt is disabled
- bit 3 **DFN8EE:** Data Field Size Error Interrupt Enable bit
 - 1 = DFN8EF interrupt is enabled
 - 0 = DFN8EF interrupt is disabled
- bit 2 CRC16EE: CRC16 Failure Interrupt Enable bit
 - 1 = CRC16EF interrupt is enabled
 - 0 = CRC16EF interrupt is disabled
- bit 1 CRC5EE: CRC5 Host Error Interrupt Enable bit⁽¹⁾
 - 1 = CRC5EF interrupt is enabled
 - 0 = CRC5EF interrupt is disabled
 - EOFEE: EOF Error Interrupt Enable bit⁽²⁾
 - 1 = EOF interrupt is enabled
 - 0 = EOF interrupt is disabled
- bit 0 PIDEE: PID Check Failure Interrupt Enable bit
 - 1 = PIDEF interrupt is enabled
 - 0 = PIDEF interrupt is disabled
- Note 1: Device mode.
 - 2: Host mode.

19.1 RTCC Control Registers

TABLE 19-1: RTCC REGISTER MAP

ess		6									Bits								ú
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	DTCCON1	31:16	ALRMEN	ALRMEN CHIME – – AMASK<3:0> ALMRPT<7:0>						0000									
0000	0000 RTCCON1		ON	_			WRLOCK	—	—		RTCOE		OUTSEL<2:0	>	—	—	—	—	0000
0010	BTCCON2	31:16								DI	V<15:0>								0000
0010	010 RTCCON2 15:0				FDIV<4:0)>		PS<1:0> CLKSEL<			L<1:0>	0000							
0030	RTCSTAT	31:16	—	—	_	—	—	—	—	-	—	—	—	—	—	—	—	—	0000
0030	RICOIAI	15:0	—	_			—	—	—		_	—	ALMEVT	—	—	SYNC	ALMSYNC	HALFSEC	0000
0040	RTCTIME	31:16	—	F	IRTEN<2	:0>		HRONE<3:0>		—		MINTEN<2:0>		MINONE<3:0>				xxxx	
0040	RICHME	15:0		SECTE	N<3:0>			SECON	E<3:0>		—	—	—	—	—	—	—	—	xx00
0050	RTCDATE	31:16		YRTE	N<3:0>			YRONE	<3:0>		—	—	— MTHTEN MTHONE<3:0>				0000		
0030	RICDAIL	15:0	—	—	DAYTI	EN<1:0>		DAYON	E<3:0>		—	—	—	—	—		WDAY<2:0	>	0000
0060	ALMTIME	31:16	—	- HRTEN<2:0> HRONE<3:0>				—		MINTEN<2:0> MINONE<3:0>				xxxx					
0000		15:0		SECTE	N<3:0>			SECON	E<3:0>		—	—	—	—	—	—	—	—	xx00
0070	ALMDATE	31:16	_	—		-	—	_	—	-	_	_	—	MTHTEN		МТНС)NE<3:0>		0000
0070		15:0	_	—	DAYT	EN<1:0>		DAYON	E<3:0>		_	_	—	—	—		WDAY<2:0	>	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

REGISTER 20-1: AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED)

1	bit 7-4	SSRC<3:0>: Conversion Trigger Source Select bits 1111 = CLC2 module event ends sampling and starts conversion 110 = CLC1 module event ends sampling and starts conversion 101 = SCCP6 module event ends sampling and starts conversion 100 = SCCP5 module event ends sampling and starts conversion 101 = SCCP4 module event ends sampling and starts conversion 101 = SCCP4 module event ends sampling and starts conversion 1010 = MCCP3 module event ends sampling and starts conversion 1001 = MCCP2 module event ends sampling and starts conversion 1000 = MCCP1 module event ends sampling and starts conversion 1010 = Timer1 period match ends sampling and starts conversion (auto-convert) 0110 = Timer1 period match ends sampling and starts conversion (will not trigger during Sleep mode) 0100-0011 = Reserved 0010 = Timer3 period match ends sampling and starts conversion 0010 = Timer3 period match ends sampling and starts conversion 0010 = Timer3 period match ends sampling and starts conversion 0001 = Active transition on INT0 pin ends sampling and starts conversion 0000 = Clearing the SAMP bit ends sampling and starts conversion
I	bit 3	MODE12: 12-Bit Operation Mode bit 1 = 12-bit ADC operation
		0 = 10-bit ADC operation
I	bit 2	ASAM: ADC Sample Auto-Start bit
		 1 = Sampling begins immediately after last conversion completes; SAMP bit is automatically set 0 = Sampling begins when SAMP bit is set
I	bit 1	SAMP: ADC Sample Enable bit ⁽²⁾
		 1 = The ADC Sample-and-Hold Amplifier (SHA) is sampling 0 = The ADC SHA is holding When ASAM = 0, writing '1' to this bit starts sampling. When SSRC<3:0 = 0000, writing '0' to this bit will end sampling and start conversion.
I	bit 0	DONE: ADC Conversion Status bit ⁽¹⁾
		1 = Analog-to-Digital conversion is done
		 analog-to-Digital conversion is not done or has not started Clearing this bit will not affect any operation in progress.
	Noto 1.	The DONE bit is not persistent in Automatic modes: it is cleared by bardware at the beginning of the

- **Note 1:** The DONE bit is not persistent in Automatic modes; it is cleared by hardware at the beginning of the next sample.
 - 2: The SAMP bit is cleared and cannot be written if the ADC is disabled (ON bit = 0).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_			—			_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	—	—		—	_	_
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
15:8		VCFG<2:0>		OFFCAL	BUFREGEN	CSCNA	_	_
7.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
7:0	BUFS — SMPI<3:0>						BUFM	—

REGISTER 20-2: AD1CON2: ADC CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits

		ADC Vr+	ADC VR-	
	000	AVdd	AVss	
	001	AVdd	External VREF- Pin	
	010	External VREF+ Pin	AVss	
	011	External VREF+ Pin	External VREF- Pin	
	1xx	Unimplemente	d; do not use	
bit 12	1 = Enables		inputs of the SHA are con	nected to the negative reference trolled by AD1CHS or AD1CSS
bit 11	1 = Conversi	: ADC Buffer Register Enable ion result is loaded into the b ult buffer is treated as a FIFC	uffer location determined b	y the converted channel
bit 10	CSCNA: Sca	an Input Selections for CH0+	SHA Input for Input Multipl	exer Setting bit
	1 = Scans in 0 = Does not	•		
bit 9-8	Unimpleme	nted: Read as '0'		
bit 7	BUFS: Buffe	r Fill Status bit		
	1 = ADC is c	nen BUFM = 1 (ADC buffers urrently filling Buffers 11-21, urrently filling Buffers 0-10, u	user should access data in	0-10
bit 6	Unimpleme	nted: Read as '0'		
bit 5-2		Sample/Convert Sequences		
		rupts at the completion of con rupts at the completion of con		
	0000 = Inter	rupts at the completion of con rupts at the completion of con	nversion for each sample/c	
bit 1	1 = Buffer co	Result Buffer Mode Select b onfigured as two 11-word buff onfigured as one 22-word buff	ers, ADC1BUF(010), AD	C1BUF(1121)
bit 0	Unimpleme	nted: Read as '0'		

Peripheral	PMDx Bit Name	Register Name and Bit Location
Universal Asynchronous Receiver Transmitter 2 (UART2)	U2MD	PMD5<1>
Universal Asynchronous Receiver Transmitter 3 (UART3)	U3MD	PMD5<2>
Serial Peripheral Interface 1 (SPI1)	SPI1MD	PMD5<8>
Serial Peripheral Interface 2 (SPI2)	SPI2MD	PMD5<9>
Serial Peripheral Interface 3 (SPI3)	SPI3MD	PMD5<10>
Inter-Integrated Circuit Interface 1 (I2C1)	I2C1MD	PMD5<16>
Inter-Integrated Circuit Interface 2 (I2C2)	I2C2MD	PMD5<17>
Inter-Integrated Circuit Interface 3 (I2C3)	I2C3MD	PMD5<18>
Universal Serial Bus (USB)	USBMD	PMD5<24>
Real-Time Clock and Calendar (RTCC)	RTCCMD	PMD6<0>
Reference Clock Output (REFO1)	REFOMD	PMD6<8>
Direct Memory Access (DMA)	DMAMD	PMD7<4>

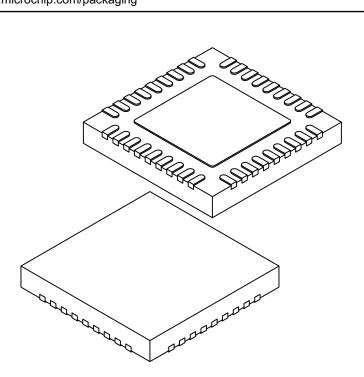
TABLE 25-1: PERIPHERAL MODULE DISABLE BITS AND LOCATIONS (CONTINUED)

Operating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)									
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments		
D300	VIOFF	Input Offset Voltage	-20	—	+20	mV	(Note 1)		
D301	VICM	Input Common-Mode Voltage	Vss – 0.3V	_	VDD + 0.3V	V	(Note 1)		
D307	TRESP	Response Time	—	150	_	ns	(Note 2)		

TABLE 29-14: COMPARATOR DC SPECIFICATIONS

Note 1: Parameters are characterized but not tested.

2: Measured with one input at VDD/2 and the other transitioning from VSS to VDD, 40 mV step, 15 mV overdrive.


TABLE 29-15: VOLTAGE REFERENCE DC SPECIFICATIONS

Operatin	Operating Conditions: 2.0V < V _{DD} < 3.6V, -40°C < TA < +85°C (unless otherwise stated)								
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments		
VRD310	TSET	Settling Time	—	_	10	μs	(Note 1)		
VRD311	VRAA	Absolute Accuracy	-1	—	1	LSb			
VRD312	VRur	Unit Resistor Value (R)	_	4.5	_	kΩ			

Note 1: Measures the interval while DACDAT<4:0> transitions from '11111' to '00000'.

36-Terminal Very Thin Plastic Quad Flatpack No-Lead (M2) - 6x6x1.0mm Body [VQFN] SMSC Legacy "Sawn Quad Flatpack No-Lead [SQFN]"

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

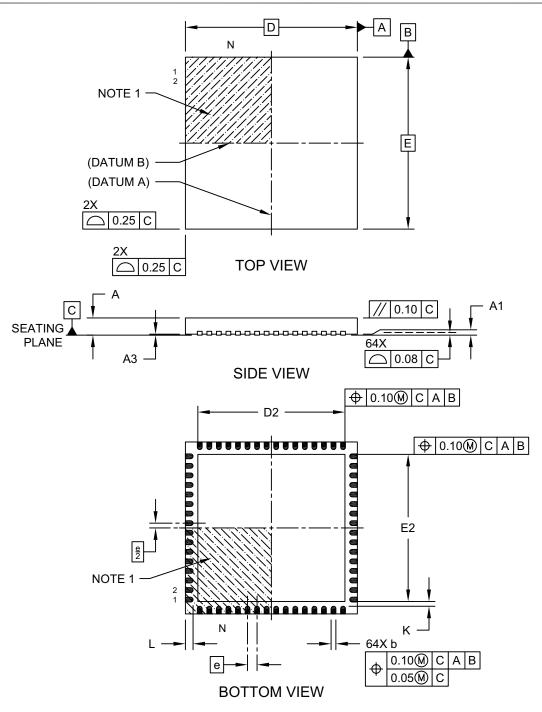
	Units					
Dimension	Limits	MIN	NOM	MAX		
Number of Terminals	N		36			
Pitch	е		0.50 BSC			
Overall Height	Α	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3		0.20 REF			
Overall Width	E		6.00 BSC			
Exposed Pad Width	E2	3.60	3.70	3.80		
Overall Length	D		6.00 BSC			
Exposed Pad Length	D2	3.60	3.70	3.80		
Terminal Width	b	0.18	0.25	0.30		
Terminal Length	L	0.50	0.60	0.75		
Terminal-to-Exposed-Pad	K	0.45	0.55	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-272B-M2 Sheet 2 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.70 x 7.70 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-213B Sheet 1 of 2